Software skills for librarians

Module 3: Programming in Python
Answers

1c. This gives an error message, for example:

File "hellow.py", line 2
print ("Hello World!)

SyntaxError: EOL while scanning string literal

Advantages Disadvantages
Interactively Get instant feedback Difficult for long programs

Easier to try things out Or frequently used programs
Batch Easier to repeat programs More difficult to debug

Convenient for long
programs
Better editing facilities

No feedback on correct syntax

2. Too many to list, but likely answers include Ada, Assembler, Basic, BCPL,
C, C++, Fortran, Java, JavaScript, LISP, ObjectiveC, Pascal, Perl, Python.

3. The following answers all three sections:

username=raw_input ("Your name? ")
print "Hello World! from", username
username="Alan Turing"

print "username is now ", username

4. Parts a to ¢ can be solved as follows:
authors=["Dickens, Charles", "Hardy, Thomas", "Austen, Jane",

"Bronte, Charlotte"]
authors.sort ()

authors.reverse()
print authors
newlist=authors[1:3]
print newlist

4d. No, because tuples are immutable; they cannot be sorted or reversed in
place.

5. Parts a and b:

fieldsused=myrecord.keys ()
title=myrecord["245"]

5b. A string: print type(title) gives <type 'str'>
5d. Put each field in a list or tuple with two elements, the indicators and the
field data.

6. The following is a model answer, although it is not strictly necessary to be
case insensitive:

lang=raw_input ("Whats your favourite programming language? ")
if lang=="Python" or lang=="python":

print ("Good choice!")
else:

print ("Have you thought of using Python?")

7. This is a case of adding an extra clause to the if statement:

elif lang=="Java" or lang=="java":
print("Its a modern object-oriented language.")

8. The difficulty is knowing when to terminate the input loop. the input()
function raises an error for a blank like so its easiest to use an input of zero to
mark the end. Also, in this case, it is more helpful to keep the loop test at the
end, which requires an explicit break in Python:

numbers=[]
while True:
n=input ()
if n==0: break
numbers . append (n)
sum=0
for n in numbers:
sum=sum+n
print "The average is ", sum/len(numbers)
8b. The version with only one loop needs to form the sum and count the
numbers as they are entered:

sum=0
nums=0
while True:
n=input ()
if n==0: break
nums=nums+1
sum=sum+n
print "The average is ", sum/nums

8c. The second version should be faster because operations like addition are
very fast in comparison with the overheads of a loop.

9. This is a case of enclosing the existing code in a function definition. Another
solution would be returning true or false explicitly in another if statement:

def valid_isbn(isbn):

t=0

for i in range(0, 9):
n=int (isbn[i])
t=t+(i+1)*n

check=t%11

if check==10:
check="X"

else:
Convert number to string
check="%1d" % check
return(check==isbn[9])

print valid_isbn("9810240201")
print valid_isbn("0596158064")

10. As before, but enclosing the function in a class definition, and accessing
the ISBN number via self:

class isbn:
def __init__(self, isbn):
self.isbn=isbn

def validate(self):

t=0

for i in range(0, 9):
n=int (self.isbn[i])
t=t+(i+1)*n

check=t%11

if check==10:
check="X"

else:
Convert number to string
check="%14" % check

return(check==self.isbn[9])

my_isbn=isbn("9810240201")
print my_isbn.validate()
print isbn("0596158064") .validate()

11a. Similar to before, but we need to open a file and the input function is
different, so this version takes advantage of an iterator. The conversion from
string to number is performed explicitly using float():

sum=0
nums=0
with open("numbers.txt", "r") as fh:
for line in fh:
if line!="":
sum=sum+float (line)
nums=nums+1
print "The average is ", sum/nums

11b. Either using separate loops to read the numbers into a list and add them
up; read the numbers and add them in a single loop as above; or use the
readlines() method and a loop to add the numbers.

12. Add the following lines to the end of marcdict.py:

fields=myrecord.keys ()
fields.sort()

with open("newrecord.txt", "w") as fh:
for tag in fields:
field=tag+" __ "+myrecord[tag]

fh.write(field)

13. The class definition and __init__() method are straightforward, just a
case of defining an empty dictionary:

class marcrecord:
def __init__(self):

self.recdata={}

The trick with the subscript notation is to realise that the dictionary keys will
be strings, and the user will likely use numbers in the square brackets, so we
use the format string trick to convert a number to a string:

def __getitem__(self, index):
ftag="%03d" % index
return self.recdatalftag]

Reading and writing a record is much the same as before, except that we have
to handle repeated fields. This implementation puts the field data in a list, so
we have a dictionary of lists. Thus, for example, fetching field 500 using the
subscript notation, actually returns a list of all notes.

def readrec(self, fh):
for field in fh:
tag=field[0:3]
fdata=field[7:]
Use lists to handle repeated fields
if tag not in self.recdata.keys():
mylist=[]
mylist.append(fdata)
self.recdata[tag]l=mylist
else:
self.recdata[tag] .append(fdata)

def writerec(self, fh):
fields=self.recdata.keys()
fields.sort()
Write fields in numerical order
for tag in fields:
flist=self.recdatal[tag]
for fdata in flist:
field=tag+" __ "+fdata
fh.write(field)

