
Software skills for librarians:

Library carpentry

Module 1: The Unix shell

and regular expressions

• What the computer is:

A useful tool

Obedient

Accurate & Fast

• And what it is not:

An electronic brain

Intelligent

Magic

Introduction to computers

1/27

• Simple, repetitive tasks

• Follow instructions

• Number crunching

• Look for patterns in regular data

• Remember and process large data sets

What computers do well

2/27

• Speed up repetitive tasks

• Professional development for yourself and others

• Help understand other automation projects

• Curiosity

Why program

3/27

• Borrow and reuse:

Look at other’s code

Use libraries

Re-use sections of your own code

• There is no best language:

They are designed for different tasks

Each has strengths and weaknesses

Same fundamental principles

Main lessons

4/27

• Abstraction:

Transistors, Boolean logic, Machine code, Programs

• Helps to handle complexity

• Black boxes:

Inputs transformed into outputs

• Think about the process

Computational thinking

5/27

• Sequential

• Pipelined

• Parallel

Workflows

6/27

Collate Punch BindCollate Punch Bind

Collate

Collate

Punch

Punch

Bind

Bind

Collate

Collate

Punch

Punch

Bind

Bind

• Interact with users

• Command line interface

• Read Evaluate Print loop

• Disadvantages:

Terse, cryptic commands, text only

• Advantages:

Faster, easier to automate, easier to program

Introduction to the unix shell

7/27

• Report on MARC field usage

• Single command

• Repeatable:

Shell history, up arrow key

• Loop over all fields

• Compare with imaginary GUI

Example

8/27

• pwd − print working directory

• ls − list files

• Commands can take parameters

ls textfiles − list contents of directory textfiles

• Commands can take options

ls -l − list files in the ‘long’ format

Simple commands

9/27

• Single directory tree

• Slash at the beginning indicates the root

• In the middle it separates names

• Absolute path from root, relative from current directory

• Filenames can include any character

Enclose parameters with a space in quotes, eg "file name"

• Users files in /users

Directories

10/27

• cd − change directory

• cd ~ − go back to home directory

• cd .. − go up to parent directory

• Filename extensions

• Tab completion

• Wildcard expansion:

*.txt − all text files

img?.jpg − JPEG images img1, img2 ...

file[1-9].txt − file1.txt, file2.txt, etc.

Navigating the filing system

11/27

• --help after command name

• no parameters or incorrect syntax

• man <command name>

• Google

• Unix in a nutshell

Getting help

12/27

• mkdir − create directory

• nano − text editor

• rm − delete a file

• cp − copy a file

• mv − move, or rename, a file

Working with files

13/27

• wc − word count

• cat − print a file

• sort − sort the lines of a file into order

• head − print first n lines

• tail − print last n lines

• diff − difference between two files

Examining files

14/27

• Standard input and output

• Redirect output to a file: > file

Redirection

15/27

wc -l *.txt

wc -l *.txt

wc -l *.txt > out.txt

• Pipe output of one command to input of second

first | second

• Read input from a file: < file

Redirection continued

16/27

wc -l *.txt sort -n head -1

wc -l *.txt | sort -n | head -1

wc -l < in.txt

wc -l

• Simple programming, save and recall the steps for common tasks

• Variables, labels for pieces of data

• Loops, repeat the same command or operations several times

for filename in record.txt record.marc;

do cat $filename;

done

• Can use wildcards

Shell scripts

17/27

• grep − search for patterns in text files

grep Linux record.txt

grep -w Linux record.txt

grep -n "Addison Wesley" record.txt

grep -E '^650' record.txt

Finding text

18/27

• Like global search and replace on single characters

Change every occurance of one character into corresponding one

Or delete every single character of one type

• Examples of tr command:

tr 'a-f' 'A-F'

tr '[:upper:]' '[:lower:]'

tr '\012' ' '

tr -d '[:punct:]'

Transliterating characters

19/27

• sed -e command filename − perform editing command on each line

sed -e 's/^650/655/' record.txt

sed -e '/^650/p' record.txt

sed -e '/^035/d' record.txt

sed -e '1,3d' record.txt

sed -e '1,3p' record.txt

sed -e '1i(UkCU-COM)' record.txt

sed -e '/^020/a$q pbk.' record.txt

Automated editing

20/27

• Used to match patterns in text

• Useful for understanding your data

• Or specifying its format

• Similar to search and replace

• Supported by many tools, like grep and sed

Regular expressions

21/27

• Organise

• Organize|Organise

• \b(Organize|Organise)\b

• \b[Oo]rgani[sz]e\b

Example

22/27

• Most characters match themselves

• Vertical bar for alternatives

• Square brackets for character class

• Round brackets for grouping a subexpression

• \b for word boundaries

Regular expression syntax

23/27

• Matches any one of the characters in brackets

• [abc] any one of a, b or c

• Could be written as [a-c]

• [A-Za-z] any upper or lower case letter

• [^A-Za-z] anything except a letter

• \w \d \s shortcuts

• Fullstop matches any character

Character classes

24/27

• $ Matches only at end of string

• ^ Matches only at beginning

• Adding a slash in front of a special character

matches that single character. Eg \$[a-z]

• Brackets have two meanings, grouping and capturing

• \1 refers back to first set of brackets

Anchors and back references

25/27

• ? 0 or 1

Organised?

• * 0 or more

\$[a-z]([^$.]*)

• + 1 or more

0x[0-9A-F]+

• {n,m} Between n and m

\d{10,13}

Repetition

26/27

• Unix in a nutshell / Arnold Robbins — 4th ed.

O'Reilly, 2005 — ISBN 0596100299

• Classic shell scripting / Arnold Robbins and Nelson Beebe.

O'Reilly, 2005 — ISBN 9780596005955

• Mastering regular expressions / Jeffrey Friedl — 3rd ed.

O'Reilly, 2006 — ISBN 9780596528126

Further reading

27/27

