
vfpmath is a library of mathematical functions targetting the ARM VFP (Vector Floating Point)
architecture. At present it covers most of the functions normally included in the ANSI C math.h
library. Although all the routines are implemented in assembly language, it is intended that it should
be possible to use them from C, as well as from assembler. Although this could be a first step towards
supporting the VFP architecture on RISC OS, other significant problems remain, such as the lack of
support for the VFP architecture in the C compiler.

Calling convention

As far as possible vfpmath conforms to the APCS (ARM Procedure Call Standard) so that the
routines can be called for any language which follows these conventions. As far as the VFP
architecture is concerned, this means that the double precision registers d0 to d7 may be used as
scratch registers. Conversely, registers d8 to d15 may be used for register variables and are preserved
across procedure calls.

There are a number of conventions for passing floating point variables as arguments to a procedure.
The Hard VFP convention is that arguments are passed in the double precision registers, with the first
floating point argument being in d0. A floating point result is also returned in d0. The Soft VFP
convention assumes that floating point instructions are emulated in software, and so arguments are
passed in the ARM core integer registers instead. The first argument is passed with the low order bits
in r0, and the high order bits in r1. Results are similarly returned in r0 and r1.

Previous floating point systems on RISC OS, whether the FP Emulator, or in some cases the FPA
hardware, supports a different instruction set, uses different registers, and stores the two words
making up a double precision value in a different order. Supporting this alongside the two VFP
conventions is less easy because the assembler will not allow VFP and FPE instructions to be mixed
in a single source file. However, for compatibility with the Norcorft compiler, vfpmath now offers
this option, and the necessary FPE instructions are assembled manually. When this convention is
selected, floating point arguments are passed in a pair of consecutive integer registers, with the high
order word first (the opposite way round to Soft VFP conventions). Floating point results are returned
in the FPE register f0.

Building vfpmath

Building vfpmath will require the RISC OS Open development tools. Assuming that these have been
installed on your system, then vfpmath can be built by changing to the directory where the source
files are located, then from the command line run amu. This will build the library and a simple
demonstration/test program.

By default the library will use the default RISC OS/FPE convention (see above). If you with to use a
different calling convention, then, in the makefile, edit the macro asmopts. For HardVFP calling
conventions remove the flag:

−−predefine=”FPE_POINTERS SETL {TRUE}”

For SoftVFP conventions, additionally change the −−fpu option to:

vfpmath: A Maths library for the VFP architecture

−−fpe=SoftVFP+VFPv3

No changes are necessary to the header file vfpmath.h.

Once the library has been built, you may decide you wish to install it alongside the other C libraries.
To do this, you can use the command amu install. By default this will install the vfpmath in the
same directory as the Shared C library, but this location can be changed by editing the install
target of the makefile.

Compatibility

The vfpmath library has been developed on a Pandaboard running RISC OS 5.27. This uses a Cortex-
A9 core, and supports the VFPv3 architecture. The library does use a few instructions introduced in
the VFPv3 standard, most notably a VMOV.F64 instruction with an immediate constant to generate a
limited range of common constants (like 0.5 or 1.0) in a VFP register. If this were changed then it
should be possible to use vfpmath on earlier versions of the VFP architecture with at least 16 double
precision registers. The vfpmath library has also been built and tested sucessfully on a Raspberry Pi 3
model B+.

Library functions

The vfpmath library includes most of the functions normally included in the ANSI C standard, and a
growing number of additional functions from the C99 standard. To avoid any conflicts over function
names, all names in the vfpmath library have been prefixed with vfp_, and the corresponding header
file is similarly called vfpmath.h. The table below summarises the available functions:

vfp_sin sine of x sin x
vfp_cos cosine of x cos x
vfp_tan tangent of x tan x
vfp_arcsin inverse sine of x sin-1 x
vfp_arccos inverse cosine of x cos-1 x
vfp_arctan inverse tangent of x tan-1 x
vfp_atan2 angle of point x,y from positive x axis tan-1 y/x
vfp_exp e to the power of x ex

vfp_exp2 2 to the power of x 2x

vfp_pow x to the power of y xy

vfp_sqrt square root of x Úx
vfp_cbrt cube root of x 3Úx
vfp_hypot hypotinuse with sides x and y Úx2+y2

vfp_ln base e, natural logarithm of x ln x
vfp_log base 10 logarithm of x log x
vfp_log2 base 2 logarithm of x log2 x
vfp_sinh hyperbolic sine of x sinh x
vfp_cosh hyperbolic cosine of x cosh x
vfp_tanh hyperbolic tangent of x tanh x
vfp_arcsinh inverse hyperbolic sine of x sinh-1 x
vfp_arccosh inverse hyperbolic cosine of x cosh-1 x
vfp_arctanh inverse hyperbolic tangent of x tanh-1 x
vfp_floor largest integer less than or equal to x �x©
vfp_ceil smallest integer greater than or equal to x �x§
vfp_frexp return the fraction and exponent given x m×2p=x
vfp_ldexp return x given its fraction and exponent x=m×2p

vfp_gamma gamma function of x G(x)

vfp_gammln logarithm of gamma function ln G(x)
vfp_erf error function erf(x)
vfp_erfc complementary error function erfc(x)
vfp_igamp incomplete gamma function of the first kind P(a, x)
vfp_igamq incomplete gamma function of the second kind Q(a, x)

By default, the basic prototype for the functions in the C programming language is:

extern double fn_name(double x);

A few functions are exceptions to this rule and take two floating point arguments, or have an
additional integer argument. The C prototypes for these are:

extern double vfp_pow(double x, double y);

extern double vfp_atan2(double x, double y);

extern double vfp_hypot(double x, double y);

extern double vfp_frexp(double x, int *p);

extern double vfp_ldexp(double m, int p);

Using vfpmath from C

The vfpmath library is intended to be called from C, and the default calling convention using pointers
allows it to be used without the compiler needing to be aware of either the VFP format variables, or
the VFP variants of APCS. This makes it compatible with code compiled with the Norcroft C
compiler on RISC OS.

To begin with, the prototypes for the vfpmath functions are all found in the vfpmath.h header file
which will need to be included at the begining of your program:

#include “vfpmath.h”

Also, before any VFP instructions can be used you will need a current VFP context. The Shared C
library does not create this for you, so you will need to use the SWIs provided by the VFPSupport
module. The demonstration program included with vfpmath defines two functions to simplify this, or
you can use VFPSupport_CreateContext (SWI &58EC1) to do this.

Once a VFP context has been created, we can use the vfpmath routines like the usual mathematical
functions in the C library. For example:

double x=1.0, y;

y=vfp_exp(x); /* returns e^x in y */

If you have built the library with the correct conventions for your system, then it will be possible to
use it anywhere which expects a floating point value. This includes other procedures, futher
calculations and input/output:

printf(“The value of e is %12.10f\n”, y);

To facilitate testing you may wish to produce a table of function values for regularly spaced values of
the argument. The utility function fntable will do this. Create an array with the values of the
argument, then call fntable with a pointer to the array, the number of values and a pointer to the
function to tabulate:

double x[10];

for(i=1; i<=10; i++)

 x[i]=(double) i; /* x=1...10 */

fntable(x, 10, &vfp_log); /* table of values of log */

There is another function linrange to create a linearly spaced range of values between a given start
and end point. Combining these functions makes it easy to compute a table of function values:

double x[7];

const pi=3.142;

linrange(x, 7, 0.0, pi);

fntable(x, 7, &vfp_sin);

Finally, remember to release any allocated memory using free(), restore the previous VFP context
and destroy your previously created context using VFPSupport_DestroyContext (SWI &58EC2).

Once you have written your program, you will need to link it with the vfp_math library. In general,
assuming the same filenames as used by the distributed Zip file, it should be possible to compile and
link your program using the following command:

*cc -c -IC: c.VFPTest -o o.VFPTest

*link -AIF o.VFPTest o.harness o.vfpmath C:o.stubs -Output VFPTest

Remember to change the name of the C source file and the associated object file to that of your own
code. If you do not use any of the utility functions supplied as part of the test ‘harness’, then you can
omit the o.harness object at the link stage. Note that when linking you may see warning messages
about attribute differences. These are generated because the C compiler currently generates code for
the FPE system, and the linker detects that the calling convention does not match that used by the
vfpmath library. Assuming that you have used the correct conventions for your system, and built the
library using the correct options then these warnings can be ignored.

Currently it is not straightforward to use the options for HardVFP or SoftVFP calling conventions
from C. The Norcroft compiler currently only supports the FPE system, passes arguments in two
integer registers, and expects results to be returned in the FPE register f0. One solution to this is to
supply ‘dummy’ routines which simply copy the arguments into the correct registers, call the
appropriate vfpmath routine, and then put the result into the FPE register f0. This could be done using
the following assember sequence (the FPE instruction has to be assembled manually because the
assembler will not accept both VFP and FPE instructions in a single source file):

__sin mov ip,sp

 stmdb sp!,{fp,ip,lr,pc}

 sub fp,ip,#4

 vmov.F64 d0,r1,r0 ; put first argument in d0

 bl vfp_sin ; call library routine

 vmov.F64 r1,r0,d0

 stmdb r13!,{r0,r1} ; store result on stack and load into f0

 DCD 0xECBD8102 ; ldfd f0,[r13],#8

 ldmdb fp,{fp,sp,pc}

Using vfpmath with gcc

It is now possible to use vfpmath with the gcc compiler, although there are some limitations. In
particular, gcc will always use the SoftVFP conventions when targetting the VFP architecture, even
when using Unixlib. The assembler source files will have to be converted to the syntax expected by
the gas assembler. The supplied perl script convasm/pl will do this. Although this is not a
completely general conversion script, it now manages to convert the vfpmath sources without the
need for manual editing. There is an additional target in the Makefile to convert and assemble one of
the sources. You can examine this and change the commands to suit your requirements.

When writing C code, make sure that you are using the correct version of vfpmath.h, namely the one

using arguments declared as double, not the default using pointers. Then, compile your program and
link it with one of the library object files using:

gcc -O2 -mfpu=vfp -o test c.test o.trig

Future developments

Possible future development of the vfpmath library includes:

• Standardise on one calling convention and supply the necessary dummy routines to interface with
code produced from the Norcroft C compiler, or

• Extend the utility functions for testing to support different calling conventions.
• Additionally convert the assembly language source files to the format required by the gas

assember and provide an ELF format version of the library for use with GCC.
• Develop a thorough test suite to check the accuracy of all the maths routines.
• Add error checking to the vfpmath routines.
• Improve coverage of the library, particularly by adding the extra functions in the ISO C99

standard.
• Supply routines to format VFP variables for display, similar to those required by printf.
• Improve comments in the source code and document the mathemtical techniques used in

calculating the functions.

