
PASSWORD
R2.5 : Certification Authority Requirements

Michael Roe
Cambridge University Computer Laboratory

Computer Security Group

Version 1.1
July 1993

Contents

1 Security Target 3
1.1 System Description . 3
1.2 System Security Policy . 3

1.2.1 Objectives . 3
1.2.2 Threats . 4
1.2.3 Technical Security Policy . 6
1.2.4 Security Policy Model . 15

1.3 Security Enforcing Functions . 17
1.3.1 Identification and Authentication 17
1.3.2 Access Control . 17
1.3.3 Accountability . 18
1.3.4 Audit . 19
1.3.5 Object Reuse . 19
1.3.6 Data Confidentiality . 19
1.3.7 Data Integrity . 19

1.4 Required Security Mechanisms . 19
1.5 Minimum Strength of Mechanisms . 20
1.6 Target Evaluation Level . 20

2 User Acceptability and Manageability 21
2.1 User Acceptability . 21
2.2 Manageability . 22

3 Procedures for Initial Key Exchange 23
3.1 Notation . 23
3.2 Exchange of the User’s Key . 24

3.2.1 User Generates Key . 24
3.2.2 CA Generates Key . 25
3.2.3 Third Party Generates Key . 26

3.3 Exchange of the CA’s Key . 27
3.3.1 Using One-way Hash Functions . 27
3.3.2 Using Symmetric Cryptography . 28

3.4 Exchange of Keys between CAs . 28

i

3.5 Realisation of Abstract Protocols . 29
3.5.1 Realisation using the Directory Service 29
3.5.2 Realisation using X.400(88) . 29
3.5.3 Realisation using Privacy Enhanced Mail 29

4 Procedures for Certificate Revocation 30
4.1 Revocation Lists . 31

4.1.1 Issuing Revocation Lists . 31
4.1.2 Size of Revocation Lists . 31
4.1.3 Format of Revocation Lists . 31

4.2 Informing the CA of Key Changes . 32
4.3 Informing the User of Key Changes . 32

5 Random Number Generation 33
5.1 Pseudo-Random Number Generators . 33
5.2 Hardware Random Number Generators . 34
5.3 Use for Key Generation . 36
5.4 Evaluation of Random Systems . 37

A Deficiencies of the X.509 Certificate and Revocation List Formats 38
A.1 Certificates . 38
A.2 Revocation Lists . 39

B New Attributes and Object Classes 40

C Z Model of Certificate Generation Unit 42

D Z Model of Certificate Verification Process 48

E BAN Logic Model of Certificate Verification 53

ii

List of Figures

1.1 Example CA Hierarchy . 12

5.1 Random Number Generator . 35

B.1 New Object Classes . 40
B.2 New Attributes . 41

C.1 Constrained Data Items . 43
C.2 Audit Trail . 44
C.3 Integrity Verification Procedure . 45
C.4 Underlying Procedures . 45
C.5 Audit Procedures . 46
C.6 Transformation Procedures . 47

D.1 Constrained Data Items . 50
D.2 Transformation Procedures . 51
D.3 Underlying Procedures . 52

Acknowledgments

This report incorporates technical input from many members of the PASSWORD project,
particularly Wolfgang Schneider, Christian Huitema, Suzan Mendes and Peter Kirstein.

I would like to thank Roger Needham, David Wheeler, Bill Harbison and Mark Lomas for
their participation in discussions leading to the writing of this report.

The work on statistical testing of random number generators referred to in chapter 5 was
carried out in collaboration with Ross Anderson, Frank Kelly, Richard Gibbens and Chris
Jagger.

The design for a prototype hardware random number generator was supplied by Andrew
Findlay.

iii

Preface

This report is deliverable R2.5 of the VALUE “PASSWORD” project. Deliverable R1.1
(Service Requirements) dealt with security requirements specific to the particular appli-
cations which are to be piloted under the PASSWORD project. This report examines in
detail the requirements for one aspect of the common infrastructure underlying all these
applications, namely the use of off-line certification authorities for key distribution. Deliv-
erable R2.6 will address the common requirements for secure local storage and management
of private keys and other security-critical information.

Chapter 1 describes the requirements for hardware and software used by a certification
authority, using the “security target” format required for evaluation under the EC Infor-
mation Technology Evaluation Criteria (ITSEC) [7]. Although it is not intended to obtain
ITSEC evaluation of any product or system under the PASSWORD project, we have found
the security target format to be a convenient means of describing requirements.

ITSEC-style security targets, such as the one in the chapter 1, are only concerned with
security requirements and do not address the acceptability of the system to end users or
administrators. These user interface issues are covered in chapter 2.

The initial exchange of keys between a user and a CA, or between two CAs, must be
performed using some physically secure means. As this exchange does not (and cannot)
take place over an open network using OSI protocols, the procedures used are not specified
in the relevant standards. However, in order to produce an actual implementation, a
decision must be taken as to how this is done. Some possible procedures are described in
chapter 3.

If a user’s name or public key changes, the CA must revoke their old certificate and issue
a new one. The procedures to be used are described in chapter 4.

In order to generate cryptographic keys, either the CA or the User Agent must have
access to a source of random numbers. The generation of such random numbers is usually
performed by a hardware device specifically designed for this purpose. The requirements
and evaluation techniques for these devices are discussed in chapter 5.

In the course of preparing to pilot X.509 authentication, it has become clear that the current
standard is deficient in several major areas. These deficiencies have been recognised within
ISO, and there should eventually be new or modified standards to correct them. The

1

currently known defects are listed in appendix A.

Privacy Enhanced Mail defines a revocation list format which corrects some of the deficien-
cies of the ISO 9594-8 format. In order to distribute PEM revocation lists using the OSI
Directory Service, it is necessary to define some new attributes and object classes. These
are described in appendix B.

Any system or product which is to be evaluated at ITSEC level E6 must be modelled using
a formal notation in the security target. In order to illustrate what such a security target
might look like, appendices C and D contain formal models of certificate generation and
verification processes.

2

Chapter 1

Security Target

1.1 System Description

A Certification Authority (CA) is an organisation (or subdivision of an organisation) re-
sponsible for verifying the security attributes of computer system users, and entering this
verified information into the computer system.

In order to perform this function, the CA operator interacts with computer system via a
Certificate Generation Unit (CGU). This security target defines the security requirements
for a Certificate Generation Unit; the security requirements for communication channels
between the CGU and other systems; and the procedures that should be followed by the
CA operator to ensure secure operation.

The Certificate Generation Unit can be used to generate a cryptographically protected
data structure (a Certificate) which associates a user identifier with the public component
of a (public key, private key) pair. A user in possession of a valid certificate and the
corresponding private key may authenticate themselves as the enclosed user id.

The GCU can also be used to generate a CA Certificate, which associates the name of
another Certification Authority with a public key. CA Certificates are used to delegate
authority to other CAs.

1.2 System Security Policy

1.2.1 Objectives

The primary objective of the system security policy is to ensure that a certificate will only
be issued if the corresponding private key is known only to the identified user.

Other objectives are to limit the adverse consequences of malicious action by a CA operator;

3

and to ensure that CA operators can be held accountable for their actions.

1.2.2 Threats

Loss of Confidentiality

Anyone in possession of a user’s private key can authenticate themselves as that user.
Accordingly, it is vital to preserve the confidentiality of private keys. Loss of confidentiality
could occur in the following ways:

• Compromise of the user’s local key storage. This threat occurs in a system other than
the Certificate Generation Unit (the User Agent), and hence is outside the scope of
this security target.

• Interception of private keys transmitted between the User Agent and the Certificate
Generation Unit.

• Compromise of the key generation process, (for example, if an attacker can mathe-
matically predict which key will be generated). To protect against this threat, the
key generation process must contain at least one genuinely random, not just pseudo-
random, process.

• Disabling of the confidentiality mechanisms by a malicious CA operator.

Modification of Data

The security of applications using certificates is dependent on the information contained
in certificates being true. It is therefore essential to prevent unauthorised modification of
certificate contents. Modification of this data could potentially occur in the following ways:

• Modification of certificate contents during transmission.

• Modification of stored certificates.

• Modification of stored security attributes prior to their being packaged in a certificate.

• Modification of security attributes during transmission to a CA, prior to their being
packaged in a certificate.

• Modification of security attributes by a malicious CA operator.

4

Masquerade

Masquerades occur when an entity pretends to be a different entity. Masquerades could
potentially occur in the following ways:

• Masquerade of a user requesting a certificate.

• Masquerade of a CA issuing a certificate.

• Masquerade of a CA during cross-certification.

False Repudiation

False repudiation occurs when an entity denies sending or receiving information when it
has in fact done so. False repudiation could potentially occur in the following ways:

• Repudiation by a user of having requested a certificate.

• Repudiation by a user of having received a secret key.

• Repudiation by a user of having requested the revocation of a certificate.

• Repudiation by a CA of having issued a certificate.

• Repudiation by a CA of having revoked a certificate.

• Repudiation by a CA of having requested a cross-certificate.

Exceeding Authority

Exceeding authority occurs when an entity performs functions for which it has not been
authorised. This threat could potentially occur in the following ways:

• A CA issuing a certificate for a member of an organisation over which it has no
jurisdiction.

• A CA revoking a certificate issued by another authority over which it has no juris-
diction.

5

Misuse of Privilege

Misuse of privilege occurs when a trusted entity performs an action that it was trusted
never to do. Misuse of privilege can occur in the following ways:

• A CA using a user’s private key to forge signatures.

• A CA using a user’s private key to decrypt confidential information.

• A CA issuing incorrect certificates in order to subvert a security mechanism.

• A CA issuing incorrect revocation lists in order to cause denial of service.

1.2.3 Technical Security Policy

As will be explained in annex A, the certificate format defined in ISO 9594-8 [8] is not ideal.
In order to provide adequate security while remaining conformant with the standard, the
security policy must impose considerable restrictions on the way in which the standard is
used. In particular, it is necessary to impose restrictions on the conventions used in naming
end users and authorities. We recognise that these restrictions make the system harder
to use and to manage. This security policy attempts to find a workable compromise be-
tween the need for security and the need for manageability, given the current International
Standards and the current state of the art. It is closely aligned with solution adopted by
Privacy Enhanced Mail [9].

Public and Private Trust Models

Each user of the system trusts different CAs to different extents. These different levels
arise because the relationship between the user and the CA may differ. For example, users
will normally place a great deal of trust in their local CA, because they know who runs it
and they trust them not to act maliciously. Geographically or politically distant CAs will
not be trusted quite as much, because their relationship with the user is less close. Thus,
each user imposes their own private trust hierarchy on the set of CAs.

It is very difficult for a user of the system to accurately describe their trust model starting
from scratch. To make trust models easier to formulate, a public trust hierarchy is defined.
Each user describes their own private trust model in terms of the public one. For this to
be efficient, the public trust model must be reasonably close to beliefs of the majority of
users.

Rights and Obligations of CAs

In order to join the public trust hierarchy, a CA must accept certain obligations. These
vary according to the position of the CA in the public hierarchy. Individual users may

6

position CAs differently in their private hierarchies. That is, an individual may believe
that a CA is not fulfilling its declared obligations, or alternatively may believe that a CA
is more trustworthy than it is obliged to be.

These obligations fall into three categories:

• An obligation to not knowingly make false statements.

That is, the CA shall only make statements which it believes.

• An obligation to take reasonable care.

That is, the CA shall only make statements based on justified beliefs.

• An obligation to not make ambiguous statements.

That is, the language used to express statements (the certificate format) shall assign
one and only one meaning to the statement made. The meaning attached to a
particular certificate is defined partly by the ISO 9594-8 standard and partly by the
security policy adopted (ie. this document).

In return for accepting these obligations, a CA is granted jurisdiction over statements
of a particular form. That is, the public trust model declares that when a CA makes
statements of this form, it should be believed. Individuals may accord a CA different
jurisdiction in their private trust models, and either disbelieve statements over which it
has public jurisdiction, or believe statements for which is has no such jurisdiction.

CAs are permitted to make statements for which they have no jurisdiction, provided that
in doing so they still meet their obligations to be truthful, to be unambiguous and to take
reasonable care. The definition of what constitutes reasonable care is to be derived from
the position of the CA in the public hierarchy, not from the statement made.

When certificates are used for the purpose of non-repudiation (demonstrating to a third
party that a message was sent, or an action was performed), it is the third party’s trust
model that is used, not that of either of the parties in dispute. To be more exact, the trust
model used is defined by the rules for arbitrating disputes, since the third party is acting
as an impartial arbiter, rather than as a private individual.

If the public trust model declares that a certificate should not be believed, then it will not
be accepted by the arbiter. Hence, users who choose to believe such certificates do so at
their own risk.

This policy does not place any obligation on the users of certificates to either believe or
disbelieve them. However, the designers and evaluators of certificate-handling software are
obliged to ensure that certificates are checked against the public trust model. Where the
public model declares that a certificate should not be believed, it should not be accepted
unless the user has performed an explicit action to override the public model.

7

Geometry of Trust Models

Mathematically, any partial ordering of the set of authorities can be used as a trust model.
The public trust model should also meet the following constraints:

1. It should be reasonably close to the actual beliefs of the majority of users.

2. It should be simple to compute.

3. All information necessary to compute it must be obtainable in a secure manner.

4. The amount of information that each user needs to keep locally in secure storage
should remain small even when the total number of users becomes very large.

There are several simple structures that meet the last three of these conditions:

• All CAs are equal. That is, every CA is trusted to sign any certificate. This trust
model is implicitly assumed by ISO 9594-1. Although it is internally consistent, this
model does not accurately represent user’s beliefs, as some CAs will be regarded as
much more trustworthy than others.

• CAs are arranged into layers. Each CA is trusted to sign certificates for CAs in lower
layers, but is not trusted to sign certificates for CAs in the same or higher layers.

• The Directory Information Tree is used to derive the trust model. A is trusted to
sign a certificate for B if and only if A’s name is a prefix of B’s name. This approach
has the distinct disadvantage of confusing two abstractions which ought to be kept
separate: naming and trust. However, it is close to many user’s actual beliefs, at least
for regions low down in the DIT and far away from the user’s own name. That is, this
trust model is close to user’s actual beliefs when they have almost no information
about the entities concerned. This approach breaks down near the top of the DIT,
where the entities (such as countries) are large enough to be well-known, and close
to the user, where there is likely to be considerable local information.

The public trust model we have adopted is a combination of the last two of these structures.

CA Hierarchy

Certification Authorities will be divided into the following categories:

• Top-Level Certifying Authorities

• Policy Certifying Authorities

8

• Organisational Certifying Authorities

It is permissible for a single organisation to act in more than one of these roles, using the
same hardware. However, the authority should distinguish these roles by using a different
name and public key for each.

Each class of Certification Authority is restricted in the range of certificates it has jurisdic-
tion to sign. The enforcement of jurisdiction rules is to be performed by the recipient of the
certificate, not the Certification Authority or the Certificate Generation Unit. Even if a CA
generates a certificate for which it has no jurisdiction, this does not directly make possible
any attacks on the system; the invalid certificate should be rejected by all recipients.

Certification Authorities need to be aware of their jurisdiction in order to construct cer-
tificates which are likely to be believed. A CA which is believed by no-one is performing
no useful function.

Organisational CAs

An Organisational Certifying Authority certifies that users belong to a particular organi-
sation. An Organisational CA only has jurisdiction to sign certificates of members of that
organisation. Where the same operator and hardware are used to provide Organisational
CA service for more than one organisation, these roles shall be distinguished by the use of
distinct names and public keys. Very large organisations may require different Organisa-
tional CAs for different parts of the organisation. In this case, the CAs for the individual
organisational units may be certified directly by a Policy CA. Alternatively, the Policy
CA may certify a single Organisational CA which then delegates authority for individual
organisational units to subordinate CAs by signing an appropriate CA Certificate.

An Organisational CA must be named in the Directory Service with the same name as
the organisation or organisational unit that it serves. An Organisational CA only has
jurisdiction over certificates of users whose names are beneath its own in the Directory
Information Tree. In order to distinguish between certificates of users and certificates
of Organisational CAs, the last component of an Organisational CA’s name must be an
organisationName or organisationalUnitName attribute, while the last component of a user
name must not be either of these attributes.

Policy CAs

A Policy CA certifies that Organisational CAs act in accordance with a specified security
policy and are authorised to act on behalf of particular organisations. This model allows
multiple Policy CAs in order to permit the use of CAs with different levels of assurance in
different contexts. For example, many interpersonal messages need only be protected to
a low level of assurance, and users may opt for reduced assurance in return for a cheaper

9

and more widespread service. In contrast, the banking, government, and military commu-
nities will require higher levels of assurance, and will probably not be prepared to trust
commercial CAs.

It is possible for there to be several Policy CAs with the same stated security policy. This
may be useful when several countries have agreed on a policy and have agreed to recognise
each other’s certificates, but cannot agree on which country will run the Policy CA.

Policy CAs may be named anywhere in the Directory Information Tree, although it is
strongly recommended that the last component of a Policy CA name be an organisa-
tionName or organisationalUnitName attribute. Policy CAs have jurisdiction to sign CA
certificates for any Organisational CA, regardless of their relative position in the DIT.
In particular, Policy CAs may sign certificates for Organisational CAs in other countries.
However, we expect that Organisational CAs will usually be certified by a Policy CA within
their own country.

A Policy CA should only certify users or Organisational CAs, and should not certify other
Policy CAs. The reason for this restriction is that the ISO 9594-8 certificate format does
not contain an indication of the type of the certificate subject (ie. whether the subject is a
Policy CA, Organisational CA or user). Users and Organisational CAs can be distinguished
by the form of their names, but there is no third distinct name form that can be used to
identify Policy CAs. If Policy CAs were allowed to certify other Policy CAs, the resulting
certificates would be ambiguous. This restriction is also enforced by the recipient of a
certificate, not the CGU; any certificate issued by a PCA that is not a user certificate will
be assumed to be a Organisational CA certificate.

Each Policy CA should make available a statement of its security policy, including the level
of assurance of the software components used and the stringency of operating procedures.
Policy CAs should only certify Organisational CAs when they have reason to believe that
the software and operating procedures of the Organisational CA conform to their published
security policy.

Users who are not affiliated to any organisation (or who are affiliated to an organisation
which does not have its own CA) may be certified directly by a Policy CA. In this case,
the Policy CA will itself perform all the identification checks that its policy requires an
Organisational CA to carry out.

Top Level CAs

A Top-Level CA certifies Policy CAs. TLCAs are used to simplify key distribution when
the number of Policy CAs becomes large. As with Policy CAs, there will be multiple
TLCAs providing different levels of assurance, and serving different communities. The
number of TLCAs is likely to be similar to the number of Policy CAs, and often the same
organisation will run both a Policy CA and a TLCA. However, one TLCA can certify many
Policy CAs. A user requiring a particular level of assurance need only obtain (by out of

10

band means) the public key of a single TLCA operated to that assurance level. The CA
certificates issued by that TLCA can then be used to determine the public keys of all Policy
CAs worldwide that provide an equivalent level of assurance. We estimate that there will
eventually be approximately 20 different assurance levels in use, and we expect that each
country will provide its own TLCA for most of these assurance levels. Certificates issued in
one country will be normally be acceptable in another, as the issuing Policy CA will have
been certified by the receiver’s TLCA. By running their own TLCAs, national governments
retain the ability to cancel these bilateral agreements by revoking certificates they have
issued for foreign Policy CAs. In contrast, agreeing to let one country or organisation run
the only TLCA at a particular assurance level transfers authority in a way which would
be extremely difficult to revoke.

Structure for the PASSWORD project

For the purposes of the PASSWORD project, each national consortium (France, Germany
and the UK) will run one TLCA and one or more Policy CAs. Each TLCA will certify
all the Policy CAs. Although it will be usual for users to trust a TLCA in the same
country and for organisations to be certified by a Policy CA in the same country, everyone
is free to use the services of foreign CAs instead. We expect that organisations from other
EC countries will become involved in the PASSWORD pilot. Such organisations can be
certified by Policy CAs run by any of the PASSWORD contractors, and their users can
choose to trust any (or none) of the TLCAs.

Example Hierarchy

Figure 1.1 shows a hypothetical example of this CA hierarchy. All the TLCAs shown have
certified all the Policy CAs, ensuring complete connectivity within a particular community.
It is not a requirement of the model that there be complete connectivity between all entities
in existence. There may be other TLCAs and PCAs, not shown in the diagram, that neither
need nor desire total security connectivity with this particular group of users; the classified
military community is a possible example of this.

Organisations which have multiple sites (such as GMD) are shown as delegating authority
to an Organisational CA at each site. For the purposes of illustrating that this is possible,
Cambridge University is shown as using a single CA for the entire organisation. In practise,
most organisations may find that at least one delegation is needed to make the system
manageable.

Persona Certificates

The purpose of a certificate is to guarantee the integrity and authenticity of some items
of security information. The various mechanisms used for distributing certificates ensure

11

? ?

??

?

�
�

�
�

�
�

�
�

�
�
�)

�
�

�
�

�
�

�
�

�
�
�)

P
P
P
P
P
P
P
P
P
P
Pq

((((((((((((((((((((((

hhhhhhhhhhhhhhhhhhhhhh

P
P
P
P
P
P
P
P
P
P
P

???

? ??

Darmstadt

Users
Huitema

Christian
Jan LueheMichael Roe

CAs

Organisational

Policy CAs

CAs
Top Level

Antipolis

Sophia

University

Cambridge
INRIAGMD

FR PCADE PCAUK PCA

FR TLCADE TLCAUK TLCA

Figure 1.1: Example CA Hierarchy

that this integrity protected information becomes known to everyone that requires it. This
widespread distribution makes it very easy for an attacker of the system to obtain some-
one else’s certificate. Possession of a captured certificate should not give an attacker any
advantage, as the security information contained within is supposed to be public knowl-
edge. However, care must be taken that certificates never contain information which is
confidential.

There are security attributes for which both integrity and confidentiality is required. For
example, security clearances must be integrity protected to ensure that the user really
does have the access rights she claims; however, user’s clearances are often also treated
as confidential. (Knowledge of everyone’s clearance gives an attacker a good indication of
who to bribe, or whose password they should try to guess). Information of this type should
not be distributed using X.509 certificates.

It is sometimes the case that the user’s real identity is confidential. In this case, a certificate
must be used which provides assurance of other security attributes, but which does not
include her real name. These are known as persona certificates.

Persona certificates may appear paradoxical, as it is frequently the case that the primary

12

use of a certificate is to convey the user’s identity. However, there are attributes other
than identity which may usefully be included in a certificate. These include:

• Organisational affiliation

• Occupancy of a particular role

• An access control identifier

Identifiers used for the purpose of access control can be random bit strings, and need bear
no relation to the actual name of the associated user.

A CA may only issue persona certificates if this is permitted by the policy of its PCA. For
the purposes of determining jurisdiction, a persona certificate is treated identically to a
normal user certificate.

Certificates for Non-Human Users

In many OSI protocols, processes (eg. Directory System Agents, Mail Transfer Agents)
have their own public keys and certificates, which they use to identify themselves. In this
case, the certificate identifies a service rather than a person.

Many of the checks a CA would perform when registering a human user (eg. asking to see
their passport and driver’s license) are inapplicable when registering a process. Instead, the
CA must be provided with evidence that an organisation or person has agreed to provide
the service and has agreed to accept responsibility if the process fails to perform correctly.
The evidence needed and the extent of the service provider’s liability is determined by the
policy statement issued by the Policy CA above the registering CA. We recommend that
the CAs and Policy CAs used to register processes are different from those used to register
human users, to indicate to users of these certificates that different security policies apply.

Certificates for DSAs

There are particular problems associated with issuing certificates for Directory System
Agents, because they have a special relationship with the name space. Some Directory
implementations (eg. QUIPU) require that the names of DSAs have a particular form,
in order to ensure that Directory operations are guaranteed to terminate. If DSAs were
permitted to have arbitrary names, the situation could arise that the information needed
to contact DSA X could only be obtained by contacting DSA X (and hence it can’t be
obtained). Our security policy also places restrictions on the names a certificate subject
can have, and it is possible that these two sets of naming restrictions could come into
conflict.

The ideal way to resolve this conflict would be to remove both sets of naming restrictions,
by extending both the certificate format and the Directory name resolution protocols.

13

Unfortunately, it is not possible to make changes as drastic as this within the timescale of
the PASSWORD project.

As a short term solution, we suggest that the DSAs for which this is a problem should be
certified directly by a Policy CA. Policy CAs have jurisdiction to sign certificates for any
name, and so can accommodate restrictions imposed by particular Directory implementa-
tions.

It can be argued that this is the correct thing to do anyway; a DSA that can sign the
result of a query is in effect acting as an on-line certification authority, and so ought to be
delegated authority to do so by a Policy CA or a superior Organisational CA.

Proxy CAs

Many small organisations will not be able to afford either the equipment or the time to
run their own Organisational Certification Authority. In this case, another organisation
can run a CA on their behalf. A CA should always use a name appropriate to the role in
which it is acting. Thus, if organisation X provides proxy CA service for organisation Y,
it should use Y’s name in the certificate issuer field when issuing certificates on behalf of
Y.

The hardware used to generate certificates will usually be capable of generating certificates
with more than one issuer name. (This is certainly true is a general-purpose computer is
used. The BBN “Safekeyper” device also has this facility). Hence, a organisation providing
proxy CA service will not need to buy different hardware to run its own CA and the proxy
CA.

Uniqueness of Distinguished Names

Certification Authorities must ensure that two different users cannot both be issued with
certificates for the same Distinguished Name. If this were to happen, it would clearly be a
threat to both integrity and confidentiality, as the two users would be able to masquerade
as each other and decrypt confidential information intended for the other person.

A single CA can avoid this by keeping track of which Distinguished Names it has issued
certificates for, and to whom. If two people called “John Smith” both request certificates
from the same CA, the CA can detect this by comparing the evidence of identity they pro-
vide (eg. they will have different passport numbers, driver’s license numbers, signatures
and photographs). The CA can then require them to use Distinguished Names which differ
in some respect, such as Organisational Unit Name. It would be hard to do this automat-
ically. However, existing Directory Service pilots have shown that it is possible to ensure
unique names with a small amount of manual intervention to choose the distinguishing
attribute.

It is harder to ensure that two different CAs do not both issue certificates with the same

14

subject name to different users. Organisational CAs have jurisdiction over disjoint parts of
the name space, and so need not consult with each other when issuing certificates within
their jurisdiction. The possibility remains that a Policy CA and an Organisational CA
might both issue certificates for the same name. Policy CAs should obtain the consent of
the organisation involved before issuing a certificate that declares a user to be a member
of a particular organisation. As part of this process, the Policy CA should also obtain
confirmation that there is no Organisational CA which could issue the certificate instead.

Relationship with Privacy Enhanced Mail

This CA hierarchy has been designed to be compatible with the one defined for Privacy
Enhanced Mail. That is, it should be possible for a CA to be a Policy CA in both the
PASSWORD and PEM hierarchies. Such a PCA must comply with the obligations of both
schemes (including paying any necessary fees to the Internet Society). If a Policy CA does
not wish to be part of the PEM hierarchy, then it is not required to comply with any
additional obligations defined by PEM.

The trust model defined by PEM can be treated as if it were a private trust model that has
been derived from the PASSWORD public trust model. The main difference of the PEM
model is that only one Top Level Certifying Authority is trusted, the Internet Certifying
Authority.

Relationship with PGP

The main competitor to Privacy Enhanced Mail is Pretty Good Privacy (PGP), a public-
domain program by Philip Zimmermann. Unlike PEM, PGP assumes that the name space
is unstructured, and it is left up to the user to decide who has jurisdiction to sign which
certificates. In terms of our architecture, this corresponds to a completely flat public trust
model, where by default no-one has jurisdiction to sign a certificate for anyone else. The
design of PGP expects physically secure exchanges to be the primary means of transferring
public keys. PGP also has a special message format for transferring public keys, which
provides a similar function to X.509 certificates. These messages are only acted upon if
the user performs an explicit action to accept them. By choosing to accept some of these
control messages, PGP users can gradually build up a structured private trust model.

1.2.4 Security Policy Model

The security requirements for a Certificate Generation Unit may be described in terms of
the Clark-Wilson model [6]. Although it was originally intended as a model of integrity,
the Clark-Wilson model can be extended to describe confidentiality requirements by the
addition of an additional condition ([C6] below). Data items are separated into those which
have integrity or confidentiality requirements (Constrained Data Items, CDIs) and those

15

which do not (Unconstrained Data Items, UDIs). CDIs may only be accessed by invoking
trusted programs called Transformation Procedures (TPs). The CDIs are set to an initial
secure state by invoking an Integrity Verification Procedure (IVP).

The Clark-Wilson model requires the following security enforcing functions to be provided:

• [E1] The system must maintain a list of relations of the form (TPi, (CDIa, CDIb,
. . .)), where the list of CDIs defines a particular set of arguments for which the TP
has been certified. It must ensure that the only manipulation of any CDI is by a TP,
where the TP is operating on the CDI as specified in one of these relations.

• [E2] The system must maintain a list of relations of the form (UserId, TPi, (CDIa,
CDIb,. . .) which relate a user, a TP and the data objects that the TP may reference
on behalf of that user. It must ensure that only executions described in one of the
relations are performed.

• [E3] The system must authenticate the identity of each user before attempting to
execute a TP.

• [E4] The relations described in [E1] and [E2] may only be modified by the agent who
is authorised to certify the system.

The model also requires that all trusted programs are certified to be correct. The evaluator
of the system must ensure that the following conditions hold:

• [C1] All IVPs must be certified to be valid. That is, all CDIs will be in a valid state
after the IVP is run.

• [C2] All TPs must be certified to be valid. That is, they must take a CDI to a valid
final state, given that it was in a valid state to begin with. For each TP, and each set
of of CDIs that it may manipulate, the security officer must specify a relation which
defines that execution, using the mechanism of clause [E1].

• [C3] The list of relations in clause [E2] must be certified to meet the separation of
duty requirement.

• [C4] All TPs must be certified to write to an append-only CDI (the log) all informa-
tion necessary to permit the nature of the operation to be reconstructed.

• [C5] Any TP that takes a UDI as an input value and a CDI as an output value must
be certified to perform only valid transformations, or else no transformation, for all
possible values of the UDI.

• [C6] Any TP that takes a CDI as an input value and a UDI as an output value must
be certified to meet the confidentiality requirements.

16

1.3 Security Enforcing Functions

The following descriptions of the security enforcing functions to be implemented are derived
from the ITSEC example functionality classes F-B3, F-DI and F-DC. As a Certificate
Generation Unit is not a general purpose computing device, some of the F-B3 clauses are
not applicable. This section lists only those functions that we consider to be relevant to
this particular application.

The ITSEC F-B3 access control section requires the implementation to conform to the
Bell-LaPadula model of confidentiality [2, 3]. We have changed this part of the ITSEC
text to require support of the Clark-Wilson model [6], as this is used to express our integrity
requirements.

Unlike ITSEC F-B3 and Orange Book B3 [11], this security target does not require access
control enforcement functions to be implemented as a reference monitor. Any implemen-
tation methodology that provides the required functions to the required level of assurance
is acceptable. For example, it would be acceptable to use static analysis tools to demon-
strate that forbidden accesses never occur (provided that there were mechanisms to prevent
corruption of the validated code by malicious operators).

When applying the ITSEC criteria to a Certificate Generation Unit, the phrase Target of
Evaluation (TOE) shall be taken to mean a Certificate Generation Unit, and the word
“User” shall be taken to mean the CA operator.

1.3.1 Identification and Authentication

The TOE shall uniquely identify and authenticate users. This identification and authenti-
cation shall take place prior to all other interactions between the TOE and the user. Other
interactions shall only be possible after successful identification and authentication. The
authentication information shall be stored in such a way that it can only be accessed by
authorised users. Identification and authentication shall be handled via a trusted path
between user and TOE initialised by the user or by the TOE. For every interaction the
TOE shall be able to establish the identity of the user.

1.3.2 Access Control

The TOE shall be able to distinguish and administer access rights between each user and
the objects which are subject to the administration of rights, on the basis of an individual
user, on the basis of membership of a group of users, or both. It shall be possible to
use group access rights to support roles. As a minimum, the roles of TOE operator and
administrator shall be definable. The roles of the TOE operator, TOE administrator and
TOE security officer shall be separated. It shall be possible to completely deny users or
user groups access to an object. It shall be possible to restrict a user’s access to an object

17

to those operations which do not modify it. It shall be possible to grant the access rights
to an object down to the granularity of an individual user. It shall not be possible for
anyone who is not an authorised user to grant or revoke access rights to an object.

The TOE shall maintain a list of trusted programs. The actions for adding and deleting
programs from this list shall be restricted to the TOE security officer. The TOE shall
provide each such program with a unique identifier. The value of this identifier shall serve
as a basis for mandatory access rights.

For each object which is subject to the administration of rights, it shall be possible to
supply a list of the programs which are permitted access to this object. When such a list
is provided, all attempted accesses using other programs shall be rejected. The actions for
adding and deleting programs from this list shall be restricted to the TOE security officer.

With each attempt by users to access objects which are subject to the administration of
rights, the TOE shall verify the validity of the request. Unauthorised access attempts shall
be rejected. The identifier of the program used to perform the access shall serve as the
basis for decisions concerning mandatory access control. The rules should unambiguously
specify when a subject is allowed access to such a protected object. If discretionary access
rights are also assigned for an object, access shall only be permitted provided that both
the discretionary and the mandatory access rights allow such accesses.

1.3.3 Accountability

The TOE shall contain an accountability component which is able, for each of the following
events, to log that event together with the required data:

• Issue of a Certificate

Required data: Date; time; certificate subject name; subject public key; validity start
time; validity end time; certificate serial number

• Revocation of a Certificate

Required data: Date; time; certificate serial number

• Issue of a Revocation List

Required data: Date; time

Unauthorised users shall not be permitted to access accountability data. It shall be possible
to selectively account for the actions of one or more users. Tools to examine and to maintain
the accountability files shall exist and be documented. These tools shall allow the actions
of one or more users to be identified selectively.

18

1.3.4 Audit

Tools to examine the accountability files for the purpose of audit shall exist and be docu-
mented. These tools shall allow the actions of one or more users to be identified selectively.

1.3.5 Object Reuse

All storage objects returned to the TOE shall be treated before reuse by other subjects,
in such a way that no conclusions can be drawn regarding the preceding content.

1.3.6 Data Confidentiality

The TOE shall have a facility to encrypt user information prior to exchange and (at the
receiving end) to decrypt it automatically. It shall be assured that the parameter values
(eg. keys) required for decrypting are protected in such a manner that no unauthorised
person can access this data.

1.3.7 Data Integrity

Methods for error detection and error correction shall be applied in the case of data ex-
change. These mechanisms shall be designed in such a way that intentional manipulations
of the address fields and user data can be identified. Knowledge only of the algorithms
applied in the mechanisms without any special additional knowledge shall not enable un-
recognised manipulations of the aforementioned data. The additional knowledge required
for this shall be protected in such a manner that it can only be accessed by a few authorised
users.

Moreover, mechanisms shall be used which uniquely identify as an error the unauthorised
replay of data.

1.4 Required Security Mechanisms

Certificates shall be encoded in the format described in ISO 9594-8, “The Directory —
Authentication Framework”.

Where a public-key cryptosystem is required, the RSA algorithm shall be used. Where a
cryptographic hash function is required, either the MD2, MD4 or MD5 algorithms shall be
used.

19

1.5 Minimum Strength of Mechanisms

The mechanisms used shall have a strength against direct attack of “high” as defined in
the ITSEC/ITSEM.

1.6 Target Evaluation Level

It is not intended to obtain ITSEC evaluation of any software under the PASSWORD pilot
project. For service provision beyond the pilot stage it would be highly desirable to use
Certificate Generation Units validated to at least the E4 level.

20

Chapter 2

User Acceptability and
Manageability

ITSEC-style security targets, such as the one in the previous chapter, are only concerned
with security requirements and do not address the acceptability of the system to end users
or administrators. Indeed, the requirement that the system be secure is often in direct
conflict with the requirement that it be easy to administer and use. The “Ease of Use
Analysis” performed during ITSEC evaluation has the objective of ensuring that it is very
difficult to use the system in an insecure manner. This chapter is concerned with the
converse problem of ensuring that the system is easy to use in a secure manner.

2.1 User Acceptability

It cannot be assumed that all users will be familiar with the theory underlying the security
mechanisms. Equally, the user should not have to deal directly with the control information
(such as encryption keys) used by these mechanisms. Clearly the user must input some
information (such as a password or PIN) to identify herself to the system. The length
of this authenticating information should be chosen so as to be long enough to provide
effective security but not be so long as to be difficult to enter. It is highly desirable that
the user only have to input this information once per login session, rather that having to
rekey it each time a new application is run.

One means of meeting these objectives is an Enrollment Agent: a program which the
user runs to initialise their local security control information. This program can hide the
mechanism specific details (eg. large prime numbers, certificates, mathematical models of
policy) and present a simple password or PIN interface.

21

2.2 Manageability

We identify a number of common activities which an operator must be able to perform
quickly, simply, and with a minimum of opportunity for error:

• Registration of a new user

• Revocation of a user’s key

• Registration of a large number of new users

In many institutions (particularly Universities) it is often necessary to register hun-
dreds of new users simultaneously. It should be possible to enter a list of names and
have the remaining processing performed without operator intervention. Systems
which require the entry of single name, perform a few minutes of processing and
then ask for the next name are not acceptable, as they vastly increase the amount of
operator time required.

• Revocation of a large number of user’s keys

In the event of a serious security breach, it may be necessary to revoke the current key
and reissue new keys to all users of a particular system. The software should allow
this to be performed simply, in a similar fashion to bulk user registration described
above.

• Bulk re-issue of certificates

In the event of a CA’s key being changed, it will be necessary to re-issue the cer-
tificates of all users. If the cause of a key change is a security breach, then it may
be best to change all user keys by the procedure outlined above. However, there are
many cases when it is desired to change the CA key without changing user keys. For
example, some authorities may change their key periodically to reduce the risk of
cryptanalysis. For this reason, there should be a simple procedure for re-issuing all
previously issued (but not revoked) certificates.

22

Chapter 3

Procedures for Initial Key Exchange

When a user or an organisation is registered with a CA for the first time, it is necessary
for the two parties to exchange some information that they will use identify each other in
subsequent interactions. The authenticity of the information provided by the user must be
guaranteed in order to prevent an attacker from registering in someone else’s name. The
authenticity of the information provided by the CA must be guaranteed so that the user
cannot be tricked into accepting forged certificates. However, cryptographic techniques
cannot be used to ensure authenticity at this stage, as there are no keys shared between
the two parties. Some physically secure means must be used to exchange the first key. The
initial key can then be used to provide cryptographic protection for exchanging subsequent
keys.

Protocols of this type are outside the scope of the Open Systems Interconnection series of
standards, as they involve operating procedures and other “local matters”. These proce-
dures must nevertheless be specified somewhere before a practical system can be imple-
mented. This chapter describes possible protocols for each of the different types of initial
key exchange needed by a CA.

3.1 Notation

This chapter uses the following notation for describing cryptographic protocol exchanges:

23

Kab A symmetric key shared between A and B
Ka The public key of A
K−1

a The private key of A
{m}Kab m encrypted with the key Kab

{m}Ka m encrypted with the public key Ka

{m}K−1
a m signed with the private key K−1

a

A→ B : m A sends m to B
A→∗ B : m A sends m to B over a secure channel
H(m) A one-way hash function applied to m

3.2 Exchange of the User’s Key

There are three methods of exchanging a user’s key between a user and a CA, depending
on whether the key was initially generated by the user’s Enrollment Agent, by the CA, or
by a third party.

3.2.1 User Generates Key

Firstly, the Enrollment Agent generates an asymmetric key pair. The private key is stored
locally and should never be divulged to any other entity. The public key must be transmit-
ted to the CA in such a way that the CA can be sure that the key has not been modified
in transit, and that the user requesting the certificate is the same person who caused the
key to be generated.

The Enrollment Agent then generates a prototype certificate in the format of ISO 9594-8,
but with the issuer and subject names equal and the digital signature generated using the
user’s private key. This digital signature cannot be used to provide data origin authentica-
tion or integrity, as at this stage no-one has obtained the public key in a trusted manner.
Instead, the signature is used to demonstrate that the public key is a valid one (not all bit
patterns are valid) and that the corresponding private key is known to someone (although
it provides absolutely no evidence about who knows it).

The prototype certificate is then sent electronically to a Certification Authority, either by
placing it in the user’s Directory entry, by sending it in an X.400(88) message, or by some
other means. At this point the CA cannot act on the prototype certificate, as it has no
evidence that the request is legitimate.

A standard certificate request form is then printed out on paper, and the user signs it with
a traditional, manual, signature. The certificate request form contains all the information
contained in the certificate, and a cryptographic hash function (eg. MD5) computed on
the certificate body. The hash is not signed using any public key, as there is no benefit to
be gained by doing so.

The user then takes the certificate request form to the CA, along with whatever proof of

24

identify is required by the CA policy (eg. a passport or driver’s licence, and a letter from
the organisation’s personnel department confirming that the named person is employed by
them).

The CA checks the validity of the physical documents presented, and checks that the infor-
mation stored electronically (in the prototype certificate) matches that on the certificate
request form. A convenient way to do this is to compute a cryptographic hash on the
electronic information and compare it with the hash printed on the form.

If the CA accepts the request, it signs a certificate and distributes it electronically to the
user, by placing it in the user’s Directory entry, by sending it in an X.400(88) mail message,
or by some other means.

The CA retains the manually signed certificate request form for the purposes of account-
ability, in case the user later attempts to deny having requested a certificate containing
that information.

Abstract Protocol

U→ C : {U,Ku, t1, t2, r1}K−1
u

U→∗ C : U,H(U,Ku, t1, t2, r1)

C→ U : {U,Ku, t1, t2, r2}K−1
c

3.2.2 CA Generates Key

Firstly, the user submits a written request for a certificate to the certification authority,
using a standard form. The CA checks the documentation submitted by the user as
evidence of identity (eg. passport or driver’s licence as above), and if it is acceptable
proceeds to generate a certificate.

The CA generates an asymmetric key pair for the user and signs a certificate containing
the user’s name and public key. This certificate needs no further integrity or confidentiality
protection, and so may be ‘published’ by storing it in the Directory Service. If the CA does
not have permission to modify the user’s Directory entry, the certificate may be transferred
to the user by some other means (eg. X.400(88) email) and later entered into the Directory
by the user themselves.

Note that is technically possible for the CA to masquerade as the user by using the newly
generated private key, and hence modify the user’s entry. As a matter of policy, CAs
should not do this, as it undermines accountability: the user may claim that operations
authenticated under their key were in fact performed by a malicious CA. To guard against
this accusation, the CA software and physical procedures should prevent the CA operator
from using a user’s private key for any purpose.

25

The private key must then by transferred to the user while preserving its confidentiality.
In principle, it is possible for the CA to give the user a print-out of their private key, which
they must re-enter into their own computer. However, private keys are long and difficult
to type, so this method is not acceptable. Instead, the CA can generate a much shorter
key for a symmetric encryption algorithm (eg. DES), and electronically send the user their
private key encrypted under this symmetric key. The user can then be given a print-out
of this shorter key, which they can enter into their own system and hence recover their
private key. The special stationery used by banks to advise customers of their ATM PINs
would be suitable for this purpose.

At the end of the process, the CA should destroy all records of the value of the user’s
private key.

Abstract Protocol

U→ C : U

C→ U : {U,Ku, t1, t2, r1}K−1
c

C→ U : {K−1
u }Kcu

C→∗ U : Kcu

3.2.3 Third Party Generates Key

With this approach, keys are generated by a special-purpose device known as a Key Gen-
eration Box (KGB). The only function performed by the KGB is to generate keys; it does
not take part in any authentication exchanges, and it does not need to know how users are
named. The KGB is assumed to be physically secure, and to be connected with a printer
loaded with secure mailing stationary (such as that used by banks for informing customers
of their PINs). It is also assumed that there is a connection such as a serial line between
the KGB and a networked host computer.

Each time the KGB is invoked (eg. by a button being pressed) it generates both an
asymmetric key pair and a symmetric key. It then increments a counter which holds the
key serial number, and prints out (on the secure printer) the key serial number and the
symmetric key. The key serial number, the public key and an encrypted version of the
private key are transmitted to the host computer.

The user collects the printed envelope and takes it away. At some later point, she opens
the envelope and reads the enclosed symmetric key and serial number. She then runs the
Enrollment Agent on her own computer and types in the key and serial number. The

26

Enrollment Agent contacts the host connected to the KGB and retrieves the public key
and encrypted private key. It decrypts the private key, and checks that it is really the
inverse of the public key. (This ensures that neither have been modified in transit). The
private key is stored locally, and the public key is transferred to a CA using the procedure
described in section 1 (“User Generates Key”).

Abstract Protocol

G→∗ U : Kgu, r1

G→ U : {K−1
u }Kgu,Ku, r1

3.3 Exchange of the CA’s Key

3.3.1 Using One-way Hash Functions

The protocol of section 3.2.1 may be used in reverse to transfer the CA’s public key to
the user. Firstly, the Certification Authority generates a prototype certificate for its own
key and sends it to the user. As the CA will use exactly the same prototype certificate
regardless of which user it is interacting with, it is sufficient for the CA to generate this
prototype certificate once and store it in its own Directory entry. The user can then obtain
it by reading it from the Directory.

As anyone can generate a prototype certificate containing the name of a CA, the user must
obtain independent confirmation that the certificate she has obtained is the right one. To
do this, the CA sends the user a cryptographic hash of the certificate’s contents using a
physically secure method. This hash value will be the same for all users, so the CA could
include it on its headed notepaper or in its promotional literature, and give a paper copy
to all users that come to be registered.

The user runs the Enrollment Agent on her own computer system and types in the CA’s
name and the hash value. The Enrollment Agent retrieves the prototype certificate from
the Directory, recalculates the hash value and checks that it matches the value typed in.
If it does match, the CA’s name and public key is added to a local cache of known public
keys.

Abstract Protocol

C→ U : {C,Kc, t1, t2, r1}K−1
c

C→∗ U : H(C,Kc, t1, t2, r1)

27

3.3.2 Using Symmetric Cryptography

If the user and CA have previously exchanged a symmetric key, then this can be used to
transfer the CA’s pubic key to the user. This will be the case if the CA has generated the
user’s private key and transferred it using the protocol of section 3.2.2.

In addition to the symmetric key, the user must obtain the CA’s prototype certificate and
a message authentication code, computed by applying the symmetric key to the body of
the prototype certificate.

The CA will use the same prototype certificate in all such interactions, and so can broadcast
its value to all users by storing it in the CA’s Directory entry. The message authentication
code will be different for each user, and so the CA must send this in a separate message
to each user.

Abstract Protocol

C→ U : {C,Kc, t1, t2, r1}K−1
c

C→∗ U : Kcu

C→ U : {C,Kc, t1, t2.r1}Kcu

3.4 Exchange of Keys between CAs

When CAs cross-certify each other, they must also exchange keys in a secure manner. As
in the user to CA case, at least one key or hash value must be exchanged in a physically
secure manner to start the process.

The protocol of section 3.3.1 (“Using hash functions”) is suitable for exchanging keys
between CAs. The protocol of section 3.2.2 (“CA Generates Key”) will not generally be
used during cross-certification of CAs, as CAs will almost always prefer to generate their
own keys. There are several reasons for this. Firstly, the compromise of a CA has a
far greater impact on security than the compromise of a user’s key. The potential for a
malicious CA operator to compromise another’s key will usually be unacceptable when the
certified key is that of a CA, although it may be acceptable for user keys. Secondly, the
usual reason for preferring the second protocol for user keys is that the users computer
system may not have special hardware support for random number generation, while that
of the CA does. In the case of one CA certifying another, both parties have the necessary
hardware and there is no reason for the subordinate CA to generate its own key. Thirdly,
a CA will often be certified by more than one other CA. These CAs cannot all generate
the single key used by the certified CA, and so the first protocol must be used.

28

3.5 Realisation of Abstract Protocols

Before they can can implemented, the abstract protocols of the previous section must be
expressed in terms of real communication protocols.

3.5.1 Realisation using the Directory Service

The transfer of the CA’s prototype certificate in sections 3.3.1 and 3.3.2 may be realised by
storing the prototype certificate in the caCertificate attribute of the CA’s Directory entry.

3.5.2 Realisation using X.400(88)

In order to use X.400(88) for the cryptographic exchanges, both the user and the CA must
have X.400 mailboxes. X.400 mail is addressed using Originator Recipient Addresses rather
than Distinguished Names, so there must be some means of mapping between the two. This
is done by storing the Originator Recipient Address in the mhsORAddresses attribute of
the appropriate Directory entry. An attacker could cause messages to be misrouted by
changing the value of this attribute. However, the protocols of the previous section are
designed so that misrouting of messages may cause denial of service, but will never result
in either the user or the CA accepting forged credentials.

The exchange of the user’s prototype certificate in section 3.2.1 may be achieved by sending
an X.400(88) message with the prototype certificate contained in the originator-certificate
extension field.

3.5.3 Realisation using Privacy Enhanced Mail

The protocols of section 3.2.2 and 3.3.2 can be realised by using Privacy Enhanced Mail
in symmetric key management mode, with the key Kcu used as an Interchange Key (IK).

29

Chapter 4

Procedures for Certificate Revocation

Although the information contained in a certificate was verified to be valid at the time it
was signed, this information may cease to be true at some later time.

For example:

• The user’s organisational affiliation (and hence her Distinguished Name) may change.

• The user’s public key may change because the old private key has been lost.

• The user’s public key may change because the old private key has been compromised.

• The user’s signature algorithm may change because the old algorithm has been shown
to be insecure.

• The user’s key size may be increased to protect against advances in cryptanalysis
and the increasing amount of computer power available to an attacker.

• The user may desire to be certified by a different CA.

The reasons for changing a certificate fall into three categories:

• Those where it is vital that the old certificate be cancelled (revoked) and a new one
issued as soon as possible.

• Those where a new certificate must be issued as soon as possible, but it is acceptable
for the old certificate to remain valid.

• Those where the cancellation of the old certificate and the issue of a new one can be
delayed until a time that is convenient for the CA.

To accommodate this range of possibilities, there are two mechanisms for cancelling a
certificate:

30

• Every certificate contains an expiry date. The certificate should not be accepted
after this date.

• Each CA issues a signed Revocation List (RCL) containing the serial numbers of
certificates which have been revoked.

4.1 Revocation Lists

4.1.1 Issuing Revocation Lists

Each CA should issue a new revocation list at frequent intervals, even if the list of revoked
certificates has not changed. This is done so that applications retrieving a revocation list
can be sure that it is the most recent one available. Each revocation list contains the time
and date on which it was issued and the time and date on which its replacement should
be issued. Applications using revocation lists should compare these two times against the
current time. If these indicate that a more recent RCL is available, the application should
attempt to obtain the more recent version. If this attempt fails, the certificate should be
treated as if it were revoked and a warning should be sent to a security administrator.

CAs must ensure that a new revocation list is issued before the old one expires, as failure to
do so results in all certificates ever issued by the CA being treated as if they were revoked.

4.1.2 Size of Revocation Lists

Care must be taken that revocation lists do not become extremely large, as this may
adversely affect the performance of the Directory service. To reduce the size of revocation
lists, revoked certificates can be removed from the revocation list when their original expiry
date has been reached.

If certificates are issued with very long lifetimes, then those that are revoked will need to
be kept on the revocation list for a very long time, and the revocation list will become
unmanageably large. Conversely, if certificates are issued with too short a lifetime, then
the CA will have to spend an unacceptable amount of time re-issuing certificates which
have expired. We recommend that the lifetime of a certificate be one year in normal
circumstances. If the CA has reason to believe that the information in the certificate will
become invalid sooner, then it should set the expiry date to reflect this.

4.1.3 Format of Revocation Lists

Two formats have been defined for revocation lists, one by ISO 9594-8 and the other by
Privacy Enhanced Mail. For the purposes of the PASSWORD project, we have chosen to
use the PEM format, which has several advantages:

31

• It uses a far more compact encoding. The saving of the resources needed to transmit
and store RCLs will be significant when the number of revoked certificates becomes
large.

• Only one digital signature operation is need to sign a PEM RCL, but two are needed
to sign an ISO 9594-8 RCL.

• The ISO 9594-8 RCL does not contain an indication of when the next RCL is to be
issued, so this information would have to communicated by some out of band means
(such as requiring that the time between RCLs be a well-known constant which is
the same for all CAs).

• The ASN.1 description of a Revocation List in ISO 9594-8 is widely believed to
contain an error [4].

4.2 Informing the CA of Key Changes

The CA must be informed when the user’s name or key changes, so that it can revoked the
old certificate and issue a new one. It is desirable to ensure the authenticity and integrity
of these requests, to prevent an attacker causing someone else’s certificate to be revoked.
However, the reason for changing the user’s public key might be that the corresponding
private key has been lost, in which case it is not possible to use it to sign the request. The
CA must be able to accept written requests for a certificate to be revoked. The authenticity
of such a request can be established by physical means (such as comparing the signature
on the revocation request form with the signature on the certificate request form), and the
user will always be able to generate such a request no matter what has happen to their
private key.

4.3 Informing the User of Key Changes

Similarly, the CA must be able to inform its clients when its own key changes. CA keys
will be very well protected, and so the compromise of a CA’s key should be a very rare
event. The usual reason for changing a CA’s key will be an increase in the key size or the
adoption of an improved cryptographic algorithm. In these cases, it is not necessary that
the old key be revoked immediately, and certificates can be issued under both keys during
the transitional period. Transition to a new CA key is made easier if client applications can
be given two keys for a CA and select the appropriate one to use when checking signatures.

32

Chapter 5

Random Number Generation

5.1 Pseudo-Random Number Generators

Most computers and computer languages are completely deterministic; for the same input,
the same program will produce the same output. It is therefore impossible to create
randomness purely by software, no matter how complex the program used. The “random
number generation” subroutines available on many systems generate pseudo-random, not
truly random, sequences; the numbers generated share many statistical properties with true
random sequences, and hence may be used instead in many applications. Cryptography
is one of the few applications where these conventional pseudo-random number generators
are not acceptable.

Some pseudo-random number generation algorithms have the additional property of being
cryptographically strong. They take as input a genuinely random seed value and produce
a pseudo-random sequence based upon it. It is computationally infeasible to derive the
value of unknown members of the pseudo-random sequence given only knowledge of other
members. The output of these strong random number generators is still not genuinely
random; it may be predicted by an attacker who knows the value of the seed or who
has sufficient computing power to break the cryptosystem used. Provided that the initial
seed is kept secret and the cryptosystem is strong enough, these special random number
generators can be used in some cryptographic applications. The use of cryptographic
RNGs does not eliminate the need for a hardware random number generator, as the initial
genuinely random seed must be generated somehow. However, they do greatly reduce the
number of genuinely random bits that are needed, and so are effective in speeding up slow
RNGs.

33

5.2 Hardware Random Number Generators

To produce truly random numbers, a computer system must be extended by the addition
of some hardware that behaves in a random manner. That is, the behaviour of the device
as observed by the computer must be influenced by some underlying physical process in
a way that cannot be predicted. Almost any peripheral (eg. discs, keyboards, network
interfaces) could be used in this way, but with most it is difficult to guarantee the lack
of predictability. For example, counting the number of ethernet packets received in each
second gives an apparently random result, but is highly predictable by anyone monitoring
the same ethernet. A better approach is to use a peripheral which has been specially
designed to generate random numbers, and which has been carefully engineered to provide
a maximum level of unpredictability.

A common approach used in many hardware random number generators (RNGs) is to
take an electronic noise source (all electronic components generate some amount of noise),
amplify it and then sample its value at regular intervals.

There are three main sources of electronic noise:

• Voltage noise. The thermal motion of electrons causes momentary voltage fluctu-
ations across any conductor. Circuits which are physically hotter generate more
voltage noise.

• Current noise. Electrons are the smallest possible unit of electrical charge, and any
charge will be equal to an integer multiple of electrons. As a result, any electrical
current is a statistical process; in a measuring interval sometimes more electrons
than average will flow and sometimes less. In absolute terms, large currents exhibit
bigger fluctuations than small ones. However, the fluctuations are proportional to
the square root of the current, so smaller currents exhibit bigger fluctuations relative
to the average flow.

• Inductive noise. All electrical components act as radio transmitters and receivers,
picking up part of the signal from nearby circuits and from other parts of the same
circuit.

The first two sorts of noise are ideal for cryptographic applications, as they have well-known
statistical properties and are totally unpredictable by anyone not in physical contact with
the component concerned.

Inductive noise is far less useful, for the following reasons:

1. An attacker’s circuit might be able to pick up the same radio signals, enabling her
to predict the number generated.

34

2. The statistical properties of the signal are highly dependent on the exact nature
of nearby electrical apparatus. In computer rooms, the main component of these
signals is usually the clock frequencies of nearby computers. The periodic nature of
this signal can make it too easy to predict.

Thus, a good design for a RNG must introduce and amplify signals of the first two types,
and at the same time take great care to exclude signals of the third type.

We have constructed and measured several RNG designs, some aimed at amplifying current
noise and some aimed at amplifying voltage noise. Many designs were found to be highly
susceptible to inductive pickup between the amplified signal and the intended source. When
this happens, a periodic oscillation builds up which swamps the desired random signal with
a much larger, highly predictable one. This effect can be reduced by careful attention to
circuit layout and by the use of decoupling capacitors. Of the designs we tested, the one
shown in figure 5.2 (supplied by Andrew Findlay) was found to be the most immune to
pickup, even without particular care as to layout:

..........
.

.

�

�

� A

A

A

�
�
�
�
�
�
H

H
H

H
H

H

�
�
�
�
�
��
H

H
H

H
H

HH

-

18k

18k

18k150k

10nF 1M

820k

18k

2.7k

820k

100nF

10nF

2.2uF

-

+
+

-

Figure 5.1: Random Number Generator

Our initial assessment of the quality of the random number generators was performed by
visual examination of waveforms on an oscilloscope. We considered it highly desirable to
have a test that was more objective and repeatable, and that was capable of rejecting
generators that failed to be random in ways that were not visually apparent.

To do this, we needed a formal definition of which statistical distributions were acceptable.
We adopted the following model: For some integers k and n, consider k.n consecutive
output bits forming a population of n k-bit long sequences. Then we define the (k,n)-
diversity as the inverse of the probability that two samples from this population will be
the same. The k-diversity is the limit of this as n tends to infinity.

35

The ideal noise source produces independently distributed bits, each of which is 1 with
probability 1/2 and 0 with probability 1/2. This source has a k-diversity of 2k; any other
distribution will give a lower diversity.

The RNGs which we felt intuitively were poor can be objectively rejected on the grounds
that they have too low a k-diversity. The importance of this measure can be justified on
theoretical grounds by its close relation to the index of coincidence [10], an important tool
in cryptanalysis.

5.3 Use for Key Generation

The security of public-key cryptosystems relies on the values of private keys not being
known to potential attackers. To maintain this secrecy, there must be security mechanisms
to prevent unauthorised access to stored keys; this is dealt with in report R2.6. Even if the
protection of the storage area were infallible, an attacker could still determine the value
of a key by knowing how the key was initially generated. One of the major advantages of
Open Systems is that implementations can be bought by anyone from a variety of different
manufacturers. As a result, all details of how the key generation software works can be
readily determined by anyone who buys the software and examines it. For this reason, the
key generation process must incorporate a genuinely random element that an attacker has
no means of predicting.

There are two ways in which a random element could be introduced into the key generation
process. Firstly, a new random input could be obtained for each key that is to be generated.
Secondly, a single random element could be obtained once during system initialisation
and used as the seed for a cryptographically strong pseudo-random number generator.
Then each key could be generated from a different element of the cryptographically strong
pseudo-random sequence.

The second approach is only applicable to situations where the same entity must generate
many different keys. Thus, it is only useful with the “CA generates key” distribution
method and not with the “User generates key” method. It has the advantage that far
fewer genuinely random bits need to be generated. However, it is vulnerable to some
additional risks:

• The cryptosystem used to generate pseudo-random numbers might be broken, en-
abling an attacker with knowledge of a single secret key to compute all secret keys
issued by the same authority. Using this method makes the overall system vulnerable
to mathematical attacks on three different cryptosystems (the cryptographic pseudo-
random number generator, the one way hash function and the public key signature
algorithm) rather than just two. For this reason, it may be desirable to use a RNG
whose security has been mathematically proven to be equivalent to the security of
one of the other two algorithms employed.

36

• If an attacker manages to obtain the seed value, then she will be able to calculate
all secret keys that were ever generated. Although the seed value will be heavily
protected, it might be disclosed by a CA operator who had been bribed or threatened,
or by someone who had stolen the physical hardware used for key generation [13].

To prevent this attack, it is desirable to use a cryptographic RNG algorithm that
does not require the original seed value to be retained, but instead updates a stored
value after the generation of each key, using a one-way function. After each member
of the sequence is generated, the information that was needed to calculate it can be
destroyed so that it may never again be recovered by anyone.

5.4 Evaluation of Random Systems

If a system is entirely deterministic, then it is possible to specify what its behaviour should
be for particular inputs, and to test that it behaves according to the specification. If a
process includes genuinely random elements, then its behaviour will not be repeatable.
This causes problems with both the specification and the evaluation of systems.

For this reason, it is highly desirable to separate systems into deterministic and non-
deterministic components, with the interface between the two being accessible during test-
ing. The deterministic components can then be completely specified, and their observed
behaviour compared with the specification. The random components should be made as
simple as possible, in order to reduce the chance of their containing an undetected fault.
Ideally, the random component of the system should only produce a random bit stream,
and do nothing else. The statistical diversity tests of section 5.2 can then be used to help
verify correct operation.

37

Appendix A

Deficiencies of the X.509 Certificate
and Revocation List Formats

It is widely recognised that the certificate and revocation list formats described in ISO 9594-
8 contain serious deficiencies which ought to be corrected. A liason statement between the
IST 21/1/1 and IST 33 subcommitees of the British Standards Institute identified the
following problems [4]:

A.1 Certificates

• In the event that DistinguishedNames are re-used over time, the certificate should
also contain a unique numeric identifier to indicate which holder of the name was
intended to be the certificate subject. (This will be added in ISO 9594-8 (1992)).

• In the event that different keys are used for integrity and confidentiality, the certificate
should include multiple keys, and indicate which security services each key may be
used for.

• It is not currently possible to distinguish user certificates from CA certificates. Thus,
there is a risk of unauthorised users posing as certification authorities.

• When the certificate is a CA certificate, there should be a means for the issuer to
indicate which part of the name-space has been delegated to the subject.

• The algorithm identifier used to identify the signature algorithm should also identify
the encoding rules which were used to translate the presentation data value to be
signed into a sequence of octets for input to the signature algorithm.

• When a certificate is stored, the concrete syntax used to encode the certificate should
be held with it.

38

A.2 Revocation Lists

• The SIGNED SEQUENCE OF SEQUENCE should be replaced by SEQUENCE OF
SIGNED SEQUENCE. This would allow individual revoked certificates to be signed.
This is particularly useful when non-repudiation of the revocation is required. (See
Directory defect report 9594/033).

• If there is a difference between the date at which a user requested the CA to revoke
their certificate and the date at which the CA carried out the revocation, the re-
voked certificate should contain both dates. (See SC21 N1734, summary of voting
on extensions to 9594-8, AFNOR comments).

• There is no indication of when the next revocation list will be issued. Without this
information, it is difficult to tell whether the revocation list is the most recent. (For
example, an attacker knowing a compromised key and revoked key might try to make
the key valid again by replacing the current revocation list with an old one).

• The CertificateList structure is liable to become very large. It would be useful to
have a more compact format.

Within the PASSWORD project, we have chosen to circumvent the above problems with
revocation lists by using the alternative format defined by Privacy Enhanced Mail [9].

We avoid the problems with certificates by imposing strict rules on which names may
be used for authorities and users. If in the future ISO 9594-8 is extended to overcome
the identified problems, then it will longer be necessary to impose these inconvenient
restrictions.

39

Appendix B

New Attributes and Object Classes

We have chosen to use the certificate revocation list format defined by Privacy Enhanced
Mail, rather than that defined by ISO 9594-8. In order to store PEM revocation lists in
the Directory Service, it is necessary to define some new attributes and object classes. We
intended to register these as extensions to the COSINE/Internet naming architecture [1].
However, this turned out not to be possible, and so these attributes and object classes have
been registered under the TeleTrust object identifier arc.

teletrust OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) 36 }

objectClass OBJECT IDENTIFIER ::= { teletrust 7 }

pemCertificationAuthority OBJECT-CLASS

SUBCLASS OF top

MUST CONTAIN {

caCertificate,

pemCertificateRevocationList

}

MAY CONTAIN {

crossCertificatePair

}

::= { objectClass 1 }

Figure B.1: New Object Classes

40

IMPORTS CertificateRevocationList FROM PrivacyEnhancedMail;

attribute OBJECT IDENTIFIER ::= { teletrust 4 }

pemCertificateRevocationList ATTRIBUTE

WITH ATTRIBUTE-SYNTAX CertificateRevocationList

::= { attribute 1 }

Figure B.2: New Attributes

41

Appendix C

Z Model of Certificate Generation
Unit

This section uses the Z notation [12] to construct a formal model of the Constrained Data
Items, Integrity Verification Procedures and Transformation Procedures implemented by
a Certificate Generation Unit.

It is possible to construct formal proofs of some properties of Z specifications. In particular,
it is possible to prove that Clark-Wilson conditions [C1], [C2] and [C5] have been met. It
is fairly clear that the following specifications meet condition [C4] as well, but the way
they have been structured makes this difficult to prove formally. The separation of duty
condition [C3] is not clearly defined in the original paper by Clark [6], and for the purposes
of this section it will be ignored.

42

Keys
secretKey : HASH→ SIGNATURE
publicKey : SIGNATURE→ HASH

secretKey = publicKey−1

SerialNumbers
issuedSerialNumbers : P(N)
revokedSerialNumbers : seqN
revocationDates : seqDATE

ran(revokedSerialNumbers) ⊂ issuedSerialNumbers
dom(revokedSerialNumbers) = dom(revocationDates)

Figure C.1: Constrained Data Items

43

IssuedAuditTrail
subjectNameRecord : N �→ NAME
issuedSerialNumberRecord : N �→ N
startDateRecord : N �→ DATE
endDateRecord : N �→ DATE
issueDate : N �→ DATE
issuedAuditRecordNumber : N

dom(subjectNameRecord) = 1..issuedAuditRecordNumber
dom(issuedSerialNumberRecord) = 1..issuedAuditRecordNumber
dom(startDateRecord) = 1..issuedAuditRecordNumber
dom(endDateRecord) = 1..issuedAuditRecordNumber
dom(issueDate) = 1..issuedAuditRecordNumber

RevokedAuditTrail
revokedSerialNumberRecord : N �→ N
revocationDate : N �→ DATE
revokedAuditRecordNumber : N

dom(revokedSerialNumberRecord) = 1..revokedAuditRecordNumber
dom(revocationDate) = 1..revokedAuditRecordNumber

RevocationListAuditTrail
rclDate : N �→ DATE
rclAuditRecordNumber : N

dom(rclDate) = 1..rclAuditRecordNumber

Figure C.2: Audit Trail

44

InitialState
∆Keys
∆SerialNumbers
∆IssuedAuditTrail
∆RevokedAuditTrail
MakeKeyPair

secretKey′ = secretKey!
publicKey′ = publicKey!
issuedSerialNumbers′ = {}
revokedSerialNumbers′ = {}
revocationDates′ = {}
issuedAuditRecordNumber′ = 0
revokedAuditRecordNumber′ = 0
subjectNameRecord′ = {}
issuedSerialNumberRecord′ = {}
startDateRecord′ = {}
endDateRecord′ = {}
issueDate′ = {}

Figure C.3: Integrity Verification Procedure

Sign
hash! : HASH
signature? : SIGNATURE
ΞKeys

signature? = secretKey(hash!)

Figure C.4: Underlying Procedures

45

AuditIssueCertificate
∆IssuedAuditTrail
ΞTimeOfDay

issuedAuditRecordNumber′ = issuedAuditRecordNumber + 1
subjectNameRecord′ = subjectNameRecord′∪
(issuedAuditRecordNumber �→ subjectName!)
issuedSerialNumberRecord′ = issuedSerialNumberRecord′∪
(issuedAuditRecordNumber �→ serialNumber?)
startDateRecord′ = startDateRecord∪
(issuedAuditRecordNumber �→ startDate!)
endDateRecord′ = endDateRecord ∪ (issuedAuditRecordNumber �→ endDate!)
issueDate′issueDate ∪ (issuedAuditRecordNumber �→ currentTime)

AuditRevokeCertificate
∆RevokedAuditTrail
ΞTimeOfDay

revocationAuditRecordNumber′ = revocationAuditRecordNumber+ 1
revokedSerialNumberRecord′ = revokedSerialNumberRecord∪
(revocationAuditRecordNumber �→ serialNumber!)
revocationDate′ = revocationDate∪
(revocationAuditRecordNumber �→ currentTime)

AuditIssueRCL
∆RevocationListAuditTrail
ΞTimeOfDay

rclAuditRecordNumber′ = rclAuditRecordNumber+ 1
rclDate′ = rclDate ∪ (rclAuditRecordNumber �→ currentTime)

Figure C.5: Audit Procedures

46

MakeKeyPair
secretKey! : HASH→ SIGNATURE
publicKey! : SIGNATURE→ HASH
randomNumber? : RANDOM

secretKey! = publicKey!−1

IssueCertificate
subjectName! : NAME
subjectPublicKeyInfo! : KEY
startDate! : TIME
endDate! : TIME
serialNumber? : N
signature? : SIGNATURE
∆SerialNumbers
Sign
AuditIssueCertificate

hash! = hashCertificate(issuerName, subjectName!, subjectPublicKeyInfo!,
startDate!, endDate!, serialNumber?)
serialNumber /∈ issuedSerialNumbers
issuedSerialNumbers′ = issuedSerialNumbers ∪ serialNumber

RevokeCertificate
serialNumber! : N
∆SerialNumbers
ΞTimeOfDay
AuditRevokeCertificate

serialNumber ∈ issuedSerialNumbers

revokedSerialNumbers′ = revokedSerialNumbers � {serialNumber}
revocationDates′ = revocationDates′ � {currentTime}

IssueRevocationList
signature? : SIGNATURE
ΞSerialNumbers
ΞTimeOfDay
AuditIssueRCLSign

hash! = hashRCL(revokedSerialNumbers, revocationDates, currentTime)

Figure C.6: Transformation Procedures47

Appendix D

Z Model of Certificate Verification
Process

Applications which use certificates for security-relevant activities must contain functions to
check that these certificates obey the rules specified in the application’s Technical Security
Policy. This enforcement is performed by the application, not the Certificate Generation
Unit, and so its specification is not part of the CGU Security Target. However, we believe
that many different applications will have exactly the same requirements for checking
certification paths. This section models the certificate verification process using the Z
notation [12].

In general, a certification path consists of a chain of certificates from the verifier to the
claimant. When the security policy defines a hierarchy of CAs, each CA certificate may
be classified as a forward, reverse, or cross-certificate, depending on whether the issuer is
above, below or on the same level as the subject in the hierarchy. A Reverse Certification
Path is a fragment of a certification path containing only reverse certificates, while a
Forward Certification Path is a fragment containing only forward certificates.

For the purposes of the policy defined here, CAs are divided into the hierarchy described in
section 1.2.3. To be acceptable, a certification path must consist of a Reverse Certification
Path from the verifier up to a Point of Common Trust (PCT), and a Forward Certification
Path from the PCT down to the claimant. The PCT may be either an organisational,
policy or top-level CA.

In general, the claimant in an authentication exchange will be obliged to construct the
forward certification path and pass it to the verifier. The verifier can then combine this
with a locally cached reverse certification path to form the complete path. If the provided
forward certification path is incomplete or unacceptable, the verifier may consult the Di-
rectory Service and attempt to construct an alternative forward path. However, doing
so may involve expending substantial resources in respect of an access request that may
eventually turn out to be initiated by a malicious intruder. Therefore, this policy permits
the verifier to immediately reject access requests which are not accompanied by a complete

48

forward path.

The specification of procedures for the construction of reverse certification paths is con-
sidered to be a local matter, and is not included in the formal model. Different implemen-
tations may adopt different strategies provided that this does not compromise security.
However, the strategy used by particular implementation should be documented. Typi-
cally, the public key of a TLCA will be conveyed to the application by a local trusted
mechanism, such as being typed into a file by a security administrator. Sites with many
computer systems will need a more automated mechanism for this key distribution that
does not compromise security.

The certificates in a forward certification path must follow the naming restrictions described
in section 1.2.3. The path verifying software must reject as invalid all forward certificates
that do not conform these rules. It is permitted for implementations to support a more
general security policy, provided that they may be easily configured to reject all certificates
disallowed under the naming rues of section 1.2.3.

49

KeyRecords
authorityName : N �→ NAME
publicKey : N �→ KEY
startDate : N �→ DATE
endDate : N �→ DATE
indices : P(N)

dom(authorityName) = indices
dom(publicKey) = indices
dom(startDate) = indices
dom(endDate) = indices

TopLevelCAs
topLevelCAs : P(N)

PolicyCAs
policyCAs : P(N)

OrganisationalCAs
organisationalCAs : P(N)

Users
users : P(N)

Figure D.1: Constrained Data Items

50

AcceptOrganisationalCACertificate
∆OrganisationalCAs
ΞPolicyCAs
CheckCertificate

index ∈ policyCAs
organisationalCAs′ = organisationalCAs ∪ {newIndex}
nameType(subject!) = caNameType

AcceptOrganisationalUnitCACertificate
∆OrganisationalCAs
CheckCertificate

index ∈ organisationalCAs
organisationalCAs′ = organisationalCAs ∪ {newIndex}
issuer! > subject!
nameType(subject!) = caNameType

AcceptUserCertificateFromOrgCA
∆Users
ΞOrganisationalCAs
CheckCertificate

index ∈ organisationalCAs
users′ = users ∪ {newIndex}
issuer! > subject!
nameType(subject!) = userNameType

AcceptUserCertificateFromPolicyCA
∆Users
ΞPolicyCAs
CheckCertificate

index ∈ policyCAs
users′ = users{newIndex}
nameType(subject!) = userNameType

AcceptUserCertificate =̂ AcceptUserCertificateFromPolicyCA ∨
AcceptUserCertificateFromOrgCA

Figure D.2: Transformation Procedures51

VerifySignature
issuerPublicKey! : SIGNATURE→ HASH
hash! : HASH
signature! : SIGNATURE

issuerPublicKey!(signature!) = hash!

CheckCertificate
issuer! : NAME
subject! : NAME
startDate! : DATE
endDate! : DATE
subjectPublicKey! : SIGNATURE→ HASH
signature! : SIGNATURE
index : N
VerifySignature
AddKeyRecord

authorityName(index) = issuer!
issuerPublicKey! = publicKey(issuer!)
hash! = hashCertificate(issuer!, subject!, subjectPublicKey!, ...)
newStartDate! > startDate!
newStartDate! > startDate(index)
newEndDate! < endDate!
newEndDate! < endDate(index)

AddKeyRecord
newEndDate! : DATE
newStartDate! : DATE
subjectPublicKey! : SIGNATURE→ HASH
subject! : NAME
newIndex : N
∆KeyRecords

newIndex /∈ indices
indices′ = indices ∪ {newIndex}
endDate′ = endDate ∪ (newIndex �→ newEndDate!)
startDate′ = startDate ∪ (newIndex �→ newStartDate!)
publicKey′ = publicKey ∪ (newIndex �→ subjectPublicKey!)
authorityName′ = authorityName ∪ (newIndex �→ subject!)

Figure D.3: Underlying Procedures
52

Appendix E

BAN Logic Model of Certificate
Verification

Some of the integrity requirements cannot be expressed using the Z notation. This section
uses the Burrows-Abadi-Needham notation [5] to formalise these additional requirements.

Let V be the verifier. Then for each authority Ai and key Ki in KeyRecords, we require
that V believes Ki to be Ai’s key. Formally:

V |= Ki → Ai

We also require that the sets topLevelCAs, policyCAs, organisationalCAs and users cor-
rectly represent V’s trust model. That is, if the index of a particular key record belongs
to one of these sets, then V trusts the associated CA to issue certificates of a particular
form. Formally:

∀A ∈ Ji : V |= Ai ⇒ K → A

∀A ∈ Ji, ∀B : V |= Ai ⇒ B ⇒ K → A

(Where the set Ji is defined by the naming rules).

These variables are initialised by the user or system administrator providing information
about what they are prepared to trust. By hypothesis, the above equations are true in this
initial state.

It remains to be shown that the application of a Transformation Procedure always results
in a state where these equations are still true.

Each Transformation Procedure explicitly checks that the naming rules have been followed,
that isA ∈ Ji. They also check that the pre-condition CheckCertificate is met. This ensures
that the certificate signature is valid and the certificate is in date:

53

V � {t,K→ A, ∀B ∈ J : A⇒ K′ → B}Ki

#t

(Where the set J is defined by the naming rules).

The rules of the BAN logic allow us to conclude from this that the verifier believes the
name and key contained in the certificate, and believes that the certified authority is of
the indicated type.

V |= K → A

∀B ∈ J : V |= A⇒ K′ → B

∀B ∈ J, ∀C : V |= A⇒ C⇒ K′ → B

That is, the integrity equations also hold for the new values of the constrained data items.

54

References

[1] P. Barker and S. Kille. RFC 1274 : The COSINE and Internet X.500 Schema. Uni-
versity College London, November 1991.

[2] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition and
multics interpretation. Technical Report MTR 2997, The Mitre Corporation, March
1976.

[3] K. J. Biba. Integrity considerations for secure computer systems. Technical Report
MTR 3153, The Mitre Corporation, April 1977.

[4] British Standards Institution, IST 21/1/1. Liaison Statement to SC33 on Certificates,
March 1992.

[5] M. Burrows, M. Abadi, and R. M. Needham. A logic of authentication. Technical
Report 39, DEC SRC, Palo Alto, CA., February 1989.

[6] D. Clark and D. R. Wilson. A comparison of commercial and military computer
security policies. In Proceedings of the 1987 IEEE Symposium on Security and Privacy.
IEEE Computer Society, 1987.

[7] Commission of the European Communities, Directorate-General XIII. Information
Technology Security Evaluation Criteria (ITSEC), 1991.

[8] International Standards Organization. ISO 9594–8 : The Directory : Authentication
Framework, 1988.

[9] S. Kent and J. Linn. RFC 1114: Privacy Enhancement for Internet Electronic Mail:
Part II: Certificate Based Key Management. IAB Privacy Task Force, 1989.

[10] A. Konheim. Cryptography: A Primer. John Wiley and Sons, 1981.

[11] National Computer Security Center. Trusted Computer System Evaluation Criteria,
December 1985.

[12] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International, 1988.

[13] H. O. Yardley. The American Black Chamber. Bobs-Merrill Company, 1931.

55

