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Summary

The invention of public-key cryptography led to the notion that cryptographically protected mes-
sages could be used as evidence to convince an impartial adjudicator that a disputed event had in
fact occurred. Information stored in a computer is easily modified, and so records can be falsified
or retrospectively modified. Cryptographic protection prevents modification, and it is hoped that
this will make cryptographically protected data acceptable as evidence. This usage of cryptogra-
phy to render an event undeniable has become known as non-repudiation. This dissertation is an
enquiry into the fundamental limitations of this application of cryptography, and the disadvan-
tages of the techniques which are currently in use. In the course of this investigation I consider the
converse problem, of ensuring that an instance of communication between computer systems leaves
behind no unequivocal evidence of its having taken place. Features of communications protocols
that were seen as defects from the standpoint of non-repudiation can be seen as benefits from the
standpoint of this converse problem, which I call “plausible deniability”.
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Chapter 1

Introduction

1.1 Narratives of Conflict

The study of computer security, by its very nature, is a study of conflict. The notion of a computer
security mechanism presupposes the possibility of a conflict of goals between people or organisa-
tions, and the possibility that part of this conflict will take place within a computer system.

Some of these conflicts can be described in terms of “insiders” and “outsiders”. From the perspec-
tive of the “insiders”, the “outsiders” have no right or legitimate reason to access the computer
system, and the security mechanisms built by the insiders are directed towards keeping the “out-
siders” outside.

When systems are described in this way, the author of the description is usually sympathetic
towards the cause of the insiders, and intends that the readers will feel the same way. The computer
security genre has conventions for providing the reader with hints as to where their sympathies
should lie (rather like the good guys wearing white hats and the bad guys wearing black hats in
Westerns). Security protocols are often described in terms of the imaginary protagonists “Alice”
and “Bob”, together with as many of their friends, family, and foes as are needed to tell the story
[30, chapter 2]. It is the convention that the reader should feel sympathy for Alice and Bob, while
regarding the protagonists with names later in the alphabet with some suspicion.

A typical account of a security protocol can be summarised as follows: Alice and Bob live in a
lawless and dangerous place, and are threatened by a succession of natural hazards and incursions
by the outsiders. Alice and Bob employ a variety of ingenious technical means to overcome these
threats, and live happily ever after.

This dissertation is concerned with conflicts which cannot easily be narrated in these terms. For
example, there can be conflicts between different users of a computer system; between the provider
and the users of a service; and between the authors of a piece of software and its users. These
conflicts cannot be viewed as insider/outsider conflicts; both of the conflicting parties have some
form of legitimate access to the system in question.

In much of the technical discussion which will follow, there will be no a priori assumptions about
the identity of the guilty party. It might be Alice; it might be Bob; it might be both of them
colluding together or someone else entirely. In this state of mind, even security protocols which
could have been modelled in insider/outsider terms are seen in a new light.

Although we can free ourselves of any prejudice with respect to the imaginary characters “Alice”
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and “Bob”, the act of analysis and inquiry is still not neutral. In seeking to understand the
situation, the reader and writer are implicitly taking sides in the conflict. Some participants stand
to gain by the situation being better understood, while others stand to lose from this. However,
when the true state of affairs is unclear, it can be unclear who is benefitting from the lack of
clarity.

1.2 Non-repudiation

It is often the case that people who do not entirely trust each other wish to participate in a joint
activity which they see as being mutually beneficial. In such a situation, each participant would
like to have some form of protection against possible malicious actions by the other participants.
Human society has developed many such protection mechanisms, for example, the law of contract,
and the law of tort.

This dissertation is not about new or alternative forms of human social organisation or dispute
resolution. Rather, it is about some specific new problems which have been caused by the use of
computer networks as intermediaries in interactions between people.

Cryptography can be used to provide several different forms of protection in the electronic world.
Together, these new forms of protection go some way towards making computer-mediated inter-
actions as safe as non-computerised ones.

In this dissertation I will be examining a particular type of protection, namely the ability to form
binding agreements between individuals and to have fair arbitration of disputes concerning those
agreements. This form of protection is a small part of the total problem of making the electronic
world a “safe place”, but the mechanisms and infrastructure developed to help resolve disputes
also play a major role in solving many of the other protection problems.

It will be my contention that a critical problem with digital communications (or rather, with
digital records of digital communications) is that it is easy to make good forgeries. In particular,
it is easy to falsify after the event records of what took place and what was agreed. In the face of
total uncertainty about “what happened”, fair arbitration becomes impossible, as the adjudicator
cannot reach a decision on rational grounds. In turn, this makes forms of social interaction which
depend on the possibility of arbitration, such as contracts, no longer viable.

To help resolve these problems of a digital world, the computer security community has developed
a security service which is known as “non-repudiation”. In the words of the ISO Non-repudiation
framework [13], the goal of this service is to:

“provide irrefutable evidence concerning the occurrence or non-occurrence of a disputed
event or action.”

In discussing this service, I will make frequent mention of the notion of an unbiased and open-
minded observer. The intent of the non-repudiation service is that such an unbiased and open-
minded observer should be convinced by the evidence that the service provides. Of course, in
reality observers can be far from unbiased and open minded; but it is unreasonable to expect any
technological mechanism to do anything about that. What we expect from the technology is this:
putting ourselves temporarily in the place of this mythical unbiased observer, we would like to be
able to decide (in specific instances) what happened. If the technology causes us to be left without
hope of reaching a conclusion rationally, then there is a serious problem.

In this dissertation, I will examine in detail the evidence that is provided by the non-repudiation
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service. I will pay particularly close attention to the gap between the service we would like to
have (even though this may be impossible to achieve) and the service that is actually provided by
specific technical mechanisms. Once we have seen the gap between expectation and reality, will
the evidence still be convincing?

1.3 Plausible Deniability

It is legitimate to question to what extent the non-repudiation service is actually desirable. Who
wants to know whether the event took place, and why do they want to know? Who has control
over which events are part of the official version of history? For the benefit of those who conclude
that non-repudiation is sometimes undesirable, this dissertation explores the potential of a new
security service, which will be termed “plausible deniability”.

1.4 Focus

This work has been directed towards a particular application area: the role of the non-repudiation
service in commercial transactions carried out over European data networks. This choice of ap-
plication area has influenced the scope of this dissertation in the following ways:

• This dissertation is only about new problems which have been caused by computers and
data networks. It is not about other arenas in which conflict can take place.

• This dissertation is about the use of networks for commercial purposes, as opposed to mil-
itary or recreational use. This setting determines what the conflicting parties stand to lose
or gain, what they might be prepared to do to each other, and the type of methods that
can be used to resolve conflict. Having said that, it is worth making two points. Firstly, the
boundary between commercial and military conflict is sometimes crossed when the sum of
money involved is large enough. Secondly, systems designed to meet a commercial purpose
are sometimes influenced by military objectives of other parties (e.g. key recovery schemes
where the government demands that Intelligence agencies be given back-door access to cryp-
tographic keys used to protect other people’s commercial traffic).

• To be successful, a new technical mechanism must fit in with the pre-existing legal and
cultural conventions of the society which uses it. In this dissertation, I will be assuming a
context of English-style common law.

In particular, much of the reasoning surrounding the non-repudiation service implicitly as-
sumes that two people can form an agreement in private which creates a binding contract;
that any “reliable” record of the agreement will suffice; and that the terms of the agreement
do not need prior approval by a government official.

The problem of non-repudiation can be approached from several directions. It can be approached
as a legal problem (how do the existing laws of specific countries stand with respect to the admissi-
bility of computer data as evidence?) or as an anthropological problem (what means have different
human societies used to resolve disputes, and what can we learn from this?) I have approached
the problem of non-repudiation from the perspective of a computer scientist with an interest in
the theoretical bases of computation and communication. Non-repudiation involves both of these:
it is about convincing someone (by communication) that an event (of communication) took place,
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and part of the reason that the listener becomes convinced lies in the theory of computation,
specifically, the belief that some things are very much harder to compute than others.

The rest of this dissertation is arranged as follows:

• Chapter 2 describes the technical background to this work.

• Chapter 3 outlines some of the benefits and drawbacks of public-key cryptography, the
technique which is most commonly used to build non-repudiation protocols.

• Chapter 4 discusses the basic principles of non-repudiation: what non-repudiation is, and
what we expect a non-repudiation protocol to do for us.

• Chapter 5 examines some protocols which are intended to provide non-repudiation. There
are technical reasons why these protocols do not entirely succeed in achieving this goal.
Some of these problems are fixable, but an entirely risk-free protocol remains elusive.

• Chapter 6 examines the converse problem: if non-repudiation is deemed positively undesir-
able in a particular situation, how do we go about ensuring that unwanted evidence will not
be available? As a demonstration of the concept, this chapter also describes some crypto-
graphic protocols which are designed to achieve this.

• Chapter 7 describes aspects of non-repudiation which are internal to computer systems, in
contrast to the external communications aspects which were described in chapter 5. While
chapter 5 is mainly about the management of public keys, this chapter is mainly about the
management of private keys.

• Chapter 8 presents some conclusions.
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Chapter 2

Background

2.1 Notation

Digital Signature

If CKA is a public key used for confidentiality, CKA(m) will denote a message m encrypted using
CKA. An asymmetric key pair used for encipherment will be denoted by (CK−1

A , CKA), where
CK−1

A is the private component.

If IK−1
A is a private key used for integrity, IK−1

A (m) will denote a digital signature for a message
m computed using IK−1

A . An asymmetric key pair used for digital signature will be denoted by
(IK−1

A , IKA), where IK−1
A is the private component.

That is, cryptographic keys are denoted by the mathematical function that is computed when the
key is applied to data. The other half of an asymmetric key pair is the inverse function:

IK(IK−1(x)) = x

CK−1(CK(x)) = x

This notation is similar to that of Needham[23, 22], but differs in that it distinguishes encipherment
from digital signature. In Needham [22, page 4] it is assumed that key pairs are always usable
for both purposes, whereas in this dissertation there is no assumption that the operations of
encryption (for confidentiality) or signature (for integrity) are in any way related.

When I use the notation IK−1
A (m), the reader should interpret it as denoting whatever procedures

are appropriate for forming digital signatures with a particular cryptographic algorithm. Typically,
this will be reducing m in length with a collision-free hash function, padding the result to a fixed
length in some agreed way, performing a “low-level” signature operation on the padded hash, and
then finally concatenating the original message with the signature. This has the consequence that
anyone can recover m from IK−1

A (m), even if they don’t know IKA.

Similarly, the notationCKA(m) should be interpreted as denoting whatever procedures are deemed
appropriate for encrypting a message under a public key. Typically, this will involve padding the
message to a fixed length with random data [28, 1] and then applying a “low-level” public key
encryption operation. The message m that is encrypted in this way will frequently contain a
symmetric key which is to be used to encrypt other data. It should be taken as read that such
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symmetric keys are “well chosen”, that is sufficiently random and having whatever properties are
deemed desirable for use with the symmetric key algorithm.

Symmetric Encipherment

Symmetric keys will also be represented by functions. CKAB(m) will denote the message m

enciphered using a symmetric key shared between A and B. Some symmetric keys are shared
by all members of a group; CKAX will denote a symmetric key used for enciphering messages
between A and the members of a group.

The notation m ⊕ k will denote the bit-wise exclusive-or of a message m with key material k.
When this notation is used, k will typically be a one-time pad.

Message Exchanges

The messages exchanged during a run of a cryptographic protocol will be described using the
‘arrow” notation. A protocol step in which A sends the message m to B is written as follows:

A→ B : m

2.2 The Integrity and Confidentiality Services

In this dissertation, I will frequently refer to two basic notions, namely integrity and confidentiality.
The OSI Security Architecture [10] defines these terms as follows:

confidentiality: The property that information is not made available or disclosed to
unauthorised individuals, entities or processes.

data integrity: The property that data has not been altered or destroyed in an
unauthorised manner.

To paraphrase, confidentiality is concerned with keeping secrets secret, while data integrity is
concerned with preventing the forgery, corruption, falsification or destruction of digital data.

It is worth noting that in the OSI definitions, confidentiality protects information (i.e. facts about
the world) while integrity protects data (i.e. particular symbolic representations of those facts).
This difference in the definitions is quite deliberate, and reflects a fundamental difference between
the two properties. To keep some information secret, it is necessary to protect everything which
contains an expression of that information, or from which that information can be derived. To
provide data integrity, it is sufficient to obtain a copy of the data which is known to be good. The
possibility that other representations might exist (even corrupt ones) does not harm integrity, but
is disastrous for confidentiality.

2.2.1 Separation Between Integrity and Confidentiality

From the point of view of their definitions, the notions of integrity and confidentiality are quite
distinct. Someone who needs one of these services does not necessarily need the other. There is
certainly no reason why we must necessarily use the same technological means to provide both
these services.
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However, confusion between these services can arise because the same technique (encryption) can
be used to provide both services. For example, in systems derived from the Needham Schroeder
protocol [24] (such as Kerberos [16]) the same encryption operation is applied to a sequence of
several data items: some of these items are being encrypted to keep them secret, while others are
being encrypted to protect them from modification.

In this work, I will try to maintain a clear distinction between the use of cryptography to provide
integrity, and the use of cryptography to provide confidentiality. There are several reasons why it
is important to maintain this distinction:

• The choice of cryptographic algorithm is influenced by the service it is to be used for.
Some cryptographic algorithms are very good for confidentiality, but very poor for integrity
(e.g. one-time pads). Similarly, some cryptographic algorithms are good for integrity but
don’t provide confidentiality at all (e.g. message authentication codes). In order to choose
the right algorithm for the job, it is necessary to know why the algorithm is being used.

• Keys which are used for confidentiality often need to be managed in different ways from keys
which are used for integrity. If a key used for confidentiality is revealed, this retrospectively
destroys the confidentiality property for messages that were sent in the past (i.e. an attacker
who has saved a copy of those messages will become able to read them). The same thing
doesn’t hold for integrity. Once the legitimate users of a key have decided to change over
to using a new key, the old key is of no use to an attacker: the legitimate users will not be
fooled by a forgery made using the old key, because they know that that key is no longer
valid.

As a result of this, the procedures used for the generation, storage, transmission and de-
struction of confidentiality keys may be very different from the procedures used for integrity
keys, even if the same cryptographic algorithm is used for both services.

• The authorisation policies may be different for integrity and confidentiality. That is, the set
of people who are permitted to read an item of data may be different from the set of people
who are authorised to modify it.

Clearly, the access control policy for cryptographic keys ought to be consistent with the
access control policy for the data those keys protect. It makes no sense to decide that an
item of data must be kept secret, and then to let everyone have access to keys that enable
them to obtain that secret data. Similarly, it makes no sense to decide that an item of data
needs integrity protection, and then to give everyone access to keys that enable them to
modify that data.

Should insiders such as systems administration staff or programmers have access to the keys
used to protect other people’s data? This is a policy question that needs to be decided for
each application, and the answer to this question may depend on whether we are talking
about keys used for integrity or keys used for confidentiality. If the answer is different in
the two cases, this can lead us to use different key distribution methods for integrity keys
versus confidentiality keys, in order to provide different levels of protection against insider
attacks. For example, there may be a need to be able to recover a patient’s medical records
after the death or retirement of the doctor treating them, but there is no need to be able to
retrospectively falsify those records.
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2.2.2 Connections between Integrity and Confidentiality

Although the notions of confidentiality and integrity are quite distinct, the means for providing
one service sometimes relies upon the other service.

Cryptographic integrity mechanisms rely on cryptographic keys, and in particular they rely on
some of those keys being kept secret from unauthorised entities. A system which uses cryptography
to provide integrity therefore needs some confidentiality as well, just to protect the keys.

Of course, cryptography isn’t the only way to provide integrity. For example, physical measures
that keep unauthorised persons physically isolated from a system can provide integrity, and they
do so in a way that does not in any way depend upon confidentiality.

However, in this work I’m interested in providing security in public, international communications
networks. In this situation, physical protection measures are infeasible; cryptography seems to be
the only viable solution. This is in some respects unfortunate: it means that the systems I wish to
construct must necessarily have a small component (key storage) for which confidentiality must be
provided, even if confidentiality was otherwise unnecessary. However, the type of confidentiality
needed to protect keys is less general than that needed to protect arbitrary user data, and hence
may be easier to achieve, As we will see in chapter 7, it is sufficient to be able to maintain the con-
fidentiality of keys in storage: systems can be built that never need to preserve the confidentiality
of keys that are transmitted between systems. Furthermore, for the provision of integrity it is
sufficient to have short-term secrets, that is secrets which become known after a while. Protocols
can be constructed so that the integrity of data is maintained even after keys which previously
protected that data have become publicly known. It is also clearly desirable to provide long-term
non-repudiation using keys whose confidentiality is short-lived; as we will see in chapter 7, this
can be done.

Conversely, cryptographic confidentiality mechanisms need integrity mechanisms to protect their
keys. If an attacker can somehow change the keys which are used for encryption, by subverting
the integrity property, then they can also break the confidentiality property, by substituting a key
whose value they have chosen.

There are more subtle ways in which a failure of the integrity property can also destroy the
confidentiality property, examples of which are given below. For this reason, one might take the
view that any system which provides confidentiality should also provide integrity, because the user
of the system probably needs integrity even if they don’t realise that they need it. This line of
argument is the reason why Internet Privacy Enhanced Mail does not provide a confidentiality-
only mode, and also leads to an argument that the Diffie-Hellman type public-key systems are
preferable to RSA type public key systems. I will elaborate on this later point in chapter 3.

These connections between the two services mean that we must take great care when designing
systems which are to provide a very strong form of one service, but only a weak form of the other.
An attacker may be able to exploit these dependencies between the services to first break the weak
service, and then use this a means to carry out an attack on the “strong” service.

2.2.3 Some Attacks

The difference between integrity and confidentiality is exemplified by the following attacks on
some security mechanisms that become possible when those mechanisms are used inappropriately.
(i.e. when a mechanism that provides one service is used but a mechanism that provides another
service was really needed). These attacks are for the most part obvious and well-known. They are
important because they are used as building blocks in some more complex constructions that will
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discussed later on.

MACs do not provide confidentiality

Message authentication codes (MACs) can be used to provide integrity. The MAC is a function
of the data to be protected and the key. The typical usage of a MAC is when the data is sent
unencrypted, followed by the MAC which protects it. Without knowing the key, an attacker
cannot compute a combination of some data and a MAC which will appear valid to the recipient;
in this way, MACs provide integrity. However, an attacker who is just interested in obtaining
the data (i.e. violating confidentiality) can simply intercept the unencrypted data and completely
ignore the MAC.

One-time pads do not provide integrity

One-time pads can be used to provide confidentiality. The ciphertext consists of the plaintext
exclusive-or’d with the key (which in this case is known as the “pad”, because historically it was
printed on note pads).

Provided that the key material is truly random and uniformly distributed, and is only used once,
then this system is unbreakable in the sense described by Shannon in the 1940’s [31]. It is critically
important that the pad is only used once, i.e. a key is never re-used to encrypt a second message.
This weakness of the one-time pad system makes it impractical in many applications; however,
this weakness is not the one that is relevant to the discussion of integrity versus confidentiality.

Even if all proper precautions are taken with a one-time pad (it is only used once, the key is
kept physically protected where the attacker can’t get at it etc.) it fails to provide integrity. If
the attacker does not know what message was sent, they cannot determine this by examining
the ciphertext. However if the attacker knows what message was sent and is merely interested in
substituting a different message (i.e. violating integrity), then they can do this as follows:

M ′ ⊕K = (M ⊕K)⊕ (M ′ ⊕M)

If the attacker knows the message that was really sent (M), then they can obtain the enciphered
message M ⊕ K by wiretapping and combine it with M ′ ⊕M to produce a new message which
will appear valid to the recipient. As one-time pads are only used once, the attacker must arrange
that the legitimate message is lost in transit and only the substitute message ever reaches the
recipient.

Re-use of keys with multiple mechanisms

If the same cryptographic key is used with several different cryptographic mechanisms, then this
can sometimes make an attack possible, even if the mechanisms are secure when considered in-
dividually. This is because the attacker can use information learned by observing the key being
used for one function to carry out an attack on the other function using the same key. This
commonly occurs when the same key is used for both confidentiality and integrity. An example of
this situation has been described by Stubblebine [33].

The existence of this type of attack provides an additional motivation for distinguishing integrity
and confidentiality keys: we need to avoid the possibility of this type of attack, so we need to take
care never to use the same key with both sorts of mechanism.
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Weak Integrity weakens strong confidentiality

Suppose that Alice sends a confidentiality protected message to Bob. If Carol can convince Bob
that the message really came from Carol, she may be able to persuade Bob to reveal to her the
content of the message. In this way, a weakness in the integrity mechanism can be turned into a
failure of confidentiality.

The one-step authentication protocol defined in X.509 is vulnerable to this type of attack, because
in that protocol encryption is performed before signature (rather than vice-versa):

A→ B : IK−1
A (tA, rA,m1, CKB(m2))

C can take a copy of this message and replay the encrypted and unencrypted portions with a new
signature:

C → B : IK−1
C (tC , rC ,m1, CKB(m2))

This convinces B that m1 and m2 came from C, and B might be subsequently tricked into revealing
information about the confidential message m2. A more realistic version of the same attack occurs
in store and forward messaging systems based on this protocol (e.g. X.400). If Bell-LaPadula style
mandatory access control is in effect, and m1 contains the classification level of the data in m2,
then C can trick B into believing that classified data is unclassified; B might then be tricked into
releasing the data to persons who don’t have a high enough security clearance (e.g. C).

A fix to this protocol is to include all relevant data (e.g. the security label of the data, or the
name of B) in the enciphered message. X.400 implemented with the right selection of options
incorporates this fix; X.400 with the wrong selection of options is still vulnerable to the attack.

2.3 Kerberos and the Needham-Schroeder Protocol

In subsequent chapters I will illustrate several points by making a comparison with Kerberos [16]
and the Needham-Schroeder protocol [24] on which Kerberos is based. However, the objectives of
this work are significantly different from the objectives of Kerberos. Kerberos is concerned with
authentication (that is, it provides communicating computer programs with information about who
or what they are communicating with) and confidentiality. In contrast, I am primarily concerned
with non-repudiation; enabling an independent third party to establish what happened after the
event.

Non-repudiation often includes establishing the identity of the some of the entities involved: know-
ing who was involved is frequently a vital part of knowing what happened. In this respect, non-
repudiation has some similarities with authentication. However, the methods used to provide
these two services differ in their details. Establishing the identity of someone with whom you
are currently communicating is a different problem from establishing the identity of someone who
participated in an event which occurred in the past, and in which you were not directly involved.

The main technical reason why Kerberos cannot be used to provide non-repudiation lies in the way
that it uses symmetric-key cryptography. When Kerberos is used to protect the communications
between two entities, the two entities share a cryptographic key which is used both to compute the
message authentication code on data before it is sent, and to verify the message authentication
code on data after it is received. As both entities know this session key, they can use it to forge
messages which appear to come from the other. If a dispute arises, the participants’ own records
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of the message authentication codes isn’t enough to tell which messages really were part of the
exchange and which were falsified afterwards.

2.4 Digital Signatures

The idea of using cryptography to facilitate the resolution of disputes first arose in the context of
public-key cryptography [8]. Indeed, later publications (such as X.509 [12] and the OSI Security
Architecture [10]) began to regard the ability to resolve disputes as being synonymous with the
use of public-key cryptosystems.

Later on in this chapter, I will describe some systems which are currently in use and which make
use of public-key cryptography. Before I describe these real systems, I will review how the original
papers on public key imagined it being used, and why it was believed that public key cryptography
provided non-repudiation. This review is to some extent an unfair caricature, as I will deliberately
draw attention to problem areas that the authors of the early papers either ignored or considered
to be someone else’s problem.

The traditional account runs as follows:

Everyone generates their own private key using a computer which they themselves have checked to
be functioning correctly, using software which they have written personally, and which therefore
contains no programming errors or malicious code. This computer has access to a physical source
of random numbers which absolutely cannot be predicted by anyone else (e.g. a Geiger counter
next to a radioactive source). This computer is also physically secure (in a locked room, electro-
magnetically shielded to prevent the value of the key being revealed by electrical interference and
so on).

Everyone takes their public key to a publisher, who prints a physical book, rather like a telephone
directory, containing everyone’s name and public key. Everyone checks their own entry in their
copy of the book and their friend’s copy, and raises a big fuss if there’s an error. The printing
process makes it extraordinarily expensive to produce one-off copies of the book with selected
entries altered, so everyone is sure that every copy of the book says exactly the same thing.

To generate evidence of having entered into an agreement, a user performs a computation on their
own computer using their private key and the text of the agreement. The software with with they
do this is, of course, written by themselves and entirely free from errors.

A recipient of this “digital signature” can check it using their own software and a copy of the
signer’s public key from the phone book. Should a dispute arise later, the adjudicator can also
check this digital signature using their own software and the public key from their own copy of
the phone book. This will of course result in the same answer.

From this, the adjudicator becomes absolutely convinced that the signer must have intended to
enter into the agreement, because that is the only conceivable way in which the adjudicator could
have been presented with a binary value which has the correct algebraic properties.

As we shall see, real systems which use public key cryptography differ from this picture in almost
every respect, except that they use public key cryptography. The belief that public key cryptog-
raphy is synonymous with the ability to resolve disputes is based on the assumption that these
differences don’t matter.

11



2.5 PGP

2.5.1 The motivation for PGP

“Pretty Good Privacy” (PGP) is an e-mail encryption program written by Phil Zimmerman [40].
PGP is not intended to be used for non-repudiation, but it does use public-key cryptography
for authentication. This makes it an interesting example for comparison when discussing the
differences between authentication and non-repudiation. Before discussing the technical details of
what PGP does, it is worth considering the implications of the word “privacy” in its name. The
OSI Security Architecture [10] defines privacy as follows:

“privacy: The right of individuals to control or influence what information related to
them may be collected and stored and by whom and to whom that information may
be disclosed.”

Privacy is not the same as confidentiality (keeping secrets secret). There are many uses of confi-
dentiality services that are not connected with protecting the privacy of individuals. For example,
cryptographic confidentiality is often used to protect commercial secrets (plans for takeover bids,
new products in development and so on); this is not personal privacy. Equally, personal privacy
has many aspects beyond just encrypting e-mail. From a privacy standpoint, legislation such as
the Data Protection Act (which regulates what personal information may be stored in databases)
is probably more important than the use of cryptography.

The “privacy” in PGP can be regarded as a summary of Phil Zimmerman’s motivation for creat-
ing PGP, rather than a description of what PGP actually does. It certainly does not, on its own,
provide privacy in the sense that was described above. However, it can be argued that the e-mail
encryption service it does provide is an important ingredient in providing privacy. If personal
information (e.g. in personal e-mail between individuals) is to be transmitted over computer net-
works then in order to have privacy this information must be protected. The underlying premise
of PGP is that in our society people need to communicate with each other over long distances,
that this communication frequently involves personal information related to the communicating
parties, and so cryptographic confidentiality is needed.

The privacy motivation for PGP helps explain why it does not set out to provide non-repudiation
(although it does provide authentication and integrity). The essence of the non-repudiation service
is that third parties might be made aware of the events the service protects, and indeed will be
given relatively reliable evidence about those events. On the other hand, privacy is at least in part
about preventing third parties from learning about events which don’t concern them. If messages
are intended to be kept private, there is no compelling reason for making them suitable for showing
to someone else.

2.5.2 Reasons for the success of PGP

PGP is very widely used for personal e-mail on the Internet. To have achieved this level of
success, PGP must have had some advantage which earlier e-mail encryption schemes (e.g. Privacy
Enhanced Mail, which will be discussed later) lacked. The following features of PGP may account
for its popularity: it is actually available (a real product and not just a theoretical idea); it’s free;
and it does not require any additional infrastructure in order to work.

The last point is particularly important. Other e-mail encryption schemes (such as PEM) need a
“Public Key Infrastructure” in order to work. In order to use them, you need to make extensive
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use of supporting services which are supposed to be provided by other people or organisations.
Of course, if no-one is actually offering to provide these supporting services, then these schemes
can’t get off the ground. PGP’s great advantage is that all you need to use it is the software; you
don’t need to buy special services from anyone in order to get the software to work.

If PGP manages without a Public Key Infrastructure, why do the other schemes need one? The
answer is that schemes such as PEM are actually solving a different problem from PGP, even
though they might initially appear to be similar. As PGP shows, protecting personal e-mail
between small groups of friends does not require an extensive infrastructure to make it work.

In place of a public key infrastructure, PGP supports what Zimmerman terms a “Web of Trust”
model. Under the web of trust model, the primary means of obtaining cryptographic keys is by
direct physical exchange between people. If Alice and Bob meet in person, and Alice gives Bob
her business card with her PGP public key printed on it, then Bob knows for certain that he has
the cryptographic key which Alice intended to give him. There is no possibility of confusion being
caused by the existence of multiple people called “Alice”; Bob knows for certain that the key he
has is suitable for communicating with the person he met. (There is a minor side issue that Alice
might give Bob someone else’s key as part of a complicated way of defrauding Bob, but I will
ignore this for the moment, and return to it later in chapter 7).

The second means of obtaining keys with the web of trust model is indirect: if Alice and Bob
have previously exchanged keys, then Alice can give Bob a copy of Carol’s key over the protected
channel creating using the physically exchanged keys. It is made quite explicit that this is only
an acceptable way for Bob to obtain Carol’s key if Bob “trusts” Alice in this respect: after all,
Alice might lie or not be competent. In the web of trust model, whether Bob trusts Alice in this
respect is left entirely to Bob’s discretion. Neither Phil Zimmerman (the author of PGP) or the
PGP program itself make any statement as to whether or not Alice should be trusted; after all,
they have no personal knowledge of Alice and are in no position to make statements about her.

In addition to not needing any special new externally-provided services, the web of trust model
has the added advantage that there is no need for all of its users to agree on who is trusted to
provide keys. Bob’s decision to trust Alice to provide a key for Carol is completely independent of
anyone else’s decision to trust Alice. This means that PGP can easily be used by lots of different
groups of people who have different ideas about who should be trusted. In contrast PEM assumes
the existence of organisations that every single user of PEM, everywhere in the world, agrees
are trustworthy. The universally trusted root authority postulated by PEM is in practice almost
impossible to set up. To be more exact, it is easy for someone to declare themselves to be the
universally trusted authority, but it is much harder to get everyone else to accept their authority.

PGP avoids this problem by not having a root authority. This meant that people could actually
use PGP while prospective Internet PEM users were still arguing about who was going to be the
single universally trusted authority.

2.5.3 Limitations of PGP

Unattended operation

PGP succeeds by taking the most conceptually difficult part of its operation (deciding who should
be trusted and who shouldn’t), and making it the responsibility of the human being who uses PGP
rather than the program itself. This makes life very much easier for the implementor of the PGP
program; it is also in some sense the right thing to do, as the program itself lacks any knowledge
which it could use to make a rational decision to trust someone or not. However, this approach
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also has a drawback: it places an additional burden on the user, and more significantly, it requires
that a human being actually be present when the PGP program is run. This latter point is not
a big problem when PGP is used to secure personal e-mail; the human being has to be there to
understand the contents of the message, so they might as well help out with the security operations
while they’re at it. The requirement for a human to be present becomes more burdensome when
it is desired to extend the application area of PGP to include things such as electronic commerce
or remote access to databases. In these new application areas, it makes sense to have a computer
running completely unattended and acting on messages received. It is unacceptably expensive to
require a computer operator to be present just to support the security, if they wouldn’t otherwise
be needed. In addition, when PGP is used for the official business of an organisation (as opposed
to personal use), there is the issue that the interests of the organisation and the interests of the
person employed to run the program might not be entirely the same, and as a result the operator
might deliberately make a bad decision.

Use within large user groups

While it works acceptably with small groups of users, PGP becomes harder to manage when the
size of the communicating groups of users become too large. Specifically, how does a user decide
who they should trust to provide them with another user’s public key? This needs to be someone
who is both trustworthy and in a position to know the required key. In a small user group, it is easy
to identify someone who satisfies both criteria. In a large, geographically dispersed community
this is much more difficult to do.

One possible rebuttal to this as a criticism of PGP is to ask why anyone would ever want to
communicate securely with a complete stranger. The argument goes that for communication to
be desired, there must exist some form of social relationship between the two people who wish
to communicate, and that this social relationship usually provides a direct or indirect path by
which cryptographic keys could be exchanged. The totally ad hoc approach of PGP only becomes
unviable if the relationship between communicating parties is highly obscure and indirect.

Recovery from compromise of keys

With most systems based on public-key cryptography, the security of the system is completely
dependent on the security of user’s private keys. If an attacker somehow manages to gain access
to one or more of these keys, then the security of the system can be impacted.

In an attempt to prevent this unfortunate eventuality, considerable effort is usually made to protect
private keys and stop attackers obtaining them. Nevertheless, it is almost inevitable that some
cryptographic keys will become compromised, either from carelessness of users, or exceptionally
strenuous attempts to break the system on the part of an attacker. The question arises as to
whether it is possible to do anything to ameliorate this unfortunate situation if it should arise.

PGP provides a mechanism for dealing with keys which are compromised in this way. The possessor
of a key can use that key to sign a message which states that the key has been compromised, and
should no longer be used.

Of course, if the key really has been compromised, both the legitimate owner of the key and the
attacker both have a copy of the key, and so either can issue a revocation notice. Although in this
situation we can’t distinguish who issued the revocation, it doesn’t matter: if either the legitimate
owner of the key complains that it’s been compromised, or an attacker demonstrates that they
have compromised it, the prudent thing to do is to stop using that key.
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No revocation mechanism can be entirely perfect, for reasons that will be examined later on in
this dissertation. However, it is clear that it is PGP’s approach to revocation can improved upon:

• The PGP revocation message will only be effective if potential users of the compromised key
see it. PGP provides no mechanism to guarantee (or even make it likely) that revocation
messages will be seen by the people who ought to see them.

• The legitimate user needs a copy of their key to revoke it. If the attacker destroys the
legitimate user’s copy of their own key, rather than just copying it, then the legitimate user
can do nothing. Note that this difficult situation occurs if the physical media storing the
key are lost or stolen, e.g. if a laptop computer storing the key is left on a bus.

• In the PGP scheme, revocation of a key requires the co-operation of the holder of the private
key. If the only holder of the private key all along has been an attacker, then they may not co-
operate. For example, suppose that an attacker generates their own key-pair, impersonates
“Alice” and tricks someone (“Carol”, say) into signing a statement that the public key is
Alice’s key. What can Alice or Carol do if they discover this deception? With the PGP
scheme, there isn’t much that they can do.

The last two of these problems can be fixed by requiring the user to sign a revocation certificate
for their key in advance, and to deposit a copy of this with whoever certifies their key. In this way,
signers of certificates can revoke keys which they have signed certificates for (by releasing their
copy of the revocation certificate), and there will be a back-up copy of the revocation certificate
even if the user loses everything. The disadvantage of such pre-signed revocation certificates is that
they make it very hard to tell exactly when revocation occurred. For integrity and confidentiality,
the time of revocation doesn’t matter much. However, for non-repudiation it is critical. I will
return to this issue in chapter 5.

2.6 X.509

The International Standard known as X.509 [12] defines a format for what it calls a certificate.
The X.509 certificate is a digital representation of a declaration by one entity (Alice, say) that
another entity (Bob, say) uses a particular value for his public key.

The purpose of certificates is to provide a means of obtaining someone’s public key without having
to meet them in person; instead, just ask an an intermediary with whom you can already commu-
nicate securely. PGP (which was described earlier) also uses certificates. The certificate format
used by PGP differs in some minor details from that laid down by the X.509 standard. These
differences in format are of little consequence; what really matters is how certificates are used, not
how the information in them is laid out.

2.6.1 What X.509 Doesn’t Say

X.509 is part of the “Open Systems Interconnection” (OSI) series of standards, which set out to
prescribe how data is represented when it is exchanged between systems, without dictating what
computer systems should be used for or how they should be run. In keeping with this general OSI
philosophy, X.509 says relatively little about what you should do with certificates. It describes
the format, but it considers such issues such as which certificates should be believed and which
precautions it is sensible to take before issuing a certificate to be outside its scope.
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These issues are, however, important. Before anyone can actually deploy a system that uses
X.509, they have to make a decision on these points. PGP avoids some of the difficult problems
by having the program ask the user what it should do. X.509 avoids even more, and leaves the
difficult problems to the discretion of the programmer who will eventually write the program.

2.6.2 X.509 and non-repudiation

While the data structures and cryptographic processes described in X.509 are quite similar to
those by PGP, X.509 takes a different approach to them in a number of respects.

In the previous section I explained why non-repudiation is not part of the central problem PGP
is trying to solve. X.509, on the other hand, is concerned with non-repudiation. Or rather, the
explanatory material in the appendices to X.509 states that “The digital signature mechanism
supports the data integrity service and also supports the non-repudiation service”. The main text
of X.509 doesn’t mention non-repudiation, and doesn’t say anything about resolving disputes.

The reader of X.509 is thus left with a problem. From the explanatory appendices of X.509 it
appears that X.509 is intended to provide non-repudiation, and enable disputes to be resolved.
On the other hand, the main text doesn’t explain how you use X.509 to do this.

2.6.3 Certification Authorities

The second difference between X.509 and PGP is the notion of a certification authority (CA). In
PGP, it is explicit that any user of PGP can tell any other user about someone’s key, but they
might not be believed. X.509 introduces certification authorities, which are people or organisations
which are in the business of exchanging keys between users. This could be regarded as a natural
development of PGP’s key distribution process; initially, keys are exchanged on an ad hoc basis,
and then someone makes a business out of providing this service on a large scale and on a regular
basis.

However, by adopting a terminology which distinguishes certification authorities from normal
users, X.509 raises the following two questions:

• Who is allowed to be a certification authority?

• How do you know that someone is a certification authority?

With PGP, the answer to these questions is clear: anyone can be a certification authority, and if
you trust them to provide you with good keys, then they’re a certification authority for you.

X.509, in its characteristic style, fails to answer these questions. However, as we we see later, some
systems based on X.509 answer these questions in a way which is very different from PGP.

2.6.4 Certification Paths

X.509 also introduced the notion of a certification path. With a certification path, a user discovers
another user’s key by examining a chain of statements made by several intermediaries. The user
starts off by knowing the public key of intermediary C1, and uses this to verify C1’s digital signature
on a statement that C2’s public key is IK2, and then uses IK2 to verify C2’s digital signature on
statement that C3’s public key is IK3, and so on.
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Later on, I will return to the question of whether this really works or not. It seems to be alright
provided that all of the intermediaries are telling the truth; but on what basis does the user decide
to believe them? How does the user know that one of these Ci isn’t a pseudonym for an attacker?

The PGP answer to this question would be that a user determines whether to trust intermediaries
based on his personal knowledge of them. But, if the user had direct personal knowledge of each
of these intermediaries, why would she need to go through a long chain of other intermediaries
to reach them? The whole point of X.509’s long certification paths is that it enables the user to
reach intermediaries with which she has no direct experience: but is reaching them any use if you
have no means to assess their trustworthiness?

2.6.5 Revocation Lists

X.509 defines a revocation list mechanism for dealing with compromised private keys. At regular
intervals, certification authorities are expected to issue a digitally signed list of all the certificates
that were issued by them, but which have been subsequently revoked.

Recall that with PGP revocation messages, there is a very real risk that a user might miss an
important revocation message. X.509 goes a long way towards solving this problem by having a
single revocation list for all the certificates issued by a CA. If a user has this list, they know that
it is complete (or rather, that it was complete at the time of issue) and there is no possibility
of there being other relevant revocation information that the user has accidentally missed. The
one remaining problem is one of timeliness: how does a user know that the revocation list they
have obtained is the most recent one? Perhaps there is another more recent list which revoked
the certificate which the user is interested in?

X.509 revocation lists contain a date of issue, so the problem of timeliness can be partly solved if
the CA issues revocation lists at regular intervals. If a CA issues a new revocation list daily, and
all users of its revocation lists know this, then when a user has a revocation list with the current
day’s date in it, they know it is the most current one.

There are at least two remaining problems:

• Revocation information may not propagate immediately. If revocation lists are issued daily,
then in the worst case there is a period of 24 hours between the key being reported as
compromised and users realising that the previous revocation list (which doesn’t include
the compromised key) is not the most recent one. In some applications, this delay can be
disastrous; the attacker may be able to do a large amount of unrecoverable damage in the
24 hours between stealing the key and it being revoked.

• If revocation lists are issued at regular intervals, then the CA has to regularly issue new
revocation lists even if no new certificates have been revoked. This incurs communication
costs to transmit the new lists to the users that need them, and it may also involve significant
staff costs. The usual design for a certification authority is to have all communication
between the machine which stores the CA’s key and the outside network under direct human
supervision. This reduces the risk of the key being compromised by an attacker breaking into
the machine which holds the CA’s key, but if the link needs to be used at regular intervals to
generate revocation lists, then the CA operator also needs to be there at regular intervals to
supervise it, and this is expensive in staff costs. The fail-safe nature of revocation lists means
that if the CA operator isn’t there to supervise the link (e.g. due to holidays or illness) then
all that CA’s certificates will stop being accepted, as there isn’t a up to date revocation list
to support them,
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Attempting to reduce the effects of problem 1 by issuing revocation lists more frequently makes
problem 2 worse, and vice-versa. Changing the revocation list format to allow short “no change”
certificates (which include a cryptographic hash of the full revocation list) would reduce the band-
width needed for propagating updates, but still leaves us with the need for the operator to supervise
the link at regular intervals.

Finally, note that there is a significant difference between X.509 and PGP over who can revoke a
certificate. In PGP, it’s the subject of the certificate while in X.509 it’s the issuer. In the X.509
scheme, a certification authority can revoke a certificate without the consent of the certificate
subject; in PGP, a user can revoke their key without the consent of those have certified that key.

2.6.6 X.509 Versions

Although X.509 has come to be regarded as a general-purpose authentication protocol, it was
originally designed to protect a specific application which had some unusual characteristics. X.509
is part 8 of the series of International Standards which describe a Directory Service: a global
distributed database which holds information about both people and computers. The Directory
Service is effectively an on-line omnibus edition of all the world’s telephone directories (both the
“White Pages” for people and “Yellow Pages” for services), with lots of additional information
thrown in for good measure.

X.509 was originally designed to protect access to this database. As a result, X.509 takes it for
granted that this database actually exists and is considered desirable. X.509 uses this database
in two ways. Firstly, if the database has been created, then in the course of its creation everyone
in the world will have been allocated a unique identifier which refers to their entry in the global
database. This identifier is used as the user’s name in X.509 certificates. Secondly, X.509 proposes
the use of this database to store X.509 certificates; if the database exists, it’s a natural place to
store them.

Since its inception, X.509 has been used as the basis for authentication in many other applications,
e.g. Privacy Enhanced Mail, which will be described next. Some of the other applications would
otherwise have had no need for a globally co-ordinated naming scheme or a world-wide database.
The infrastructure presupposed by X.509 can be troublesome and costly in these applications. It
is troublesome because the administrative act of creating a global database of individuals raises
serious concerns of policy; for example, it may well fall foul of the privacy legislation in many
European countries. It is costly, because from a technical perspective the global database is a very
complex system which has to be built and maintained.

A second consequence of the Directory Service origin of X.509 was that X.509 designers did not
consider to be within their remit the provision of features that weren’t needed by the Directory
Service, even if those features were needed by other applications. For example, the Directory
Service as defined in X.500 does not use any cryptographic confidentiality services, and hence
version 1 of X.509 did not contain any features which are specific to confidentiality.

The situation changed slightly with revision 3 of X.509. This revision defines several extensions
to the original protocol; some of these were of general utility, while others were oriented towards
applications other the Directory Service. In particular, revision 3 of X.509 recognises that integrity
keys and confidentiality keys may be different.
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2.7 Internet Privacy Enhanced Mail

Internet Privacy Enhanced Mail [17, 15] was a draft standard for cryptographically-protected e-
mail that was developed by the Internet Engineering Task Force. The development of PEM was
abandoned by the IETF, and it was never formally approved as a standard. However, several
vendors developed products based on the draft standard, and the PEM experience provided some
useful lessons.

PEM is primarily concerned with providing security for people who are acting as agents of the
organisation which employs them. This is illustrated by the following extract from RFC 1422:

“Initially, we expect the majority of users will be registered via organizational affil-
iation, consistent with current practices for how most user mailboxes are provided.”
[15]

That is, the design of PEM is based on the belief that most e-mail is sent by people who are
at work, using their employer’s computers (or by students, using their university’s computers),
and hence that most cryptographically protected e-mail will be sent by people in those categories.
The vast increase in the number of people accessing the Internet from home rather than at work
occurred after the design of PEM.

In comparison, PGP was more oriented towards a home user (or at least, a user who is sending
personal e-mail rather than doing their job of work). This difference between PEM and PGP is
reflected in their naming structures. In PGP, names can contain anything but by convention are
usually just the name of the person (e.g. “Michael Roe”). In PEM, names usually contain the
name of an organisation and the organisation’s country of registration in addition to the personal
name of the individual. PEM treats the name of the organisation as being extremely important
and intimately connected with the way security is provided; PGP considers it to be irrelevant.

In view of this, what PEM is providing is not really “privacy”, even though the word “privacy”
occurs in its name. Protecting the confidentiality of a company’s internal workings as its employees
exchange memos electronically is not the same as personal privacy. In addition, PEM is at least
as much concerned with authentication and non-repudiation as it is with confidentiality: again,
these are not privacy concerns.

2.7.1 Revocation Lists

Although PEM adopted the certificate format from X.509, it defined a revocation list format
which differed from that of X.509. The PEM revocation list format is more compact, and adds a
nextUpdate field. The more compact format reflected a concern that revocation lists would become
large, and that the cost of transmitting them would become considerable. The nextUpdate field
indicates the date on which the CA intends to issue a new revocation list. The addition of this
field makes it much easier to detect that an old revocation list is not the most up to date one: if
the current date is later than the date given in the next update field, then there ought to be a more
recent revocation list available. With the X.509 format, it is hard to be sure that a revocation list
isn’t up to date even if it is very old, because there is the possibility that it comes from a CA that
only issues revocation lists infrequently.

Both of these changes were incorporated into the 1993 revision of X.509.
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2.8 NIST/MITRE Public Key Initiative

The NIST Public Key Infrastructure study [2] investigated the practicalities of using X.509-style
certificate based key management within the U.S. federal government. The main contributions of
this study were that it proposed a certification structure which the authors of the report considered
to be suitable for U.S. government use, and it made an attempt to estimate the monetary cost of
using the public key technology on a government-wide basis.

The NIST report recognises that a very significant part of the total cost of the system is due to
the certificate revocation mechanism used to guard against key compromise:

“The PKI’s yearly running expenses derive mainly from the expense of transmitting
CRLs from the CAs. For example, the yearly cost is estimated at between $524M
and $936M. All this except about $220M are CRL communications costs, which are
charged at about 2 cents per kilobyte.” [2, chapter 11]

My own experience with the “PASSWORD” European pilot project bears out this claim that
CRLs represent a significant part of the resource cost of the public key infrastructure.

The CRL mechanism is frequently only considered as an afterthought in discussions of public key
mechanisms. In view of its major contribution to the total cost, it deserves greater attention. I
shall return to the CRL mechanism, and its implications both for cost and the effectiveness of the
non-repudiation service in chapter 5.2.

2.9 The Public Key Infrastructure

In the course of this chapter, I have introduced the elements of what is known as the “public key
infrastructure”. To summarize, these are:

• Certification Authorities

• Globally unique names

• A Directory Service for certificate retrieval

• An effective means for revoking keys (or certificates)

• An agreement among users about who is trusted for what

PGP manages to work without any of these things, but PGP is attempting to solve a slightly
different problem from that addressed by some of the other protocols. In particular, PGP is not
concerned with non-repudiation or with communications between people who do not know each
other. Later chapters will explore the question of whether (in the context of a non-repudiation
service) these components of the public key infrastructure become necessary, and whether there
are other components that become necessary instead.

2.10 ISO Non-repudiation framework

The ISO non-repudiation framework [13] has a special relationship to this work, as a large portion
of the text in the ISO standard was written by me at the the same time as I was working on this
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dissertation. It is therefore not surprising that the technical approach taken in ISO 10181-4 has
some elements in common with this dissertation.

The main advances made by the non-repudiation framework can be summarised as follows:

• ISO 10181-4 describes the non-repudiation service in terms of “evidence”, whereas earlier
work (e.g. the OSI security architecture [10]) tended to use the term “proof”. In this dis-
sertation, I have followed the evidence-based view of non-repudiation, and I elaborate on its
consequences in chapter 4.

• ISO 10181-4 introduced the notion of an evidence subject as “an entity whose involvement
in an event or action is established by evidence”. The point of this definition is that typical
uses of the non-repudiation service are aimed at determining the involvement of a particular
person (or legal person) in an event, and it is useful to be able to talk about this person
without confusing them with the people who might have a dispute about the event.

• Earlier ISO standards such as ISO 7498-2 [10] and X.509 [12] imply that all non-repudiation
protocols are based on public key cryptography, and that all digital signatures provide non-
repudiation. ISO 10181-4 explicitly recognises that some symmetric key protocols also pro-
vide the ability to resolve some types of dispute. In this dissertation I also illustrate the
converse: some public key protocols do not provide non-repudiation (e.g. some uses of PGP).

From this I conclude that the non-repudiation property is a property of the system design
as a whole, not of the particular cryptographic algorithms that are employed. It is worth
remarking at this point that the symmetric key and public key non-repudiation protocols
are not direct replacements for each other: each depends on different assumptions about its
operating environment, and enables the resolution of a slightly different set of disputes.

ISO 10181-4 is heavily biased towards two types of non-repudiable event: the sending and receiving
of messages by communicating OSI (N)-entities. In this dissertation, I take a view of the non-
repudiation service which is more general than this, and arrive at a conception of the service which
is not tied to the notions of sending and receiving.

Finally, the notion of plausible deniability developed in this dissertation has no counterpart in
ISO 10181-4.
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Chapter 3

Public Key Cryptography

Many of the mechanisms described in this thesis make use of public key cryptography. This chapter
presents a brief overview of the relevant properties and methods of use of public key cryptography.
In this chapter, I wish to draw special attention to two areas that are often neglected:

• These ways of using public key cryptography are based a large number of assumptions. Some
of the assumptions aren’t always true.

• These properties of public key cryptography aren’t always desirable. While they are useful
in some situations, they can be a threat in other circumstances,

3.1 Convert from Integrity only to Integrity plus Confiden-

tiality

Public key cryptography can be used to convert a communications channel which only has integrity
protection into a communications channel which has both integrity and confidentiality protection.

Suppose that an integrity protected channel exists. By this, I mean that the following assumptions
hold:

• There are two entities who wish to communicate with each other. To simplify the explana-
tion, I will for the moment focus on the case where these two entities are people.

• There is a means of exchanging data between two computer programs, one running on behalf
of one person, the other running on behalf of the other person.

• This means of communication guarantees that data exchanged between the two programs
cannot be modified, deleted from, added to, re-ordered or otherwise changed by anyone
except these two people (and programs acting on their behalf).

The last condition is often impossible to achieve, and the following weaker condition may be
assumed instead:

• The means of communication either guarantees that the data has not been modified, or
alerts the receiver of the data to the possibility that a modification might have occurred.
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Furthermore, I shall assume (for the purposes of this section) that what has happened is that the
channel has guaranteed the integrity of the data (rather than alerting the receiver to the possibility
of error). That is, I am describing what happens when the protocol runs to completion, and not
when it halts due to the detection of an error.

Finally, we sometimes also need to assume a fourth condition:

• The means of communication ensures that any data which is received (without an error
condition being indicated) was intended to be received by the recipient (rather than some
other entity).

Given the above assumptions, it is possible to state the first property of public cryptography as
follows:

Public key cryptography enables the two communicating entities to convert their in-
tegrity protected channel into a integrity and confidentiality protected channel. That
is, they can in addition exchange enciphered data in such a way that no-one else is
able to interpret it.

This is achieved by the following method:

• A creates a private key CK−1
A and a public key CKA.

• A gives the public key to B, using the integrity protected channel that is assumed to exist.

• B uses the public key to encipher messages sent to A.

B → A : CKA(m)

The same procedure can be used with the roles of A and B exchanged to enable confidentiality
protection in the reverse direction.

What this shows is that the invention of public key cryptography [6, 26] did not solve the problem
of key distribution; it replaced one problem (creating a confidentiality protected channel) with
another problem (creating an integrity protected channel). This new problem is also not trivial
to solve.

3.2 Verifier needs no secrets

Public key cryptography can also be used to construct an integrity protected channel from another
integrity protected channel (assuming that you have one to start with). The advantage of doing
this is that the created channel may have a greater information carrying capacity, or may exist at
a later point in time.

This is known as digital signature, and it works as follows:

• A creates a private key IK−1
A and a public key IKA.

• A gives the public key to B, using an integrity protected channel which is assumed to exist.

• Later, when A wishes to send a message m to B, A sends IK−1
A (m) to B over any com-

munications channel, not necessarily an integrity protected one. As previously noted, this
notation means concatenating m with a signed collision-free hash of m.
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B can verify this using IKA. Verification either succeeds or it doesn’t, and therefore B either
receives m (with a guarantee that it is unmodified) or an indication that modification may have
occurred.

This is very nearly the same as the definition of a integrity protected channel that was given in
the previous section. The difference becomes apparent if A ever wants to send B a second message
(m2). How can B tell if an attacker deletes m1 but not m2, or m2 but not m1? This can be
fixed up by making a sequence number part of every message, or by having a challenge-response
dialogue between A and B.

It can be seen that public key cryptography has been used to turn an unprotected channel into
an integrity protected channel (given that another integrity protected channel previously existed).
This can also be done with traditional symmetric-key cryptography. The significant advantage
of this use of public key cryptography is that B does not need to keep any secrets. Even if the
attacker knows everything that B knows (i.e. the name of A and B and the key IKA), the attacker
still cannot forge messages from A. However, if the attacker can change B’s copy of IKA, it is easy
for the attacker to forge messages from A. Thus, B must somehow ensure that his copy of IKA

cannot be modified.

This is the second step in replacing the problem of achieving confidentiality with the problem of
achieving integrity. In the first step, confidentiality protected channels were replaced by integrity
protected channels. In this step, confidentiality protected keys are replaced by integrity protected
keys.

3.3 One-to-many authentication

The property that the verifier needs no secrets can be used to achieve one to many authentication.
A can safely give IKA to as many other entities as she chooses (C, D etc.) without affecting the
security of her integrity protected channel with B.

Suppose that A has an (unprotected) channel that can send the same message to many recipients.
This might be a broadcast or multi-cast network connection, or it might just be a file that is
stored and made available to many entities. A can send IK−1

A (m) over this channel, and achieve
the same effect as sending m over separate integrity protected channels to B, C and D. The same
piece of information (IK−1

A (m)) convinces each of the recipients.

The significance of this is that with public key cryptography it is possible to provide integrity
protection for a multi-cast channel in an efficient way. With symmetric key cryptography, a
separate authenticator would be needed to convince each individual recipient, as follows:

m, IKAB(m), IKAC(m), IKAD(m), . . .

When the number of recipients is large, this sequence of authenticators will be much larger than
the single digital signature that was needed in the public key case. It isn’t possible to optimise the
symmetric key case by giving each of the recipients the same symmetric key (KAX , say) because
then each of the recipients could pretend to be A to the other recipients. So there may be broadcast
and multi-cast protocols which use public key cryptography just to keep the size of messages small,
and which don’t require any of the other features of public key. In such circumstances, some of
the other properties of public key cryptography can turn out to be a disadvantage.
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3.4 Forwardable authentication

In a similar manner, public key cryptography can be used to achieve forwardable authentication.
If B has received IK−1

A (m) from A, he can pass this on to C and convince her the message really
came from A. Again, this works because the verifier needs no secrets. Everything that B needed
to verify the message can be safely shared with C, and so they can both verify the same message,
using the same means.

This property can be very useful. For example, suppose that B is carrying out some work for
A, and needs to convince C that A really asked for the work to be done. This situation occurs
frequently where several computers are together jointly providing a service, and the user of that
service doesn’t know which of those computers will end up doing the real work.

The forwardable authentication property also has a disadvantage. C will be able to verify A’s
message even if A doesn’t want her to be able to verify it. This can be harmful to both A and C.

Danger to the recipient

Forwardable authentication can be harmful to C, because C might be misled by an out of context
replay. Suppose that A sends a message to B, knowing that it will be understood by B in a
particular way based on the relationship between A and B. B can send this message on to C,
who will realise (correctly) that it came from A, but may fail to detect that A intended it to be
received by B, not C. C may interpret the message in a completely different way from that in
which A intended B to interpret it, for example because C is providing a different type of service
and expects to receive messages which have a different type of content.

There are several ways in which this problem might be countered. Firstly, putting the name of
the intended recipient into the part of the message that is signed makes it clear who the intended
recipient is. However, how does the unintended recipient (C) know that the name in a particular
part of the message should be interpreted as the name of the intended recipient? B and C might
have different ideas about where in the message to look for the name of the intended recipient
(because they are using different protocols). The intended recipient knows how to interpret the
message, because A and B must have had an agreement on what messages mean to be able to
attempt to communicate. But C isn’t a party to the agreement between A and B, and only receives
out of context messages because they have been diverted by an attacker. So if C is very unlucky,
the same message which B interprets as indicating B as the recipient might be interpreted by C
as indicating C as the recipient, e.g. if the names of both B and C occur in the message, and B
and C look in different places for the name of the intended recipient.

What we would like to be able to do is to construct the signed message so that it has the same
unambiguous meaning in all possible contexts. But it is impossible to do this in the strong sense
of all contexts, meaning every state of every entity in the world throughout history. Whatever the
message looks like, it is at least possible for there to be an entity somewhere, at some time, which
interprets it differently.

Luckily, it is not necessary for the message to be unambiguous in that wide sense. All that is
needed is for the message to be unambiguous to all recipients who have acquired by “approved”
means the public key needed to check the signature on the message.

Suppose that for every public key, there is an associated definition of the class of messages which
are to be verified with that key, including a definition of what those messages mean. Every entity
which uses the public key must somehow gain access to this agreement on meanings, and it must
gain access to it in a secure manner. This agreement must also have the property that it ascribes
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the same meaning to the message regardless of who is trying to interpret it, and regardless of when
it is received relative to other messages under the same key. This can be implemented by making
each certificate which conveys a key indicate (by some means, which must also be unambiguous)
the class of protocols for which that key may be used, and that class of protocols must have the
property that all of their messages must be unambiguously identifiable.

Once this has been done, there is no possibility of out of context replays causing misunderstanding
on the part of the recipient. However, this approach does nothing to prevent the risk to the sender
caused by the possibility of replay. To deal with this, a different approach is needed.

Danger to the sender

Forwardable authentication can be harmful to A, because A might not want C to be sure what of
what A said to B. As one example, suppose that the message m is a service which A provides to
B, and for which B pays a fee in return. The forwardable authentication property means that B
and C can collude so that C doesn’t need to pay for the service, and yet C is protected against B
giving her the wrong message. From A’s point of view, it is undesirable that C can gain benefit
from the service without paying A. This concern might motivate A to use an integrity mechanism
which does not have the forwardable authentication property.

3.5 Non-repudiation

The forwardable authentication property of public-key cryptography works even if the eventual
recipient (C) has doubts about the honesty of the intermediary (B). Only A knows the private key
IK−1

A , and only A could have created IK−1
A (m); B is unable to forge A’s digital signature. If B is

dishonest, B might have stolen a signed message that was really intended to be sent to someone
else, or B might have tricked A into signing a misleading message. Regardless of how B came to
be in possession of IK−1

A (m), C can recognise it as a message that could only have been created
by A.

Furthermore, B can delay a little before sending the message on to C. C will recognise the message
as authentic even if it arrives a little late. Very long delays, such as several years, are a different
matter, because C’s memory and beliefs might change over time so much that verification is no
longer possible. For example, C might forget A’s public key.

In addition, B can work out whether the signature will be acceptable to C without involving C.
If B is aware of C’s beliefs about keys (in particular, if B knows that C believes that IKA is A’s
public key), then B can verify A’s digital signature and be sure that C will also verify the signature
in the same way.

These properties can be combined to provide a dispute-resolving property known as non-repudiation.
B can keep the signature IK−1

A (m) as evidence that A signed the message. If no dispute arises,
B never needs to perform the second step of passing the signed message on to C. However, if a
dispute arises between A and B as to whether or not A signed the message m, B can convince C
by performing the second step and forwarding IK−1

A (m).

Non-repudiation almost seems to be provided for free with public key cryptography. That is, a
system that uses public key cryptography for integrity at first sight seems to provide everything
that is needed for non-repudiation as well. It’s not really quite as easy as that:

• With forwardable authentication, it is assumed that A is honest and following the protocol
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correctly. For non-repudiation, it is assumed that disputes between A and B can arise. This
means that it no longer makes sense to assume that A is always the honest party. What can
A do if she is malicious and sets out to deceive B or C? How can this be prevented?

• How does B manage to discover C’s beliefs about A’s key? (B needs to know this in order
to check whether A’s signature will be acceptable to C). In particular, how does B discover
this with certainty when A is being actively malicious and has a motive for causing different
parties to have different beliefs about her key?

• Forwardable authentication works if the signed message is forwarded within a “short” time.
How short is short? To put it another way, for how long will B’s evidence remain valid?
How does B discover this?

3.6 Scalable key distribution

When we speak of the scalability of a distributed system, we mean the extent by which the amount
of work each component of the system has to do grows as the system as a whole becomes larger.
Clearly, there tend to be more things happening in a bigger system just because there are more
components doing things. But does each component’s job become harder just because it is a part
of a larger whole? The answer to this question is almost invariably yes, it does to some extent
become harder. A more revealing question is, will the work load of an individual component
become intolerably large when the system grows to the maximum size we can reasonably expect
it to grow?

In this context, a “component” is really a computer system, and its work load is its consumption
of resources such as processor time, memory, disc space and communications capacity. As a rough
rule of thumb, it is acceptable for each component’s work load to grow logarithmically with the
size of the system, but linear or worse growth is not acceptable. It may seem reasonable to pay
twenty1 times more to gain access to a system which allows you to communicate with any of 100
million other people rather than just 100 other people. It will probably not seem reasonable to
pay a million times as much.

It is often said that public key cryptosystems scale better than symmetric key cryptosystems.
However, we really cannot speak of the scalability of a cryptographic algorithm on its own. What
really matters is the scalability of the entire system, of which the cryptography forms a small part.
To assess scalability, we need to look at an entire system and examine how how the cryptography
is used.

Certainly, Kerberos (the text-book example of a symmetric key system) suffers more from an
increase in system size than does X.509 (the text-book example of a public key system). However,
it is possible to build symmetric key systems that perform better than Kerberos. There is little
incentive to add these features to Kerberos, because Kerberos has already established a market
niche for itself in communities of a certain size (about the size of a university campus network).

The contention of this dissertation is that it is not the pure numerical size of the community that
matters. What matters is that as we look at larger groups, the relationships between the groups’
members undergo a qualitative, as well as quantitative, change. For example, they are less likely
to be bound to a common employer by contract or subject to the internal disciplinary procedures
of an organisation such as a university. This qualitative change is typified by the absence of face to
face contact between the people involved, the absence of contractual relations between members,

120 ≈ log2
108

102
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the absence of mutual trust and the absence of strong, enforcible procedural mechanisms to prevent
people from misbehaving. A commercial Internet service provider cannot be run as a university
campus that just happens to have an unusually large number of students. The change in the
nature of the relationships means that a different kind of security needs to be provided, and to
provide this different kind of security we need to make use of the special properties of public key
cryptography which were described earlier in this chapter. The primary objective is not to save
on disc space, processor time or bandwidth (although it would be nice to do that as well).

3.7 Promiscuous key management

With symmetric key systems, the process of exchanging a key (particularly a long term key that
is to be used to exchange other keys) can be laborious and difficult. The key must be protected
with both integrity and confidentiality; achieving this for long term keys often involves someone
physically going to another location, taking the key along with them in some physically protected
container. This sort of physical key exchange is very inconvenient, and is often given as one of the
reasons why cryptography is rarely used in non-military applications. Public key cryptography
offers the promise that it will eliminate some of this inconvenience. However, these inconvenient
procedures do have a positive aspect: they reinforce an understanding of who the key is shared
with, why it is being shared, and what the participants’ mutual obligations are. Public key
cryptography makes it easy to share a key without having any clear idea of who you are sharing
it with, or why you are sharing it.

Most public-key based systems make it very easy for anyone to get a copy of your public key
without telling you. (This is, after all, how public key cryptography is supposed to work). The
negative side of this is that you need to exercise caution over what you sign: the entities who
verify your signature may not be the ones you expect. This is closely related to the forwardable
authentication problems described above, and is closely related to this dissertation’s central theme
of non-repudiation versus plausible deniability.

With some public key cryptosystems (most notably RSA), it is possible to receive a confidentiality-
protected message that contains no information about who it came from; this just can’t happen
with symmetric key. This can be a very useful tool for building certain kinds of security protocols,
but it is also a trap for the unwary. With symmetric key, a protocol designer can get away with
being vague as to whether integrity is needed or not, because symmetric encryption can provide
both (cf. the discussion of Kerberos in 2.1). With RSA, you don’t get integrity unless you explicitly
put it in.

Worse still, in systems that combine public and symmetric key, a lack of integrity can be passed
on from the public key part to the symmetric key part. Consider the following exchange:

A→ B : CKB(CKAB), CKAB(m)

A knows that only B (or rather, a holder of B’s private key) will be able to recover m. B, on the
other hand, has no idea where m came from.

As a first attempt at solving this problem, what we would like to do is present the application
programmer with a protocol that always provides integrity as well as confidentiality (to avoid the
problem of “secure” channels to unknown destinations), but which does not provide forwardable
authentication (to avoid the risks associated with replays). Cryptosystems based on the discrete
logarithm problem seem to have the right properties. I will elaborate on this point in chapter 6.
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Chapter 4

The Non-repudiation Service

According to the ISO non-repudiation framework [13], the purpose of the non-repudiation service
is to

“provide irrefutable evidence concerning the occurrence or non-occurrence of a disputed
event or action.”

In this context, “irrefutable” should be understood as indicating that the evidence will remain
convincing in the face of close examination and careful consideration of the arguments presented
by both sides of the dispute. The evidence should convince a person who looks at it deeply, not
just one who gives it a hasty glance. This is not to say that the conclusions drawn from the
evidence must be absolutely infallible; we admit the possibility that conclusions borne out of long
and careful consideration can still sometimes be wrong.

To provide this service, records of transactions are kept, and these records are protected so that
they cannot be falsified by parties with a motive to falsify them, and they cannot be erased by
parties with a motive to destroy them.

It is clear that one cannot make an item of software or electronics that will resolve disputes in
general. Any real system that claims to provide non-repudiation must necessarily be designed for
resolving specific types of dispute: this is reflected both in the types of information that the system
records, and in the kind of protection against falsification and destruction which is provided.

In systems that do not use computers, paper records such as receipts, cheques and contracts
provide something similar. The essential elements are that events are routinely recorded at the
time (e.g. a contract records the terms of an agreement), and that the records of the event are made
hard to falsify afterwards (e.g. by adding the hand-written signature of an appropriate person).

In a computer-based system, it is easy to record events. The hard part of the problem is ensuring
that the records cannot be falsified, modified or erased by someone with malicious intent. There
are many ways in which computerised records can be protected from falsification. One of the
most common techniques (in the academic literature, if not in actual commercial use) is the
technique of public key cryptography which was described in the previous chapter. When public
key cryptography is used to provide integrity it is sometimes referred to as digital signature. It
bears this name because it is intended to replace the protection which hand-written signatures
gave to paper documents. This name is potentially misleading: digital signatures are not digitised
images of hand-written signatures, and the type of protection they provide is subtly different. This
chapter will explore some of the differences between digital signatures and the mechanisms that
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they replace.

In the last ten years, many academic papers have been published on the non-repudiation service.
This chapter challenges some of the assumptions underlying much of the published literature.

4.1 Evidence is not the same as mathematical proof

The word “proof” has several different but related meanings in English. It is a technical term in
mathematics, but it can also be used in a more general sense to mean an action that is intended
to discover, test or measure something. A similar ambiguity exits in other European languages
(e.g. “preuve” in French has a more general meaning than mathematical proof).

The word “proof” is frequently used when discussing the non-repudiation service, in phrases such as
“non-repudiation with proof of delivery”. As papers which discuss non-repudiation often contain a
lot of mathematics, it is tempting to conclude that the word “proof” is being used in its technical,
mathematical sense. This is not the case: whatever it is that a non-repudiation service provides,
it is not a mathematical proof.

The difference between a mathematician’s notion of proof and other notions of evidence is well
illustrated by the following quotation from Wittgenstein [36]:

“6.1262 Proof in logic is merely a mechanical expedient to facilitate the recognition of
tautologies in complicated cases.”

With the non-repudiation service, we are interested in establishing facts about the real world, such
as whether or not a contract was agreed upon, or whether payment was received for goods which
were supplied. (“Propositions with sense” in the terminology of Wittgenstein). It should be clear
that no mathematical proof, no matter how long and complex it is, will ever establish the truth
or falsity of these types of proposition.

Instead, what we have is a collection of observations and prior beliefs which when taken together
tend to convince us that an event did or did not occur. Of course, these prior beliefs may be
wrong, and our conclusions may be wrong as a result. We have lost absolute certainty, and with
it we have lost any pretence of objectivity: exactly how much evidence is sufficient is in part a
matter of taste or policy rather than logic.

Part of the usefulness of a non-repudiation service lies in the ability to convince many different
people that an event happened. The user of the service would like to be able to convince everyone
they need to convince, and it is not always possible to predict who this will be ahead of time. This
aspect of the service would be placed in jeopardy if everyone had totally different, random and
unpredictable criteria for accepting evidence. However, it often possible for a community to come
to a common understanding of how much evidence is sufficient. Usually, adding more evidence in
support of a conclusion doesn’t make people less convinced. In this way, a target audience can
all be convinced by presenting them with an aggregate of evidence which contains within it the
evidence needed to convince each member of the audience.

When making a decision based on evidence, there is often an asymmetry between the seriousness
of the consequences of a false negative (deciding that there was insufficient evidence when the
disputed event did in fact occur) and of a false positive (concluding that an event occurred when
in fact it didn’t). This can be reflected in the decision as to how much evidence is considered
sufficient. If a false positive has very serious consequences, the evidence can be required to be
very strong.
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4.2 The parties to the dispute are not necessarily partici-

pants in the disputed event

Many discussions of non-repudiation equate the parties to the dispute with the entities involved
in the disputed event. Although this may be the commonest case, it is not the only possibility.

For example, suppose that two employees of different companies negotiate a contract on behalf of
their respective employers. One or both of them changes jobs, and then their successors disagree
over the terms of the contract. The disputing parties have an interest in the event, but were not
themselves involved in it. (Indeed, this may even be why the dispute arose!)

The distinction between those involved in the disputed event and those involved in the dispute
itself is important because it shows that we cannot assume that the disputing parties have direct,
reliable knowledge of the disputed event.

4.3 It is not necessarily the case that one party is telling

the truth and the other is lying

Discussions of non-repudiation often assume that there are two parties to the dispute, one of whom
is telling the truth and the other is deliberately lying. However, given that the disputing parties
do not necessarily have first-hand knowledge of the disputed event, it is possible that they are
both acting in good faith, and the dispute has arisen due to a misunderstanding or a malicious
action by someone else.

Given that this is possible, we would like the non-repudiation service to be able to detect it. For
this to happen, its output needs to be more complex that just “party A is lying/party B is lying”.
Ideally, we would like a reconstruction of what really happened, even if this disagrees with the
expectations of both the disputing parties.

Computer networks offer ample opportunities for parties to become genuinely mistaken. All in-
formation is carried by an intermediary (the communication network) which can lose, misroute or
modify messages. This can happen even when no-one is malicious (hardware and software failure
is sufficient), but the problem is compounded by the presence of an outside attacker.

Even in simple disputes, such as “A says she sent a message to B, but B says it didn’t arrive”,
there are many possibilities as to what really happened.

4.4 There does not need to be a “judge”

Some accounts of the non-repudiation service state that the service always requires a judge or
adjudicator with power over potentially disputing parties. The reasoning behind this is that it is
needed to cope with the case where one party is intentionally lying. In this case, the disputing
parties already know which of them is telling the truth, without needing to examine any cryp-
tographic evidence. For the non-repudiation service to be of any real use in this situation, there
must in addition be some means whereby matters can be put right.

However, a court with legal powers to compel the disputing parties is not the only means by which
a situation can be put right, or injured parties compensated. The non-repudiation service is usable
in a wider range of situations than just court proceedings. For example, one of the parties to a
dispute might recover the money they lost in a disputed transaction by claiming against their own
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insurance policy, rather than by forcing the other party to pay. The non-repudiation service could
be used to convince the insurance company that the first party’s account of events was correct, and
hence that the insurance claim should be paid out. Here, the criteria for evidence to be admissible
can be set by the insurance company, based on their own assessment of what is an acceptable
financial risk. This can be different from the levels of evidence that are defined by legislation as
acceptable for use in criminal trials. Indeed, an insurance company and its customers could use
the service in this way even if there is no specific legislation concerning digital signatures.

The existence of other environments in which the service may be used shows that several conditions
which are often to be considered to fundamental to the service are not fundamental at all, but
rather are specific to a particular application of the service. The disputing parties don’t need
to specify in advance how disputes will be resolved. Although one method of ensuring that the
possibility of arbitration will exist is to describe the arbitration procedure in a contract agreed
beforehand, this is not the only method. An independent third party is able to examine the
evidence provided by the non-repudiation service even if they weren’t nominated in advance as an
arbitrator.

Futhermore, the parties don’t even need to agree on who the arbitrator will be. In many circum-
stances such an agreement is needed to make the arbitrator’s judgement effective, but not always.
For example, if a merchant is defrauded by a customer who has obtained goods and not paid, then
the merchant’s insurance company can reimburse the merchant without the customer needing to
agree. The customer doesn’t ever need to know who the merchant’s insurer is. The merchant
could take the evidence to an alternative adjudicator (such as the police) without needing to have
agreed this with the customer beforehand.

If no dispute actually arises, then no dispute resolution procedure is needed. This means that it is
possible to use the non-repudiation service without ever deciding what the arbitration procedure
is. If a dispute arises, then some method of arbitration must be found, but it is not necessary to
agree on this unless and until an actual dispute arises.

However, there is a danger that a dispute will arise and it will be impossible to resolve it, because
there is no-one who is both in a position to put things right and be convinced by the evidence.
To prevent this state of affairs arising, it is desirable (but not necessary) to work out in advance
what the arbitration procedure will be, and to check that the type of evidence collected by the
non-repudiation mechanism in use will be considered acceptable by the chosen arbitrator.

4.5 Non-repudiation mechanisms can go wrong

The security of cryptographic mechanisms depends on the security of keys, and accordingly great
care is taken to ensure that attackers do not obtain unauthorised access to private or symmetric
keys. However, we must admit the possibility that such unauthorised access might happen, and
that if they do the mechanism will give misleading results.

Some protocols (e.g. X.509) include a revocation mechanism to limit the damage caused by such
a key compromise. In the context of the non-repudiation service, however, the addition of a
revocation mechanism adds a new problem: the key owner might falsely claim that a key has
been compromised, and this also causes the mechanism to to wrong. While good physical security
measures should make actual key compromises relatively rare, there is no corresponding physical
mechanism to make it hard to falsely claim that a key has been compromised.

This problem leaves us with some residual doubt; in some cases where it is claimed that a key has
been compromised, we have no way of telling whether the key really was compromised or whether
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the claim is false. In chapter 6 I describe some improved mechanisms which enable us to resolve
some of the doubtful cases; however, there is no known revocation mechanism which removes all
doubtful cases.

The existence of this form of doubt is another reason why the evidence provided by the non-
repudiation service cannot provide proof with certainty, even though it can provide very convincing
evidence. We can be fairly sure that a highly tamper-resistant box hasn’t been tampered with,
allegations to the contrary notwithstanding. However, we cannot conclude this with absolute
certainty.

4.6 Justification and Obligation

Although for reasons described above we cannot always be sure of what happened with certainty,
we can often establish something which is weaker but still useful. Two important cases of weaker
guarantees are:

• justification: Having evidence that a participant’s actions were justified, even though with
the benefit of hindsight (e.g. knowing that the key was subsequently reported as compro-
mised) it can be seen that it would have been better if they had acted differently.

Questions of justification often arise when trying to determine if a party to the dispute was
negligent. Demonstrating that a party’s actions were justified amounts to showing that they
had performed all the checks which the security policy required them to make, and hence
that they were not negligent.

• obligation: Having evidence that establishes which party has an obligation to put matters
right (even if we cannot establish with certainty who really caused the problem in the first
place).

To be useful, a protocol that tries to establish one or both of these goals must be secure against
the participants simply lying. That is, participants in a dispute should not be able to escape their
obligations by lying, and similarly they should not be able to make an unjustified action appear
to be justified.

In addition, a protocol that tries to establish obligations should ensure that whatever happens,
if something goes wrong then at least one participant has an obligation to put matters right. (It
is acceptable if a failure leaves two or more participants both being individually obliged to do
something). This can be achieved by having a single message serve both to discharge one party’s
obligation and to commit another party. (“I accept responsibility for finishing this transaction,
and hereby acknowledge that you have completed your part of it.”) Even if the result of the
non-repudiation mechanism is wrong as to whether this message was actually sent or not, it will
at least be consistent. If the message is deemed to have been sent, then the acknowledging party
has the obligation; if it is deemed not to have been sent, then the obligation remains with the
first party; there is no intermediate position. Another way to express this is to say that in cases
where there is residual doubt, the security policy defines who is obliged to do something, even if
this might be unfair.

By speaking of justification and obligation rather than of what in fact happened, we can escape
some of the problems that arise from the tenuous connection between the real world and electronic
representations. However, a protocol would be considered unsatisfactory if it frequently gave rise
to obligations and justifications that bore no relation to reality.
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4.7 The OSI Non-repudiation services

The OSI reference model [10] identifies two specific forms of the non-repudiation service, known as
non-repudiation with proof of origin and non-repudiation with proof of delivery. The former “will
protect against any attempt by the sender to falsely deny sending the data or its contents”, while
the latter “will protect against any subsequent attempt by the recipient to falsely deny receiving
the data or its contents”.

OSI is exclusively concerned with standardising data communications between systems, and con-
siders the activities which take place within systems to be outside its remit. In effect, OSI is just
about sending and receiving data. A natural conclusion to draw is that if one had as basic building
blocks mechanisms which provided evidence concerning which messages were sent and which were
received (i.e. non-repudiation with proof of origin and non-repudiation with proof of delivery),
then these building blocks could be combined to provide evidence about any event which is within
the scope of OSI.

I would like to call into question whether this way of breaking down the non-repudiation problem is
the most effective way to proceed. I will challenge it on two grounds. Firstly, most non-repudiation
protocols are built up from a single building block (digital signature), not two; “proof of origin”
and “proof of delivery” are usually implemented the by same digital signature mechanism being
invoked under different circumstances.

Secondly, the events for which I am interested in establishing evidence contain elements which go
beyond the sending and receipt of messages, even though they often also involve OSI data commu-
nications. An example of such an event is “the user instructs their computer to order particular
goods from a certain supplier”. Contrast this with the OSI event, which is the transmission of a
sequence of data items having a particular format. The usual way in which digital signature is
used to provide a service which approximates to non-repudiation with proof of delivery is for the
recipient to send a signed acknowledgement [11]. This mechanism does not live up to the definition
of the service because there is a possibility that the recipient won’t play the game. A recipient
could receive the message and then not bother to send an acknowledgement. Although in reality
the message has been received, there would be no cryptographic evidence of this. A considerable
amount of effort has been expended on developing new mechanisms which provide the OSI service
in a strict sense [39, 4]. I will take the opposite approach: what the existing mechanism actually
does is fine; what is wrong is the OSI definition of what it is supposed to do.

I claim that what the non-repudiation service provides evidence about is its own invocation,
not some related event such as the receipt of a message. On its own, this isn’t very useful as
it isn’t connected to the events which are interesting. However, systems are built in such a
way that invocation of the non-repudiation service (which is undeniable) should only occur when
some other, more interesting, event occurs. Accidents may happen in which the non-repudiation
service is invoked even though the intended triggering event hasn’t occurred, but evidence that the
non-repudiation service was invoked gives a strong indication that the intended triggering event
happened.

With cryptographic non-repudiation mechanisms, the undeniability arises from the publication of
a value which was once secret; this is undeniable because the public availability of the erstwhile
secret can be proven by exhibiting it. Public key cryptography is good for this because it enables us
to generate a multiplicity of separate secrets (signatures) from one master secret (the private key).
Signatures are not usually regarded as secrets, because once they have been generated they are
usually passed on to a verifier (effectively published). However, in this particular way of looking
at cryptographic non-repudiation, the signatures which a user could have generated, but has not
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yet decided to generate, are considered secrets. Of course, there are infinitely many of these: but
the private key provides a finite summary of them, as it enables any particular signature to be
generated.

Once a signature has been published, the fact of its publication cannot be denied. However, it
is still possible to argue about what caused it to be published, and what the fact of its pub-
lication implies for the disputing parties. These are issues which need to be addressed by the
non-repudiation protocols.
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Chapter 5

Certificates, Certification Paths

and Revocation

5.1 Certification Paths

As was described in chapter 2, International Standard X.509 introduced the notion of a certi-
fication path as a means by which members of a very large distributed system can obtain each
other’s public keys. The certification path concept has been adopted by many subsequent speci-
fications, including Internet Privacy Enhanced Mail and the VISA/Microsoft “Secure Electronic
Transactions”. Indeed, there is no widely-used alternative to certification paths for public key
distribution in large communities. (PGP uses certificates but not certification paths. However,
attempts to make PGP work in large user communities would probably take the form of adding
non-hierarchical certification paths to PGP).

Public key mechanisms are critically dependent on users being able to obtain the right public key
for other users. Hence it is vitally important to use a method for obtaining public keys that works.
In this chapter, the certification path method is examined in detail.

5.1.1 Analysis of authentication properties

In this section, I use the formal logic developed by Burrows, Abadi and Needham [23] to analyse
the certification path mechanism. I will start by analysing its properties as an authentication
mechanism. Later on, I will show how these authentication properties are also relevant to the case
of non-repudiation.

Before embarking on the details of the analysis, it is worth making a few remarks on what it
is reasonable to expect this logic to do for us. One way of looking at BAN logic proofs is that
they prove that a high-level description of a protocol can be expressed in terms of a combination
of standard building blocks. These building blocks are represented by the axioms of the BAN
logic, and in the opinion of the logic’s authors they are good building blocks that have stood the
test of practical experience. What proofs in the logic do not prove is that these building blocks
are actually secure in reality, or that the actual implementation of a security protocol is fully in
accordance with its high-level description.

Thus, we do not expect to be able to prove that a real implementation of the certification path
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mechanism actually works; this is too much to ask for. Instead, we expect to be able to gain some
insight into the components of the certification path mechanism, and to discover the extent to
which these components are ones which have a good track record in other systems.

I have previously published this analysis at the 1988 SIGOPS Workshop on Distributed Systems
[27], and in a security study for the UK Joint Network team [35]. However, the consequences for
non-repudiation that I shall draw from these analysis are presented here for the first time.

An entity B attempts to prove its identity to A by sending it the certification path A⇒ B, which
consists of a sequence of certificates:

IK−1
X0

(X1, IKX1 , t1, s1) . . . IK−1
Xn−1

(Xn, IKXn , tn, sn)

Where X0 is A’s certification authority, Xn is B, IKXi is (allegedly) Xi’s public key, IK−1
Xi

is
the private key corresponding to IKXi , si is a certificate serial number, ti is a certificate validity
period, and round brackets denote digital signature.

A already knows the public key of its CA, IKX0 . What we would like to be able to do is to show
that if A knows the public key of Xi they can obtain the public key of Xi+1 by examining the
appropriate certificate, and hence prove by mathematical induction that A can obtain B’s public
key.

In the BAN logic, the following conditions are sufficient for this inductive proof to work:

1. To start the induction, A must already have a public key (IKX0) which she considers to be
suitable for securing communications with X0.

2. A has verified each digital signature IK−1
Xi

(Xi+1, IKXi+1 , ti+1, si+1) using the public key
from the previous certificate, IKXi .

This is easy for A to check.

3. A believes that the contents of each certificate are timely:

A |= #Xi+1, IKXi+1 , ti+1, si+1

4. A believes that Xi has jurisdiction over IKXi+1 .

A |= Xi ⇒ IKXi+1 → Xi+1

The first two of these conditions are given explicitly in X.509, and any implementation of X.509
would check that these conditions hold. But what about the other two conditions?

5.1.2 Timeliness

In the BAN logic, timeliness (represented by the # operator) includes at least two distinct notions:
the notion that two copies of a message may not mean the same thing as one copy, and the notion
that beliefs may change over time.

Protection against duplication

Sometimes, two copies of a message have a different effect from one, and it is important to prevent
an attacker from taking someone else’s message and replaying it twice. For example, it shouldn’t
be possible to pay the same cheque into a bank account twice by resubmitting copies of it.
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Protection against duplication is sometimes necessary for messages that contain or refer to cryp-
tographic keys. For example, as discussed in chapter 2, a one-time pad is very secure if used only
once, but becomes very weak if it is used twice to encrypt different messages. One could imagine
an attack where the attacker replays key management messages and tricks the victim into using
the same one-time pad twice.

Unlike one-time pads, public keys can be used repeatedly with little degradation of security.
Indeed, the reason why public key systems are attractive from a performance perspective is that
the same certificate (and hence the same certified key) can be used many times for many different
messages. If it was necessary to go to the CA to get a fresh certificate for each message, public
key schemes would be far less efficient. By using this reasoning outside of the BAN logic, it can
be argued that the duplication protection aspect of timeliness is not relevant to certificates.

Change in beliefs over time

The other aspect covered by timeliness in the BAN logic is that the participant’s beliefs may
change over time, and it is important to establish that a message reflects a participant’s current
beliefs, not just their beliefs at some point in the past.

This aspect of timeliness clearly is relevant to certification paths. A CA’s belief in the validity
of a certificate changes when either the corresponding private key is reported as having been
compromised, or the subject’s name changes (e.g. because the name reflects their organisational
role, and their role changes).

So, what this part of the BAN analysis is telling us is that it is important to establish that the CA
hasn’t changed its mind since issuing the certificate. There are two fields in the certificate that
we might use for this: the validity interval and the expiry date. The next section (on revocation)
will examine in detail how these fields can be used to establish timeliness.

5.1.3 Jurisdiction

The BAN notion of jurisdiction formalises the idea that A must believe that Xi is an appropriate
person to sign a certificate for Xi+1’s public key. That is, Xi is not just any person (e.g. an
attacker) but is someone who A considers to be honest and competent for this function.

There is little problem with this for the first CA, X0. A has made direct contact with this CA to
get their public key, and can be presumed to have made a judgement at that time as to the CA’s
competence. (Although this does highlight that it is A’s opinion of the CA that matters here, not
anyone else’s. I will return to this point later).

However, without additional assumptions, this fails for subsequent CA’s in the path. There is no
particular reason why Xi (i > 0) should be someone who A believes to be honest and competent.
This is not just a minor theoretical problem; it can give rise to a real attack.

Suppose that someone has implemented X.509 from just reading the International Standard, and
has not implemented any jurisdiction-related checks because the standard doesn’t mention such
checks at all. An attacker who has a valid certification path for themselves can trick such an
implementation by pretending to be a CA and creating an apparently valid certification path for
B, in which B’s public key is replaced with a value chosen by the attacker. The attacker (E, say)
knows their own private key and so can use it to sign a message that looks like a certificate for B:

IK−1
E {B, IK ′B, sB, tB}
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where IK ′B is a false key for B chosen by E. E can take their own certification path (A⇒ E) and
concatenate it with the above false certificate to make a false certification path A⇒ B.

I published this attack in 1988 [27]. Given that this attack is now well-known, new implementations
clearly ought to do something to protect against it. There are several possible approaches:

• Only accept certificates from CAs for which the certificate user has direct knowledge. In
effect, this means using certificates, but not certification paths. This is what PGP does.

• Include in the certificate an explicit indication of the certificate issuer’s opinion of the cer-
tificate subject’s trustworthiness. This is what X.509 version 3 does.

• Include in the certificate an implicit indication of the certificate issuer’s opinion of the cer-
tificate subject’s trustworthiness. This is what Internet Privacy Enhanced Mail did. PEM
adopted a convention whereby the form of an entity’s name indicated whether or not it was
a certification authority, and if it was a CA, it also indicated which entities’ keys it was
permitted to certify. In the PEM model, a CA should only sign a certificate in which the
subject name has the form of a CA’s name if the entity being certified actually is a CA
and has been assessed as being competent to perform that function. This prevents users
from creating apparently valid certificates, as their own certificates indicate that they are
not CAs.

• Provide an entirely separate mechanism that enables users to find out whether or not a
particular entity has been assessed as competent to act as a CA. As far as I know, no system
in widespread use does this.

Several of the designers of PEM strongly believed that certificates should be pure authentication
certificates, and should say nothing about the trustworthiness (or otherwise) of certificate subjects.
However, by adding a naming convention to prevent the aforementioned attack, PEM certificates
became more than just authentication certificates. At the very least, a PEM certificate indicates
whether the subject should (or should not) be trusted as a CA. It is arguable that PEM certificates
also contain implicit statements about the relative trustworthiness of users too. For example, if
an entity has a certificate naming them as the occupant of a particular role, then this could be
taken as a statement by the CA that the certified entity has been judged fit to act in that named
role.

5.1.4 Why Non-repudiation is Different

The preceding discussion was phrased in terms of authentication. The same considerations of
timeliness and jurisdiction occur when certification paths are used for non-repudiation, but there
are additional complications.

The timeliness issue is complicated because a dispute concerning an event can occur much later
than the event itself, and the participant’s beliefs may have changed in the interval. In particular,
a certificate might be revoked after it has been stored as evidence concerning an event, but before
it is needed to resolve a dispute about the event. These interactions between revocation and
non-repudiation are explored in the next section.

The jurisdiction issue is also complicated, because while in the authentication case there was only
one entity whose beliefs about jurisdiction were relevant, in the non-repudiation case there may
be two or more: the entity who stores evidence in the hope that it might help resolve future
disputes, and the entity or entities who examine this stored evidence in the course of resolving a
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dispute. Jurisdiction is to some extent a matter of opinion rather than objective fact, and hence
differences of opinion over jurisdiction are likely. Reasoning about non-repudiation involves not
just participants examining their own beliefs (as in the case of authentication), but also examining
their beliefs about what other parties’ beliefs might be.

5.1.5 Completing the paper trail

What happens if a certification authority falsifies evidence for an event that never took place?
Conversely, what should we do if a certification authority is accused of having falsified evidence?
One approach that might be taken is to say that the risk of falsified evidence is the price to be
paid for using digital signatures, and all that can be done is to be careful about which CAs you
trust.

However, it is possible to do better than this. Protection against CA misbehaviour is technically
possible, and benefits all parties. It benefits the evidence subject, because it protects them against
being falsely implicated in events which never took place. It protects the CA against false accu-
sations of having acted improperly, because the CA can show that it was not in a position to
have been able to falsify the evidence. Finally, it is an advantage to the evidence user, because it
prevents the value of the evidence being undermined by accusations of CA misbehaviour.

We can protect against the CA falsifying evidence by doing the following two things. Firstly, the
user should generate their own private key, rather than getting the CA to generate their key for
them. If this is done, the CA can’t misuse the user’s private key because it never has access to
it. Secondly, before issuing a certificate the CA should obtain some evidence that the user has
requested them to issue a certificate. Such evidence will typically not be cryptographic, e.g. a
written request, signed by the user and including a hash of the user’s public key. If this is done,
the CA can defend themselves against accusations of having certified the wrong key by producing
this independent evidence.

This protection against CA misbehaviour has the additional effect that it makes the evidence
independent of considerations of jurisdiction, apart from the very minimal and easy to agree
policy that users have jurisdiction over their own keys. Once the CA has produced the written
statement from the user including the user’s public key, it no longer matters who the CA was or
who trusts it. The signed data has been tied to the user in way that does not involve the CA.

Although this method prevents CAs falsifying convincing evidence, it does not prevent all forms
of CA misbehaviour. A CA can still sign a certificate for the “wrong” public key, such as one for
which the CA knows the corresponding private key. Such a deception will temporarily convince an
evidence verifier. On-line, the digital signature will match the key in the certificate and nothing
will seem amiss. However, once a dispute has arisen and additional off-line checks are performed,
it will become apparent that the paperwork is not in order and the deception is definitely the fault
of the CA rather than the user.

From this, we deduce that jurisdiction still has a role to play in non-repudiation. An entity holding
a digital signature which they hope to later use as evidence is bearing the risk that the CA might
have lied, and that should a dispute arise all they will have evidence of is the CAs misbehaviour,
rather than the action which they thought took place. Users can still exercise discretion over
which CA they are prepared to trust in this way.
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5.2 Certificate Revocation

5.2.1 The authentication perspective

The BAN logic analysis at the beginning of this chapter showed that the certification path mech-
anism lacks a means of ensuring freshness. To make this mechanism provide authentication in
a way which meets the BAN criteria, it is necessary to add something which makes it resilient
against changes over time (in particular, resilient to system users discovering that a private key
has been compromised).

The 1988 version of X.509 filled this gap by adding certificate revocation lists. Each certification
authority regularly dates and signs a list of the certificates which they have issued but no longer
consider valid. A certificate which is not invalidated by being mentioned on this list is presumed
to be still valid.

As their whole purpose is to provide the element of timeliness which certificates lack, it is essential
that revocation lists are issued at frequent intervals and have short “lifetimes” (i.e. that a revo-
cation list with a particular date of issue should only be acceptable for a short period after that
date).

However, this regular updating of revocation lists imposes a significant cost: not only must these
lists be transmitted across the network, but more significantly they require the existence of a
highly available server which can provide these lists when asked. As was described in chapter 2
studies carried out by NIST and my own experiments have shown that these costs are a substantial
part of the total cost of providing a certification authority service.

Cost isn’t the only problem with the revocation list mechanism: in some circumstances, it doesn’t
even work. There are gaps in time between the key being compromised and the compromise being
discovered; between the compromise being discovered and the CA issuing a new revocation list;
and between the new revocation list being issued and users noticing that it is available. All of
these gaps provide a window of opportunity in which an attacker can make use of a stolen key.

Clearly, we would like to improve upon this.

5.2.2 The Non-repudiation perspective

The revocation list mechanism presents additional problems when it is used in support of a non-
repudiation service. As an attacker has a window of opportunity between stealing a key and the
key being revoked, there is the question of who bears the liability for malicious use of the key
during this period (assuming that the attacker can’t be located and brought to justice). This
is largely an issue of policy that can be agreed beforehand between the legitimate users of the
system, and will be driven by considerations of what the social and commercial relationships are
between the participants.

It will often be the case that the participants’ liability for misuse (or alleged misuse) of a private
key depends on the relative times at which events took place. (In particular, when the key was
reported as compromised versus when the alleged misuse allegedly took place). As the underlying
assumption of non-repudiation is of an adversarial relationship between the participants, we must
consider the possibility that participants might try to lie about the relative ordering of events in
order to shift liability from themselves onto someone else. Hence if revocation lists are used, a
successful non-repudiation mechanism needs to be able to convince a third party, after the event,
of the relative ordering of events. This is not easy to do.
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5.2.3 Some improved mechanisms

Notarization

ISO 7498-2 defines notarization as

“The registration of data with a trusted third party that allows the later assurance of
the accuracy of its characteristics such as content, origin, time and delivery.” [10]

The provider of such a service is conventionally referred to as a notary. It is worth mentioning in
passing that the service this entity is providing is somewhat different from that which is provided
by a “notary public” under English law, and different again from the notion of a notary under
French law.

The ISO 7498-2 notary is an attempt to enable the resolution of disputes about the relative timing
of events. For example, the recipient of a digital signature can take the signature to a notary and
obtain a counter-signature, stating that the notary has seen the signature at a particular time.
This safeguards the original signature against subsequent compromise of the key that was used to
generate it, by providing evidence that the signature was generated before the key was reported
as compromised.

This mechanism doesn’t entirely work. Firstly, the recipient of the signature is still at risk if the
signature is notarised in the period after the key has been reported as compromised, but before
the revocation list has been updated: neither the recipient nor the notary will be aware that the
signature is bad (because the CA has not yet got around to distributing a new revocation list), but
if a dispute arises it will be discovered that the signature wasn’t valid because the corresponding
key had been reported as compromised.

There are several responses to this problem. The risk to the recipient has certainly been reduced,
even though it hasn’t been eliminated, and in some circumstances a recipient might consider
this to be good enough. Alternatively, the recipient can get the signature notarised and then
wait until they receive a new revocation list from the CA whose start date is after the time of
notarization. This, taken together with a policy agreement that a revocation list dated T must
include all compromises reported before time T ensures that the recipient doesn’t get caught in
this problematic interval. The downside of this approach is that the recipient has to wait for the
revocation list before acting on the signature; in many applications this wait is unacceptably long.

This mechanism has other problems too. It deals with the compromise of user keys, but what
about the compromise of CA keys or even the notary’s key? These keys may well be better
protected than user keys, and so this mechanism has made failures less likely, but the problem
still remains.

Finally, what if the notary lies? Or conversely, how does the notary defend its honesty if it is
accused by one of the participants in the dispute? I will deal with this type of issue in the next
section.

Separate key for CRLs

In the 1988 version of X.509, the same key is used to sign both certificates and revocation lists.
This is certainly in keeping with the X.509 philosophy that each entity has a single key that they
use for everything, but it has several practical drawbacks.

Certificate signing keys need to be very well protected, because the consequences of such a com-
promise are very severe. It is usually recommended that such keys be kept only in a device which
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is not directly connected to the network, in order to provide greater physical protection. The
use of an indirect connection to the network means that there is a much greater delay between a
signature being generated and it becoming available over the network. For certificates this is not
a problem, but for revocation lists it is a disaster: after all, the whole purpose of revocation lists
is to be timely.

Accordingly, we would like to adopt an architecture whereby separate keys are used for signing
and for revocation. Revocation keys are kept on-line, which gives the necessary fast transfer from
point of signing to point of distribution, but has the disadvantage that revocation keys are less
well protected. This doesn’t matter too much, because the compromise of a revocation key is
much less serious than the compromise of a certificate signing key.

The separation of the two keys has a secondary benefit in that it enables the two functions
to be carried out by separate people or organisations. A CA who realises too late that they
have incorrectly issued a certificate might be tempted to cover up their error (and escape their
consequent legal liability) by back-dating the revocation of the certificate. Such forms of cheating
by CAs are made less likely by separating the functions, as the revocation authority has little
incentive to implicate themselves to cover up someone else’s mistake.

On-line revocation servers

Another approach to revocation is to do away with CRLs altogether, and instead use an on-line
revocation server which can confirm that a particular certificate is still valid. The response from
such a server should be signed to prevent forgery and to prevent its authenticity being subsequently
denied. The response should contain the serial number of the certificate in question, the time,
and whether or not the certificate was valid at that time. If the response also contains the hash
of a signed message which is to be verified using the certificate, then the revocation server also
provides a notary function, confirming that the signed message was in existence at a time when
the certificate was still valid. Passing the signed message as a parameter to the revocation server
also enables the provider of the revocation service to charge on a per-message basis, and to charge
different types of messages at different rates. The disadvantage of this solution is that the verifier
needs an on-line connection to the revocation server to confirm each certificate each time. A
cached copy won’t do. In some applications it is worth the additional communications cost to
reduce the risk.

Arbitrated Signature Schemes

An alternative way to determine the relative times of signing and key revocation is to make the act
of signing involve an interaction with an on-line server. ISO 7498-2 calls these types of mechanism
arbitrated signature mechanisms. (Once again, this is a poor choice of term as the on-line server
which participates in the generation of the signature is not necessarily the same as an arbitrator
who is called in to resolve a dispute).

The simplest such mechanism is a variation upon the notarization mechanism described above. If
the security policy requires the signer to take their signature to a notary to make it valid (rather
than making notarization an optional action on the part of the recipient of the signature), then
what we have is a form of arbitrated signature mechanism.

However, there are other ways in which the process of evidence generation could be split between
the evidence subject and an on-line server. At one extreme, we could have the on-line server
hold the subject’s key, and generate signatures on behalf of the subject when requested to do so.
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Indeed, this scheme is described in ISO 10181-4. Note that this extreme way of partitioning the
functionality loses one of the main advantages of digital signatures: it gives the on-line server the
ability to falsify evidence. If you don’t need protection against forgery of evidence by servers, then
the use of public key is superfluous. Indeed, ISO 10181-4 takes this to its logical conclusion and
describes how to do non-repudiation with symmetric key techniques (provided you don’t mind the
server being able to falsify evidence).

However, in the context of this dissertation I am concerned with the threat of forgery of evidence
by the server, so I would like to do better than these mechanisms from ISO 10181-4. It is possible
to make use of threshold cryptography [5] to create a scheme in which two private keys are needed
to create a valid signature: one of these can be held by the user and the other can be held by a
revocation server. Both keys are needed, so the revocation server can’t unilaterally falsify evidence.
If the user detects that their key has been stolen, they inform the revocation server and from then
on the revocation server refuses to participate in generating signatures, rendering the stolen key
useless. For extra safety, this mechanism can be supplemented by the use of certificate revocation
lists as well, to catch the case of the revocation server’s portion of the key being compromised too.

The threshold scheme has the slight drawback that the revocation server finds out what the user
is signing. The user might not want this, as the document she signs might be confidential. To
plug this gap, threshold cryptography can be combined with blind signature techniques so that
both keys are required, but the holder of the second key is never made aware of the contents of
the documents that are being signed.

Tamper-resistant smart cards

Tamper-resistant hardware devices can often be used as local agents of a remote server. In this
fashion, we can construct an alternative to the above protocol which uses tamper-resistant smart
cards. In this new protocol, the user’s private key is held within a tamper-resistant card. No-one,
not even the user themselves, knows the value of this key. The card also shares a secret with
a remote revocation server. The card will only generate signatures if it has recently engaged in
a challenge-response protocol with the revocation server to establish that the key has not been
revoked. If the card is reported stolen, it will stop working as the revocation server will no longer
participate in the protocol, and the tamper-resistance of the card will make it extremely difficult
for the stealer of the card to extract the private key and use it directly.

This version of the protocol provides the same functionality as blind threshold cryptography,
without the expense of additional number-theoretic operations but with extra expense and risk of
needing a tamper-resistant object.

Revoke authorisation, not certificates

The Privacy Enhanced Mail specification identified two main reasons for revoking a certificate:
compromise of the key and change of the subject’s name in response to a change in their access
rights. The above discussion has focussed on the case of key compromise. Change of access rights
is different. Here, we do not need to worry about the possibility that an attacker is misusing the
key. The same person is accountable for the use of the key, whether it occurred before or after the
change of rights, and resolution of a dispute will not hinge on timeliness in the same way.

Accordingly, it might be better to use an entirely different mechanism to cope with changes of
access rights. For example, one might make the name in the certificate fixed for all time, and use
some other protocol to find out what rights are associated with that name at a particular point
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in time.

As stated previously, some of the designers of PEM wanted certificates to be pure identity certifi-
cates, and not access control certificates. The discussion of names changing in the PEM documents
shows that they failed to achieve this goal, and let names be representations of access rights. In
view of the cost of revocation in the context of non-repudiation, it might have been better to have
stuck to the original objective and made the names in the certificates pure identities, which don’t
change over time.

5.3 The Moral of this Chapter

The discussion in chapter 4 causes us to reduce our expectations of a non-repudiation protocol,
because there are some goals that no communications protocol can achieve. The discussion in
this chapter shows that the actual protocols on offer fail to meet even these reduced expectations,
because they suffer from a variety of low-level technical problems. There are protocols which do
rather better than X.509 at solving these technical problems, but they all fall short of perfection,
even allowing for the fundamental limitations explained in chapter 4.
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Chapter 6

The Plausible Deniability Service

6.1 The Service/Threat Duality

6.1.1 Distinction between a security problem and a reliability problem

The main identifying characteristic of a security problem is that it involves a conflict of interest
between people who interact with a system (where this includes “outside” attackers, as well as
“insiders” such as the users and designers of a system). In contrast, with reliability problems, it is
assumed that there is no conflict of interest between participants, and that all participants agree
as to which outcomes are desirable and which are not.

However, situations often contain concealed conflicts of interest which are not immediately obvious.
As a result, a problem that initially appears to be one of reliability may also have a security aspect.
It is important to recognise these situations, as the means used to provide security are very different
from those used to provide reliability.

As an example, consider the problem of aircraft safety. When this is treated as a reliability
problem, there is an implicit assumption that everyone agrees on what the desirable behaviour is
(e.g. the aircraft not crashing); mechanisms such as replication of critical components and stringent
testing beforehand are used to ensure that the desired behaviour is what actually happens (with
high probability). However, this assumption is not always valid. Suppose there is a terrorist
threat; then we must admit the possibility of someone desiring (and actively trying to achieve) a
different outcome, such as the aircraft crashing. This changes a reliability problem into a security
problem, and completely different types of protection mechanisms must be used (e.g. checking of
baggage loaded onto the aircraft etc.).

Finally, observe that the owner of an aircraft is motivated by considerations such as reducing op-
erating costs, and sometimes these considerations are in direct conflict with passenger safety. This
conflict is a security problem, although it is a rather subtle one. There is another set of mechanisms
(this time mainly legal and regulatory) to protect the passenger against the owners/operators of
the aircraft.

Returning to the world of information processing systems, we see that this also contains similar
concealed conflicts, and that it cannot be assumed that the interests of the provider of a service
are co-incident with the interests of a user.
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6.1.2 Whose goals should be supported?

When everyone’s goals are the same, it is clear what the system designer should be trying to
achieve. However, with security problems there is always a conflict of interest, and the system
designer has to make a choice as to who is helped and who is hindered.

When cryptographic protocols are described, the situation is often described in terms of “Alice
wishes to send a message to Bob, and Eve wishes to listen in”, with the implicit understanding
that the system has been designed to help Alice and Bob, while hindering Eve. However, was this
the right thing to do? Should we instead have helped Eve and hindered Alice and Bob?

Without any information on who Alice, Bob and Eve actually are, and what their motives really
are, it is impossible to decide which of them we ought to be helping.

An alternative argument is that as Alice and Bob are the ones sending the messages, they are
clearly the owners of the system and hence their views will prevail regardless of the morality of
the matter. However, this doesn’t always follow. Even though Alice and Bob are sending the
messages, it might be the case that they are using a system that was designed, constructed and
paid for by Eve, for example if Eve is either a government agency or a network service provider.
In short, abstract descriptions of protocols such as the BAN logic [23] don’t tell you who is in the
right and who has control.

This observation leads me to a conclusion which I shall term “service/threat duality”. Every
security service is also a threat (when viewed from the perspective of a different participant), and
conversely, every threat can also be a security service.

Following this reasoning, security services ought to occur in pairs, where one service helps a
particular participant and the other hinders them.

6.2 Plausible Deniability

As was stated previously, the goal of the non-repudiation service is to provide “irrefutable evidence
concerning the occurrence or non-occurrence of an event or action”.

If we believe that there is a need for this as a security service, then by the duality argument of the
previous section we must also concede that some participants desire the opposite effect: that there
be no irrefutable evidence concerning a disputed event or action. I will call this complementary
service “plausible deniability”.

The word “plausible” is an essential part of this service. Anyone can always deny anything, even
if there is an abundance of evidence which shows that the denial is false. A lie is only effective if
it is believable, that is, if it is consistent with known facts. Thus, an invocation of the plausible
deniability service involves the following elements:

• Event X actually happened.

• Party A (the service user) wishes to deny that event X happened.

• Party B (the adversary) wishes to demonstrate to a third party that X happened.

• Party A can produce a false account of what happened (Y) which is consistent with all the
evidence that party B can present to the third party.

• Party A arranges that all evidence not consistent with Y is concealed or destroyed.
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Non-repudiation and plausible deniability are mutually exclusive in that an entity can’t both have
and not have sufficient evidence to convince a particular party that a particular event happened.
However, it is possible to imagine combinations of the two services in which some parties retain
evidence of an event while others don’t, or the evidence is sufficient to convince some parties but
not others.

It must be clear to the entities involved which type of protocol they’re running. If the verifier B
participates in what it believes to be a non-repudiation protocol, but which later turns out to have
been a plausible deniability protocol, then B was using a bad non-repudiation protocol as it allowed
the event to be denied. On the other hand, it is often useful to conceal from outsiders which type
of protocol is being used. All of the example protocols given in this chapter are distinguishable
from non-repudiation protocols, both by the participants and by outsiders.

6.3 The Plausible Deniability Paradox

There is a paradox underlying the plausible deniability service - if it is acknowledged that the
service is being used, then this in itself may prevent the service from working. In many applications
of this service, if the user admits to using the service, then this is equivalent to admitting that
they are lying - which negates any benefit the service might have provided in supporting a false
account.

With non-repudiation (the dual to plausible deniability), system design documentation can form
an essential part of the provision of the service: in order to provide evidence that an event did
in fact occur, it may be necessary to produce the system design documentation to show how
the system has been carefully designed to provide an accurate and unfalsifiable record of what
happened.

With plausible deniability, the opposite is true. To provide the service effectively, it may be
necessary to destroy or falsify system design documentation, in order to prevent the adversary
being able to prove that the service was used.

For this reason, the term “plausible deniability” is unlikely appear in requirements specifications
for real systems: even if you realise that you need this service, you often can’t admit (in public)
to needing it.

6.4 Motivation

The obvious motivation for plausible deniability is when the two communicating parties are en-
gaged in an activity which is somehow illicit, and they wish to avoid being caught. However there
are other possible motives for using a plausible deniability service; this section outlines some of
them.

6.4.1 Fair Voting

Sometimes, there is a need to take a vote with all communication taking place electronically. There
is no particularly compelling reason why the election of government officials should be conducted
by electronic means. However, there are other situations where a group of individuals must reach a
majority decision, and the nature of the decision means that the vote counting is most conveniently
done by computer. For example, if the vote is about whether or not a particular change should
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be made to data held in a computer, then it is convenient to be able to verify the outcome of the
ballot using the same computer system where the resolution which is adopted must be put into
effect.

Typically, a computerised vote counting system is required to have the following properties:

Verifiability: It should be possible to verify that the vote counting has been carried out correctly,
even with the assumption that the vote-counter has attempted to cheat.

Anonymity: It should not be possible for unauthorised persons to find out which way each voter
voted. The idea behind this is that coercion of voters is less likely to happen if it is isn’t possible
to find out whether the coercion was effective or not. (The word “unauthorised” above conceals
some serious issues of security policy - who, if anyone, is authorised to know which way people
voted).

The above anonymity property can also be regarded as a plausible deniability property. As long
as the voting was not unanimous, each voter should be able to plausibly deny having voted in a
particular way. (If it is revealed that the vote was unanimous, the result gives away which way
everyone voted, and no cryptographic protocol can do anything to prevent this). This form of
plausible deniability can be achieved using blind signatures [3].

6.4.2 Personal Privacy

When data about an identifiable individual is held on computer, there is often a legal requirement
both that data subjects be able to access records about themselves (so that they can complain if
the records are incorrect) and that these records should not be disclosed to third parties who are
“not authorised”.

As was the case with voting, this situation sometimes creates a significant risk of coercion. Third
parties who are not entitled to examine an individual’s records might coerce the data subject
into obtaining their own records and revealing them. For example, this situation can occur with
prospective employers demanding that job applicants provide a copy of their medical records.

An element of plausible deniability can sometimes help here. If a copy of a record can’t be verified
as authentic (except by people who are authorised to see it), this reduces the risk of coercion.
The unauthorised person attempting to obtain a copy by coercion can never be sure that they
have been given a true copy. To put it more forcefully: the data subject is given a copy of their
record which only they can check is authentic, and are given permission to lie about it to any
unauthorised person who asks to see it. Unauthorised recipients obtain a verifiable authentic copy
by going through the proper procedures.

This form of plausible deniability can be provided without any use of cryptography. For example,
the data subject can be permitted to see their records on screen at special locations but not allowed
to take a printed copy away with them. This reduces coercion but may be undesirable for other
reasons.

A second type of situation in which privacy concerns might lead to the use of a plausible deniability
protocol is electronic commerce; a merchant needs to be able to authenticate her clients so that
she knows which goods have been ordered, but for privacy reasons the customer might not want
this information to be passed on to other people (e.g. direct mail advertisers). Use of a plausible
deniability protocol doesn’t prevent the information being passed on, but it reduces its value by
removing the guarantees that it is accurate.
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6.4.3 Protection of Intellectual Property

In a society where computers and networks are omnipresent, and copying data is extremely easy,
a publisher might take the view that what they are selling is a guarantee of the provenance of
information, rather than the information itself. That is, the publisher may decide that it is futile
to attempt to prevent their product being copied, but customers will prefer to pay for a known
authentic version as opposed to a possibly corrupt pirate copy.

This approach is particularly likely to succeed where the publisher has some potential legal liability
for the accuracy of what they publish (e.g. computer software for safety-critical applications).
Someone who obtains an unauthorised pirate copy has no legal recourse against the publisher if
their copy turns out to be faulty.

To adopt this approach, the publisher needs to distribute the product to the customer in a way
which enables the customer to verify its integrity, but does not enable a third party to verify the
integrity of a copy. This can be achieved by using a plausible deniability protocol to deliver the
product.

6.4.4 Limitation of Liability

Organisations who wish to use public key cryptography for a particular application may be deterred
by worries about their potential liability. Suppose that the application deals with information of
relatively low value, and it is known and accepted that failure of the application might result in
loss, corruption or disclosure of the data; however, the fear is that because digital signatures have
legal force, a signature produced by the application might end up being interpreted (by someone
else) in a way that was not intended, and which results in the organisation being held liable for
an amount far greater than that of the data which was intended to be protected. (e.g. the system
is only intended for log-on authentication, but it fails in such a way that it produces a signature
on what appears to be a high-value contract with someone else).

The root of this problem is that the creator of a digital signature has no control over who that
signature will be passed on to. This problem doesn’t arise with symmetric key cryptosystems,
because they don’t have the forwardable authentication property. If it is desired to use public
key cryptography for reasons other than forwardable authentication (e.g. so that key management
can be achieved without needing encryption), then a plausible deniability protocol can be used to
remove the unwanted forwarding property.

6.5 Some Protocols

6.5.1 One-time pads

In addition to their original purpose of providing confidentiality, one-time pads can also be used
to provide plausible deniability. An ostensible purpose of providing confidentiality can be used as
a cover when the true goal is deniability.

The use of one-time pads to provide deniability works as follows: When A and B exchange key
material (K), they also agree on a harmless cover message (M ′) for their subsequent communi-
cation. Later, when they need to send a deniable message (M), they encipher it with the pad as
they would for confidentiality:

A→ B : M ⊕K
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As soon as this message has been sent, A and B destroy their copies of the original key (K) and
replace them with an alternative key K ′, where

K ′ = M ′ ⊕M ⊕K

This replacement should be done in a way that makes everything appear to be consistent with the
value of the key having been K ′ all along (e.g. the modification time on the file containing K ′ is
back-dated etc.) In addition, A and B should act in public as if they had just sent and received
the cover message M ′, while taking care not do anything in public which demonstrates that they
have really sent and received M .

If a third party later investigates the situation, everything is consistent with the message having
been M ′. Even if this third party has been conducting a wiretap and also has the power to compel
A and B to reveal their keys, the third party is still none the wiser. If A and B reveal K ′, this,
taken together with the intercepted messages, is consistent with the plaintext having been M ′.

The confidentiality service provided by the one-time pad is “perfect”, in the sense that even the
possession of unlimited mathematical knowledge and unbounded computer power is no help to an
attacker in breaking the system (although stealing the key K is another matter!). By the same
token, the deniability provided by the one-time pad is “perfect”: even the possession of unlimited
mathematical knowledge and unbounded computer power does not enable a third party to tell
whether the message sent was M or M ′.

6.5.2 Diffie-Hellman

Public-key cryptosystems do not provide “perfect secrecy” in the Shannon sense described above.
However, from a practical point of view they are much more convenient than one-time pads, and
as in reality no-one has infinite mathematical knowledge and computational power their lack of
“perfection” is of little practical consequence.

The natural question to ask is whether it is possible to provide the plausible deniability service
using public key cryptography, in a way that gives practical convenience at the expense of intro-
ducing a theoretical vulnerability to attack by an infinitely powerful adversary.

This can be done using cryptosystems of the Diffie-Hellman type. As before, the cover story for
the design of the system is the provision of confidentiality, while the real desire is for plausible
deniability. In this case, the cover story is particularly convincing as various government agencies
recommend the use of Diffie-Hellman cryptosystems rather than RSA. See for example CESG’s
recommendations as reported by Zergo Ltd. [38]. In addition, many standard cryptographic
protocols such as the U.S. government’s Message Security Protocol [21] are designed around cryp-
tographic algorithms of the Diffie-Hellman type. The user of this form of plausible deniability
can convincingly argue that they are only seeking confidentiality, and were merely following gov-
ernment recommendations of good practice when they adopted a system of the Diffie-Hellman
type.

Consider the following protocol, which is based upon Alfred Menezes’ MQV1’ [18, 9]. Let p be
a prime number previously agreed between A and B, q a large prime factor of p − 1, and g an
element of order q in the group of multiplications modulo p.

A and B each generate a random number (rA and rB respectively) in the range 0 . . . q − 1. At
the end of a run of the protocol, they will destroy all records of these random numbers. The
ostensible purpose of this is to do with confidentiality: it prevents an attacker from deciphering
the transmitted ciphertext even if the attacker later breaks into A or B’s computer and steals
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whatever information he finds there. The destruction of rA and rB has the side-effect of making it
harder for a third party to determine what message was really sent, even if A and B are compelled
to reveal all records that they have kept.

A and B exchange modular exponentials of their random numbers:

A→ B : grA

B → A : grB

A and B then generate a pair of shared session keys as follows:

IKAB, CKAB = g(rA+XAYAZA)(rB+XBYBZB)

= (ZBY YBZBB )(rA+XAYAZA)

= (ZAY YAZAA )(rB+XBYBZB)

Where XA is A’s private key, YA = gXA is A’s public key, ZA = grA is the message that allegedly
came from A, and so on. The session keys can then be used to provide confidentiality (by en-
cipherment) and integrity (by message authentication codes) for data exchanged between A and
B:

A→ B : CKAB(m)

As RA and RB are random and uniformly distributed, and exponentiation is a one-one mapping
into the multiplicative group, then either A or B can simulate a run of this protocol without
involving the other. A invents a random number ZB, pretends that it was received from B, and
proceeds as before. The effect of this is that after a genuine run of the protocol, neither party has
any evidence that a real run took place: everything they have could easily have been simulated.

6.5.3 Zero Knowledge Protocols

In a zero-knowledge protocol, one entity (the prover) attempts to convince another entity (the
verifier) that they know a secret value, without revealing any information at all about the secret.
Proofs that such protocols reveal no information are usually based on the fact that the verifier
on its own can invent a fake run of the protocol which is indistinguishable from a real one. In a
real run of the protocol, the verifier chooses challenges at random, while in a fake run the verifier
chooses them so as to make the run appear valid.

The usual motivation for using a zero-knowledge protocol is to protect against cryptanalysis of
keys by ensuring that no information about those keys is revealed. However, zero-knowledge
authentication protocols also have the plausible deniability property. As the verifier can fake an
apparently valid run of the protocol, the verifier’s record of a genuine run is of no value of evidence.

52



Chapter 7

The Lifecycle of a Private Key

7.1 The Enemy Within

When discussing cryptographic protocols, computer programs are sometimes treated as being
synonymous with the people that run them. See, for example, the way protocols are described in
Burrows, Abadi and Needham [23]. This can be partly justified on the grounds that human beings
by themselves cannot perform complex cryptographic operations or send data over a computer
network; these actions are always carried out using computer programs. If a system is described in
terms of what is transmitted over a network, human users are almost invisible, and only programs
appear in the description.

Computer networks have the characteristic that people cannot interact with them without using
computers; unaided human beings cannot perform complex cryptographic operations or transmit
data over electronic networks. There are other situations where people use tools to enhance abilities
such as strength or speed. However, as tools computer programs are both very complex and very
easy to change. The combination of these two properties creates new risks and vulnerabilities
which were not present in pre-computer systems.

In the context of the non-repudiation service, the risk created by the programmable nature of
computers is the risk that the notion of intent will be undermined.

When not using computers, people usually have a reasonably clear idea of what the possible conse-
quences of their actions will be. On this basis, people can be held responsible for the consequences
of their actions. This still holds true even if mechanical tools are involved. However, computers
start to undermine this. Bugs in computer software mean that the actual and the intended effect
of a program can be radically different. In addition, the user of a program and its author are
often different people. The program merges the intent of two people: the authors who wrote the
program and the user who runs it in a particular environment with particular parameters.

If something undesirable happens involving a computer, how do we establish who is at fault?
The earlier chapters of this dissertation showed how the non-repudiation service can help do this.
However, the non-repudiation service only pins the problem down to a particular communication
end-point, which is a combination of hardware, software, and a user providing input to the software.
The non-repudiation service does nothing to help us disentangle the intent of the user from the
intent of the programmers (and there may be more than one programmer!)

An approach that has been useful in other areas of computer security is to separate the parts
of the computer program that are critical to security from those that are not critical. Once this
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has been done, the critical parts can be scrutinised closely, and hopefully this close examination
engenders some confidence that the critical parts are sufficiently free from programming errors.

7.2 Generation and Installation of Key Pairs

By the nature of public-key cryptography, the public and private parts of a key pair must be
generated together, so that one is the inverse of the other. However, the two halves of the key are
typically used by different entities. So the question arises as to who should generate the key pair,
and how should key components be transported from where they are generated to where they are
used.

As is described in X.509, there are basically three possibilities for the generation of users’ private
keys:

• Users generate their own keys.

• CAs generate users’ private keys for them.

• Private keys are generated by some other entity, separate from both the user and the CA.

When discussing who should generate private keys, the following points should be kept in mind:

• It is vital that private keys are not leaked to attackers, and there may need to be protection
against inside attackers as well as outside attackers.

• It is equally important to avoid being in a situation where the attacker generates your
private key for you. In this case, not only does the attacker also know the key (because
they generated it), but they can also arrange for it to have bad properties. A particularly
dangerous example of this has been described by Moti Yung [37]: if the attacker provides
the key generation software, they can arrange matters so that the generated private keys are
known to the attacker, and so that no-one else can exploit the trapdoor, even if they have
inspected the key generation software and discovered what the attacker has done.

• Some protocols are vulnerable to attacks in which the attacker takes someone else’s public
key and claims it as their own (even though they don’t know the corresponding private key).
To protect against this kind of attack, CAs would like to have some kind of assurance that
the public key has not been taken from elsewhere before they issue a new certificate for it.

• Some cryptographic algorithms assume that keys have special properties, and behave in
strange ways if the key does not have these properties (e.g. RSA where the public key has
more than two factors). When these algorithms are used with some protocols, an insider
attacker can gain unfair advantage by deliberately choosing their own key to be “bad’.
Accordingly, a certification authority would like to be convinced that a key is “good” before
issuing a certificate for it.

• When keys are transported by physical means, it is often easier to provide just integrity for
the transported key than it is to provide both integrity and confidentiality. For example, a
public key can be included in a printed book, or on business cards: this gives integrity (it’s
easy to establish that the copy you have was given you by a trusted source) but it’s much
harder to ensure that the key hasn’t been read by anyone else. This is also partly a key
destruction issue — if a key needs to be kept confidential, copies of it need to be disposed
of carefully.
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7.2.1 CA Generates Private Key

The approach where the CA generates the key has several advantages. The CA can be sure
that the key has not been taken from somewhere else, and has been constructed with the right
properties, because the CA has made the key itself. In addition, this approach only needs one
good source of random numbers for key generation (at the CA) rather than many such generators
(one per user). Generating good random numbers is notoriously difficult, so this advantage is
not to be discounted lightly. However, if we are interested in providing non-repudiation (rather
than authentication or confidentiality), having the CA generate keys has a serious drawback: if
a private key is leaked or misused (either by accident or malice) we have no way of determining
whether this was the user’s fault or the CA’s fault.

Non-repudiation is mostly concerned with disputes between “Alice” and “Bob”, both clients of the
CA. However, if we acknowledge that Alice/Bob disputes may need arbitration to resolve, then
we are also drawn to consider whether the Alice/CA and Bob/CA disputes might also require
resolving. If the CA generates the keys, then we can resolve Alice/Bob disputes but not Alice/CA
disputes. In some circumstances, this is sufficient, but in others it is not (it depends on the social
and legal relationship between Alice and her CA).

7.2.2 User Generates Private Key

The next possibility is to have each user generate their own key. This solves the problem of
disputes about who leaked or misused a key, because each private key is only known by one entity.
It also makes it easier to transport the key to its point of use: with this approach, we don’t need to
move the private key (which would require confidentiality protection), we only need to transport
the public key, and for this integrity protection is sufficient.

A minor disadvantage is that we will have the added expense of a good source of random numbers
for each user, but this is not an insurmountable problem (e.g. the key generation program can ask
the user to roll some dice and type in the result). More seriously, we need some alternative way
for the user to convince the CA that their key is properly formed and not taken from somewhere
else.

The approach to this problem taken by Internet Privacy Enhanced Mail [14] is to have the user
generate a “self-signed certificate” for themselves, and show it to the CA. Although in PEM
self-signed certificates have the same format as ordinary certificates, they perform a very different
function: they convince the CA that the owner of the private key (whoever they are) has consented
to a certificate being issued for that key in a particular name. (Note that an attacker who wishes
to impersonate Alice is only too happy to consent to having their key bound into a certificate for
Alice; so a self-signed certificate on its own is no good for authentication). The CA combines this
evidence that the owner of the private key wishes to be certified as Alice with separate evidence
that Alice wishes to be certified as the owner of the public key (e.g. a written request from Alice),
and issues a certificate.

The PEM approach almost solves the problem, and indeed is probably good enough for most
purposes, but it misses two guarantees that the CA had in the case where it generates the keys.
Firstly, it does not protect against the user deliberately choosing a bad key to attack certain
protocols. It provides some minimal protection against this, because with some bad keys it is
infeasible for Alice to compute a signature for the self-signed certificate. However, there are some
types of key which are both “bad” and for which it is still possible for Alice to compute apparently
valid signatures. If you care about this, it is possible for Alice to provide a zero-knowledge proof
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that her RSA public key has exactly two prime factors [34]. The second thing that the PEM
protocol misses is that it does nothing to convince the CA that the key was truly generated
at random. As far as I know, there are no known protocols to achieve this (although it is not
necessarily impossible). Fortunately, there is no real need for this: lack of randomness in the key
can be regarded as the responsibility of the user (and the supplier of the user’s key generation
software), and not the CA’s problem; there are no known attacks a malicious user can carry out by
deliberately choosing a key which is well-formed and unique to them but just not random enough.

7.3 Use of Private Keys

As was noted in the introduction to this chapter, there is an important distinction between the
user and a program run by the user. To take account of this, we would like the implementation
of the signature function to provide the following security properties:

7.3.1 Confidentiality of Private Keys

For public-key cryptography to work, private keys need to be kept secret from potential attackers.
However, it is preferable if application programs do not have the burden of enforcing this. With
many applications, we only need integrity of the application’s data structures, and there is no
strong requirement for confidentiality. If the value of a private key is mixed in with other appli-
cation data structures, then suddenly there is a need for confidentiality of these data structures,
and the environment in which the program executes may not be up to providing this. So what
we would like is for the application to be able to invoke a “sign this data” function, where the
actual computation of the digital signature is performed in an environment which is protected
from the application. In this way, the application itself never needs to directly access the private
key, and furthermore isn’t able to directly access the key even if it wants to (e.g. because of lack
of understanding on the part of the programmer who wrote it, errors in the program, or malicious
code)

7.3.2 Protection against malicious programs

The previous paragraph dealt with programs that weren’t actually malicious, they just didn’t wish
to be burdened with the problem of providing confidentiality. Even if we protect the confidentiality
of private keys, a malicious program (i.e. one written by a programmer who is malicious) can still
invoke the “sign this” function on data items which the person who ran the program doesn’t want
to sign.

Putting more of the security protocol inside the protected subsystem can provide better protection
even against malicious programs:

• If the protected subsystem (rather than the application) provides a time-stamp which is
included in the signed data, then we have protection against malicious applications deliber-
ately back-dating or post-dating signatures (e.g. to defeat the revocation mechanism when
the user discovers the application has been subverted and tries to revoke their key).

• If the protected subsystem includes the name of the application which invoked it in the
data which was signed, then it is possible both to provide fine-grained access controls over
which application is allowed to sign particular types of messages with a particular key, and
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to identify which application was at fault if bad signatures are issued. (Note however that
it will not necessarily be possible to prove to a third party which application was at fault,
as there exists the possibility that the user might have modified their local system to put
the wrong name in. There is also the issue that knowing the name of the program is not the
same as knowing the content of the program).

• The protected subsystem can maintain a compact record of all the signatures which it has
generated, such as a cryptographic hash of them. This can be used to provide a powerful
end-to-end check that the system hasn’t been subverted. For example, in systems where
it is mandatory for signatures to be notarised, the notary’s record of what the user has
apparently signed can be compared against the user’s record of what they believe they have
signed.

This still doesn’t provide protection against a malicious application signing the wrong thing. If we
need to protect against this, then the trusted subsystem needs to have a user interface. It needs
to be able to display the data to be signed to the user (in a form which is comprehensible) and
to get a confirmation from them that they really do want to sign it. This requires what is known
as a trusted path facility: the user needs to be sure that the display really was generated by the
trusted subsystem (and not a malicious program), and the trusted subsystem needs to know that
the reply really came from the user (and wasn’t faked by a malicious program).

7.3.3 Independence from the Implementation

It is often the case that implementations of the same protocol are available from multiple vendors.
Furthermore, the same vendor will often bring out new and enhanced versions of their product.
It is desirable to be able to switch to another vendor’s product, or upgrade to a new version,
relatively easily.

Unfortunately, the cryptography can make this difficult. If the user’s private key is stored in the
application’s data structures, then typically the manner in which this is done is viewed by the
vendor as a trade secret and they are not inclined to tell the customer how to extract it so that
they can switch to an alternative product. In turn, this means that the customer can’t switch
vendors without generating a new key and getting it certified. At a minimum, this involves out-
of-band communication with the CA, and it may involve additional complications if the user want
evidence generated under the old key to still be considered valid. This is all very inconvenient.

On the other hand, if the private key is stored in a protected subsystem which is separate from the
application, and which has a defined interface, then it is possible to switch to a new implementation
without difficulty.

The slight downside of this is that if one of the implementations has a serious bug (or is malicious),
it can be tricky for the user to work out which was at fault. The techniques described above of
having the trusted subsystem include the name of the application in the signed data can be
extended to include the version number and vendor as well to catch this problem.

7.4 Destruction of Private Keys

One of the advantages of public keys is that it is not necessary to destroy them carefully. No harm
will result if an attacker obtains a public key by reading an old paper form that was submitted
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from a user to a CA, or by examining the contents of memory or discs after a program has been
run.

However, we do need to be careful with private keys. Once a signature key has reached the end
of its lifetime (i.e. all certificates for the key have expired, and no CA is willing to re-certify it
with an extended lifetime) then no useful purpose is served by retaining it. (Private keys used for
confidentiality are another matter; it is possible that old ciphertext will be found after the key
has expired that the user would like to decrypt). Old private keys are only a source of danger:
an attacker might manage to steal them and back-date a signature, or the user might back-date a
signature to make it appear that an attacker has done this.

It is therefore a sensible policy to delete private keys once their certificate has expired. As the
public key is still retained, old signed data can still be verified, so no evidence has been lost.

With key destruction, the end of the lifetime of the evidence (as opposed to the key, or the
certificate) is vague. As time goes on, the signature becomes gradually less convincing: advances
in cryptology make cryptanalysis more likely, and more and more of the physical paperwork that
supports the keys will have been thrown away. However, if the algorithm chosen is secure enough
and CAs keep their paperwork for long enough, the evidence can remain valid for a very long time.

There is, however, a more drastic alternative: private keys can be published after the corresponding
certificate has expired. Once this has been done, all signatures produced under that key are no
use as evidence unless they have been previously registered with a notary, as now anyone can use
the published key to forge a signature. This approach puts a hard time limit on the lifetime of
signatures as evidence: there is a fixed date before which all signatures must be either discarded
as being no longer of relevance or converted into some new and more durable form, either by
notarising them or getting the user to re-confirm them.

Key publication has the advantage that it forces people to use a mechanism to make evidence more
durable, rather than hoping that it will last for ever. Its serious disadvantage is that it means that
there must be an interface through which the private key is extracted and published, which raises
the question of what happens if someone maliciously does this before the advertised expiry date.

7.5 Transport of Private Keys

From the preceding discussion it can be seen that transport of private keys from one system to
another is not necessary: generation, use and destruction all occur within the same system. Not
only that, but access control mechanisms put in place to prevent accidental key compromise by
faulty applications will tend to prevent such transportation.

Upgrading from one implementation of an application to another (perhaps from a different vendor)
is achieved not by moving the private key from one place to another but by giving the new version
of the program access to the operating system facility which is invoked to use the key. The key
stays where it is, under the protection of the operating system.

It might be argued that this view of key management is only applicable to one particular style
of distributed system, characterised by large mainframe computers in bank vaults with attached
cryptographic processors. Not all distributed systems are like that. In particular there are systems
where users are mobile (access the system from different computers at different times), and where
as many components of the systems as possible are made stateless in order to facilitate recovery
after hardware failures. When building such a system, the temptation arises to transport private
keys across a network. However, this can be avoided by either embedding the private key in a
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transportable processing unit (such as a smart card) or by giving workstations short-lived private
keys to which authority is delegated only for the duration of a session (i.e. the generate-use-destroy
cycle is completed in hours rather than months).

7.6 Key Generation Revisited

At the start of this chapter, I outlined how carelessness on the part of programmers was just
as real a threat as the outside attacker. (Indeed many attacks are a combination of both — a
programmer error exploited by someone else). In view of this we would like security software to
be testable. If it can be tested, this increases the chance that the customer will notice if they have
been sold faulty software, and it also increases the chance that the manufacturer will notice that
their software is faulty before shipping it.

Digital signature is eminently testable, in the sense that it is possible to test that a bit pattern
which is supposed to be a signature really does match the public key (and the data which is signed
has the value it is supposed to have). Furthermore, because public keys are public, the testing
tools do not need any privileged access to key material and so we have no worries that errors in
the testing tools will compromise the system under test.

Other aspects of public key cryptosystems are not so easily tested. For example, it is harder to test
that the signature generation module is not leaking the private key by some other communications
channel. This can be stopped by using the operating system confidentiality mechanisms to ensure
that the only place the signature routine can write to is its output, and then testing that its output
has the correct value.

More fundamentally, some of the cryptographic operations involve the generation of random num-
bers, and it is very hard indeed to construct a black-box test to show that an allegedly random
number is actually random.

As a case in point, some digital signature algorithms (such as DSA [20]) use random numbers in
the course of generating a signature. It has been shown by Simmons [32] that this non-determinism
can be exploited by a malicious implementation to leak additional information. A more realistic
threat is that the random number generator will simply fail to be random enough, and this is
enough for an attacker to recover the key [29]. These problems with signature can be fixed either
by using a deterministic signature algorithm (such as RSA) or by defining the pseudo-random
number generator to be used. If a pseudo-random number generator is used, it must be keyed
in some way (or else the attacker could break the system by predicting it). The key for the
pseudo-random number generator can be treated as part of the private key, and managed using
the same techniques as are used for the private key. The only way in which such a non-standard
“extended private key” could cause problems would be if it was necessary to transport the private
key to another manufacturer’s system which didn’t extend the key in the same way. But, by the
preceding discussion, transportation of private keys between systems doesn’t happen, so this isn’t
an issue. The pseudo-random number generator can then be tested; however, this does require
that the test software knows the pseudo-random number generation key, and so the test software
needs to have privileged access to private key material.

A more fundamental cause of non-testable randomness is key generation. Here, using a keyed
pseudo-random number generator doesn’t solve the problem, because it leaves us with the problem
of where the random-number generation key comes from (and what generates it, and how we know
that it was generated at random). The best we can do here is to split the computation into two
parts: one that contains all the complicated mathematics (such as primality testing) but which
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is entirely deterministic and hence testable, and one which is as simple as possible and generates
the random numbers. If we want to verify this key generation box, it cannot be with a black box
test: we have to resort to examining the source code and the physical construction of the device.
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Chapter 8

Conclusions

Properties of Diffie-Hellman

The Diffie-Hellman cryptosystem and its descendants (e.g. MQV1’) enable us to do some surprising
things. They are not just a poor substitute for RSA that use the discrete log problem instead of
factoring; they have some special properties that RSA lacks. It has long been known that Diffie-
Hellman provides a confidentiality property knows as “perfect forward secrecy” [7]. In chapter 3
I argued that some of these cryptosystems are less prone to being used in bad protocol designs
than RSA, because they can only establish confidentiality-protected channels with entities who
have been authenticated. (Although the original Diffie-Hellman cryptosystem can be used to set
up a confidentiality-protected channel between two entities who remain anonymous to each other,
MQV1’ and Nyberg-Rueppel [25] have the authentication built in). In chapter 6, I showed that
some of these cryptosystems also have a special integrity-related property known as “plausible
deniability”.

Design of Cryptographic Modules

Chapter 7 outlined some of the design criteria for a cryptographic module that is to be used for
non-repudiation. Although the main objective is the same as with cryptographic modules used for
confidentiality (namely, to prevent malicious or erroneous applications disclosing keys), the end
result is very different from a traditional cryptographic module design such as that of Meyer [19].

Some of these differences stem from the use of asymmetric (public key) cryptography rather than
symmetric-key cryptography. Although at the mathematical level RSA signature and verification
are almost identical (they are both modular exponentiation), the security properties we require
of these two operations are so different that we may need to perform them on different physical
hardware (signature on a dedicated cryptographic processor and verification on the main CPU),
or at least in different address spaces.

Other differences in module design stem from differences between confidentiality and integrity-
related services (including non-repudiation). With confidentiality, there may be a requirement
to be able to decrypt old data and so old keys mustn’t be lost, whereas with integrity and non-
repudiation it is much more important to prevent disclosure of keys than it is to prevent loss.

Finally, we are much more concerned about malicious programs in the context of non-repudiation
than we are in the context of integrity; this in turn means that separation between the application
program and the cryptography needs to be more rigorous for non-repudiation.
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Non-repudiation is not the same as integrity

At the beginning of this dissertation, I outlined how confidentiality differed from integrity. In
the light of the subsequent discussion, it can be seen that although it is similar to integrity, non-
repudiation is significantly different. What you do to convince someone else about the truth of an
assertion is significantly different from what you do to convince yourself.

In typical uses of integrity, verification must be fast; the verifier needs to know that the copy they
have of the information is correct so that they can get on with the job of using it for some purpose.
In contrast, the dispute resolution phase of non-repudiation does not have to be rapid; this in turn
means we can use techniques which are too slow for integrity (e.g. referring to physical paperwork
which supports the electronic representation of the information).

Evidence and Secrets

In chapter 2 I explained that keeping secrets and providing evidence are not the same problem,
and that it would be desirable to be able to provide evidence by means that do not involve secrecy.
Public key cryptography enables the provision of evidence with only a restricted form of secrecy:
secrecy of a public key which is randomly generated and which never leaves the device in which it
was generated. However, chapter 5 shows that secrecy is fundamental to public key cryptography.
What is undeniable about a digital signature is that a value which was previously a secret (the
signature of the data) has ceased to be secret. The problems with revocation described in chapter
5 are partly caused by this connection between secrecy and digital signature. A private key which
is intended to remain secret forever might become inadvertently (or intentionally) revealed, and
recovery from this situation requires revocation mechanisms and their attendant problems.

Collision-free hash functions were introduced in chapter 2 as a component part of the digital
signature mechanism. However, they can also be used on their own to provide forms of evidence
which do not involve secrecy at all. For example, a cryptographic hash value mentioned in a written
contract links the inputs to the hash function (e.g. public keys) to the terms of the contract in
a convenient way. The PGP public key fingerprints mentioned in chapter 2 are another instance
of this type of use of collision-free hash functions. Hash functions can’t be used as a complete
replacement for public key cryptography, because they are not as convenient to use in some
circumstances. For example, a user must commit to the data to be hashed before transmitting the
hash output over a physically secure channel, but she can send her private key over that channel
before deciding which data items she is going to sign.

Chapters 5 and 7 describe mechanisms such as notarization which are intended to safeguard digital
signatures against the eventuality that the private key is later revealed. These mechanisms can
be viewed as a means of converting one form of evidence into another. In particular, they convert
forms of evidence that involve secrets (such as digital signatures) into forms of evidence which do
not (such as notarised hash values).

The problem of interpretation

Non-repudiation mechanisms suffer from the problem of interpretation: the meaning which a
recipient ascribes to a message may differ from that intended by its sender. This problem is
not unique to computer communication, and occurs in many situations involving communication
by means of signs, e.g. literary or theological texts. In the context of computer communication
protocols, an attempt can be made to solve this problem by putting as much of the context as
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possible in the message. This attempt can never be entirely successful, because interpretation
necessarily depends on some context which is not itself part of the message.

In view of this, we must amend our view of the intended audience of the evidence produced
by non-repudiation protocols. This evidence is not for the benefit of arbitrary “outsiders”; it is
intended for viewing by members of a closed community who subscribe to a shared set of beliefs
concerning interpretation and the acceptability of various forms of evidence. In a similar vein,
plausible deniability can be seen inter alia as an attempt to guard against misinterpretation by
rendering evidence totally uninterpretable (indistinguishable from random) to those who are not
members of a closed group.

X.509 is not a non-repudiation protocol

X.509 was designed as an authentication protocol for a specific application (the X.500 Directory).
Its designers hoped that it would also be suitable for non-repudiation, on the assumption that all
you need for non-repudiation is public-key cryptography [12, Annex B]. However, we have seen
that there is more to non-repudiation than just public-key cryptography.

In particular, a protocol specifically designed to provide non-repudiation would probably differ
from X.509 in at least the following respects:

• It would take more care about being able to convince a third party about the relative times
of events, especially the act of creating a signature with a key relative to the revocation of
that key.

• It would associate cryptographic keys with names that stayed the same; in particular, it
would ensure that names didn’t change between the occurrence of an event and the resolution
of a dispute concerning that event. A role name (indicating that the bearer of the name is
currently authorised to perform some function) should be kept separate from the name that
enables the role occupant to be later on held accountable for their actions.

Residual Risk

Non-repudiation protocols tend to have some residual risk. That is, there are circumstances
(hopefully rare) in which the protocol fails to live up to our expectations and one of the participants
suffers as a result.

It is important to recognise that these risks exist and to understand who is bearing the liability for
them; not least, so that they can make adequate financial provision for when things do go wrong.

By choosing different cryptographic protocols, we can change which party bears the risk and swap
one form of risk for another (e.g. we can exchange reliance on a cryptographic algorithm for reliance
on the tamper resistance of a physical object). The risk can be made smaller at the expense of
more data communications or greater use of cryptography, but it is rarely eliminated entirely.

Be Sceptical about Cryptographic Evidence

In protocols which do not attempt to provide non-repudiation (such as Kerberos or the EES)
cryptographic information could have been created in several different ways, and there is no way
for an independent observer to know which method actually created it. These protocols leave
the independent observer unable to resolve disputes of the form “Alice says Bob created the
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message but Bob says Alice created the message”. This, however, has long been understood by
the cryptographic community.

Non-repudiation protocols aim to convince the independent observer of a particular account of
what took place by presenting them with evidence that is consistent with only that account.
However, even with non-repudiation protocols there are in fact alternative, conflicting accounts of
what took place which are also consistent with the collected evidence. Even with a non-repudiation
protocol, we need to look beyond the cryptography to understand what actually happened. Where
non-repudiation protocols depend on “tamper proof” devices, we have to ask ourselves “Could this
device have been tampered with?”. Where non-repudiation protocols depend on the testimony of
an allegedly independent witness to the events, we have to ask ourselves “Are they as independent
as they claim? Could they be lying?” Many of the non-repudiation protocols do in fact depend on
witness testimony, even though this may be obscured by technical details and terms such “Trusted
Third Party”. It is important to recognise witness testimony for what it is, and not to mistake it
for absolute mathematical truth, even if the testimony has a lot of mathematics in it.
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