
Canonicity of weak ω-groupoid laws using

parametricity theory

Marc Lasson

INRIA Paris-Rocquencourt, PiR2, Univ Paris Diderot, Sorbonne Paris Cité
F-78153 Le Chesnay France

Abstract

We show that terms witnessing a groupoid law from the ω-groupoid structure of types are all propositionally
equal. Our proof reduce this problem to the unicity of the canonical point in the n-th loop space and conclude
using Bernardy's parametricity theory for dependent types.

Keywords: type theory, parametricity, loop spaces, groupoids, identity types

1 Introduction

The synthetic approach to weak ω-groupoids promoted by the univalent foundation

program [8] is the idea that (homotopy) type theory should be the primitive language

in which spaces, points, paths, homotopies are derived. Following this approach,

spaces are represented by types, points by inhabitants and paths by equalities be-

tween points (also known as identity types) and algebraic properties of these objects

should not be enforced a priori (for instance by axioms) but should be derived di-

rectly from the language. To justify the synthetic approach, one should prove the

canonicity of each de�nition, in the sense that no important choice should be made

by choosing a particular implementation of a de�nition over another.

Garner, van den Berg [9] and Lumsdsaine [5] independently showed that in type

theory, each type can be equipped with a structure of weak ω-groupoids. For this,

they show that a minimal fragment of Martin-Löf type theory, where identity types

are the only allowed type constructors, bears a weak ω-category structure. In-

formally, these results state the possibility to express algebraic properties of weak

ω-groupoids as types and in each case to �nd a canonical inhabitant of these types

re�ecting the fact that the property holds. Identities, inversion and concatenation of

1 Email: marc.lasson@inria.fr

Preprint submitted to Electronic Notes in Theoretical Computer Science 20 May 2014

mailto:marc.lasson@inria.fr

path, associativities, involution of inversion, horizontal and vertical compositions of

2-paths, are all examples of groupoid laws. The canonicity of witnesses of groupoid

laws here means there is a path between any two inhabitants of the law witnessing

their equality, but also that this path should be canonical: there should be a path

between any two paths between two inhabitants of the same law, and so on ... This

canonicity is already a known fact within the fragment. The main result of this

article is to extend the canonicity to the whole Martin-Löf type theory.

In this work, we follow a syntactic approach inspired by Brunerie [3] to formalize

the notion of groupoid law. We call groupoid law any closed type ∀Γ.c such that

the sequent Γ ` c : Type is derivable in the minimal fragment and such that the

context Γ is contractible. A contractible context is a context of the following shape:

A : Type, a : A, x1 : C1, y1 : M1 = x1, . . . , xn : Cn, yn : Mn = xn where xi does not

occur in Mi. The shape of these contexts is stable by path-induction, which allows

to �nd an inhabitant of any groupoid law by successive path inductions. We show

that this inhabitant is canonical, even outside of the fragment.

The main idea of the proof is to use successive path inductions to reduce the

problem of the uniqueness of inhabitants of a given groupoid law to the uniqueness

of the canonical point inhabiting a parametric loop space. Given a base type A and

a point a : A, the n-th loop space and its canonical point are inductively de�ned by:

Ω0(A, a) := A

Ωn+1(A, a) := Ωn(a = a, 1a)

ω0(A, a) := a

ωn+1(A, a) := ωn(a = a, 1a)

where 1a : a = a denotes the re�exivity. Thus for any integer n, ∀X : Type, x :

X.Ωn(X,x) is a groupoid law inhabited by λX : Type, x : X.ωn(X,x) (note that

using one universe, it is possible to internalize the quanti�cation over n; everything

that we state here will be true whether or not this is used). We call this groupoid

law the n-th parametric loop space.

The 0-th parametric loop space, is the polymorphic type ∀X : Type.X → X

of identity functions, and its canonical inhabitant is λX : Type, x : X.x, ie. the

identity function. This term is the only one up to function extensionality inhabiting

its type. The standard tool to prove this kind of properties is by using Reynold's

parametricity theory [7] which was introduced to study the behavior of type quan-

ti�cations within polymorphic λ-calculus (a.k.a. System F). It refers to the concept

that well-typed programs cannot inspect types; they must behave uniformly with

respect to abstract types. Reynolds formalizes this notion by showing that poly-

morphic programs satisfy the so-called logical relations de�ned by induction on the

structure of types. This tool has been extended by Bernardy et al. [2] to depen-

dent type systems. It provides a uniform translation of terms, types and contexts

preserving typing (the so-called abstraction theorem). In its unary version (the only

needed for this work), logical relations are de�ned by associating to any well-formed

type A : Type a predicate JAK : A → Type and to any inhabitant M : A a witness

JMK : JAKM that the M satis�es the predicate. This translation may be extended

to cope with identity types by setting Ja = bK : a = b → Type to be the predicate

λp : a = b.p∗(JaK) = JbK where p∗ is the transport along p of the predicate gener-

2

ated by the common type of a and b. Then, it is easy -although quite verbose- to

�nd a translation of introduction and elimination rules of identity types as well as

checking that these translations preserve computation rules. This allows to extend

Bernardy's abstraction theorem to identity types. Using this framework, we are

able to generalize the uniqueness property of the polymorphic identity type to any

parametric loop space. The proof proceed by induction on the index of the loop

space and uses algebraic properties of transport.

Outline of the paper.

In Section 2, we introduce the type theoretical setting that is used in the article.

Section 3 is devoted to the proof that Bernardy's parametricity may be extended to

cope with identity types. In Section 4, we use this translation to prove the canonicity

result for loop spaces; we prove that all inhabitants of parametric loop spaces are

propositionally equal (Theorem 2). In Section 5, we introduce the fragment MLID

of type theory to de�ne our notion of groupoid laws and we show that the result of

Section 4 may be generalized to all groupoid laws (Theorem 4). Finally Section 6 is

devoted to various discussions.

2 Presentation of the syntax

We give a presentation of Martin-Löf type theory with identity types and universes

which is close to the syntax of pure type systems [1] in order to reuse the para-

metricity theory presented in [2]. In this framework, computation rules are treated

in an untyped way and subtyping of universes is achieved using Luo's cumulativity

relation introduced for the extended calculus of constructions [6]. The reader may

be more used to judgemental presentations of type theory where each computation

steps are checked to be well-typed. This is just a matter of presentation; all the

material presented here could be adapted without much e�ort to suit type systems

using a judgemental equality. Also, the use of cumulativity is not really needed but

makes our results more general and closer to implementations such as coq.

The terms of the system are given by the following grammar:

A,B,C,M,N,U, V := x | (M N) | λx : A.M | ∀x : A.B | Typei

| M =A N | 1CM | J∀x:C,y:M=x.A(B,U, V)

where universes Typei are indexed by i ∈ N. Variables are considered up to α-

conversion and we write M [N/x] to denote the term obtained by substituting all

free occurrences of x in M by N . To ease the reading of terms, we allow ourselves

to omit some typing annotations when they could be guessed from the context (in

particular M = N , 1M and J(B,U, V) will be used often in this text).

The grammar of terms is obtained by adding to the syntax of pure type systems:

• The type constructor M =A N for forming identity types,

• The introduction rule for identity types, 1CM , to witness the re�exivity M =C M ,

3

• The elimination rule (also known as �path-induction�) J∀x:C,y:M=x.A(B,U, V).

Given any dependent type A(x, y) which depends on a point x and a path y

from a base point M to x, given a witness for A(M,1M) (the base case of the

induction), given a point U and a path V , the path-induction provides an in-

habitant of A(U, V). This formulation of path-induction, due to Paulin-Möhring

(also called based path induction), is equivalent to the other version where A is

parametrized by two points and a path between them.

We use the symbol ≡ to denote the syntactic equality (up to α-conversion)

between terms. The conversion between terms will be denoted by M ≡β N , it is de-

�ned as the smallest congruence containing the usual β-reduction (λx : A.M)N ≡β
M [N/x] and the computation rule for identity types: J∀x:c,y:M=x,∆.P (N,M,1CM) ≡β
N . And the cumulativity order is de�ned as the smallest partial order 4 compatible

with ≡β and satisfying for i ≤ j:

∀x1 : A1, ..., xn : An.Typei 4 ∀x1 : A1, ..., xn : An.Typej

Like in the extended calculus of constructions, the cumulativity rule is not fully

contravariant with respect to the domain of functions (A′ 4 A and B 4 B′ does

not imply ∀x : A.B 4 ∀x : A′.B′) otherwise it would break the decidability of

type checking. Contexts are �nite lists of the form x1 : A1, · · · , xn : An mapping

a variable to its type. The rules of the type system are given in Figure 1. As we

follow standard lines, we do not develop in details the metatheory of the system.

The non-dependent version of path-induction is called transport and is de�ned

by

P∗
x:C.X (M) ≡ J∀x:C,y:U=x.X(M,V, P)

where y does not occur in X. It is often used to coerce between type families: given

a type family X : C → Typei, a path P : U = V between two points U, V : C, and a

term M in X U , the transport P∗
x:C.X (M) of M along P inhabits X V . It satis�es

the following derivable rule :

Γ, x : C ` X : Typej Γ ` P : U =C V Γ `M : X[U/x]

Γ ` P∗x:C.X (M) : X[V/x]
transport

We sometimes also omit the type family when it can be guessed from the context.

The computation rule tells us that transporting along a re�exivity is same as doing

nothing : 1U ∗(M) ≡β M .

3 Extending Relational Parametricity to Identity types

In this section, we explain how to extend Bernardy's parametricity translation below

to primitive identity types. Then we prove that this extension preserves typing (The-

4

〈〉 wf
wf-empty

Γ wf Γ ` B : Typei
Γ, x : B wf

wf

Γ wf
Γ ` Typei : Typei+1

univ

Γ wf (x : A) ∈ Γ

Γ ` x : A
variables

Γ, x : A `M : B

Γ ` λx : A.M : ∀x : A.B
abstraction

Γ `M : ∀x : A.B Γ ` N : A
Γ ` (M N) : B[N/x]

application

Γ `M : A′ Γ ` A : Typei
A′ 4 A

Γ `M : A
conversion

Γ ` A : Typei Γ, x : A ` B : Typei
Γ ` ∀x : A.B : Typei

product

Γ `M : C Γ ` N : C Γ ` C : Typei
Γ `M =C N : Typei

identity

Γ `M : C

Γ ` 1CM : M =C M

reflexivity

Γ `M : C
Γ, x : C, y : M = x ` P : Typei Γ ` B : P [M/x,1CM/y]

Γ ` U : C
Γ ` V : M = U

Γ ` J∀x:C,y:M=x.P (B,U, V) : P [U/x, V/y]

path-induction

Fig. 1. Type theory with identity types (MLTT).

orem 1).

J∀x : A.BK ≡ λf : ∀x : A.B.∀x : A, xR : x ∈ JAK.(f x) ∈ JBK
JTypeiK ≡ λx : Typei.x→ Typei

Jλx : A.MK ≡ λx : A, xR : x ∈ JAK.JMK
JM NK ≡ JMKN JNK

JxK ≡ xR

whereM ∈ JAK simply stands as a notation for JAKM (it makes formulas a bit easier

to read). As said in the introduction, the predicate generated by an identity type

M =C N is de�ned by the type family over M =C N selecting paths transporting

JMK to JNK:

JM =C NK : M =C N → Type

JM =C NK≡ λp : M =C N.p∗
x:C.x∈JCK (JMK) =JCKN JNK

Thanks to the computational rule

1CM ∈ JM =C MK ≡β 1CM ∗
x:c.x∈JCK (JMK) =M∈JCK JMK ≡β JMK =M∈JCK JMK

the translation J1CM K : 1CM ∈ JM =C MK of re�exivity is a re�exivity: J1CM K ≡
1
M∈JCK
JMK . And �nally, the elimination rule is translated in terms of nested path-

5

inductions:

JJ∀x:C,y:M=x.P (B,U, V)K ≡
J∀xR:U∈JCK,yR:V∗(JMK)=xR.J∀x:C,y:M=x.P (B,U,V)∈JP K[U/x,V/y]

(J∀x:C,y:M=x.J∀x:C,y:M=x.P (B,x,y)∈JP K[y∗(JMK)/xR,1y∗(JMK)/yR](JBK, U, V), JUK, JV K)

The translation of the predicate of path inductions are quite verbose and make the

translation hard to read. However if we ignore the annotation, we see that the

translation JJ(B,U, V)K ≡ J(J(JBK, U, V), JUK, JV K) is simply a duplication of path

induction which should be compared to the duplication in abstractions and applica-

tions. We can check that this translation behaves well with respect to substitution

and conversion :

Lemma 1 (Substitution and conversion lemma). We have :

(i) JM [N/x]K ≡ JMK[N/x, JNK/xR],

(ii) If M ≡β M ′, then JMK ≡β JM ′K.

(iii) If M 4M ′, then JMK 4 JM ′K.

Proof. The proof of (i) is a routine proof by induction on M . And (iii) is a rather

direct consequence of (ii). To prove (ii), we only do here the only check that is not

in Bernardy's translation :

JJ(N,M,1CM)K ≡ J(J(JNK,M,1CM), JMK, J1CM K)

≡ J(J(JNK,M,1CM), JMK,1M∈JCK
JMK)

≡β J(JNK, JMK,1M∈JCK
JMK K)

≡β JNK

Now we can check that this extension preserve typing :

Theorem 1 (Abstraction). If Γ `M : A, then{
JΓK `M : A (a)

JΓK ` JMK : M ∈ JAK (b)

moreover if Γ wf then JΓK wf (c).

Proof. The abstraction theorem is proved by induction on derivations. In each cases,

proving the statement (a) is straightforward. Since the treatment of other rules is

now standard, we only deal here with the rules concerning identity types. Even

though we do not detailed it here, the treatment of conversion uses previous

lemma.

• identity: The induction hypothesis gives us JΓK ` JMK : M ∈ JCK (1), JΓK `
JNK : N ∈ JCK (2) and JΓK, x : C ` x ∈ JCK : Typei (3). Using transport we

derive from (1) and (3), that JΓK, p : M =C N ` p∗λx:C.x∈C (JMK) : N ∈ JCK.
Then, using identity and (2) we build a derivation for JΓK, p : M =C N `

6

p∗
λx:C.x∈C (JMK) =N∈JCK JNK and �nally we conclude JΓK ` JM =C NK : M =C

N → Typei with abstraction.

• reflexivity: By induction hypothesis, we have JΓK ` JMK : M ∈ JCK (1). Using
(1) we can check that JΓK ` 1

M∈JCK
JMK : JMK =M∈JCK JMK which is convertible to

JΓK ` 1
M∈JCK
JMK : 1CM ∗(JMK) =M∈JCK JMK. So, we conclude JΓK ` J1CM K : 1CM ∈ JCK.

• path-induction: The induction hypothesis for (b) are :

JΓK ` JMK : M ∈ JCK (1) JΓ, x : C, y : M = xK ` JP K : P → Typei (2)

JΓK ` JBK : B ∈ JP [M/x,1CM/y]K (3) JΓK ` JUK : U ∈ JCK (4)

JΓK ` JV K : V ∈ JM = UK (5)

and the induction hypothesis for (a) are :

JΓK `M : C (6) JΓ, x : C, y : M = xK ` P : Typei (7)

JΓK ` B : P [M/x,1CM/y] (8) JΓK ` U : C (9)

JΓK ` V : M = U (10)

Let T be the following term :

J∀x:C,y:M=x.J(B,x,y)∈JP K[y∗(JMK)/xR,1y∗(JMK)/yR](JBK, U, V)

First, we have to typecheck T by showing that

JΓK ` T : J(B,U, V) ∈ JP K[y∗(JMK)/xR,1y∗(JMK)/yR, U/x, V/y] (∗)

which means, using path-induction, checking :

· The predicate is well-formed :

JΓK, x : C, y : M = x ` J(B, x, y) ∈ JP K[y∗(JMK)/xR,1y∗(JMK)/yR] : Type

This is obtained by substituting xR and yR in (2) using a derivation of

JΓK, x : C, y : M = x ` y∗(JMK) : x ∈ JCK

and of JΓK, x : C, y : M = x ` 1y∗(JMK) : y∗(JMK) = y∗(JMK) which are easily

derived from (1) and by applying JΓK, x : C, y : M = x ` J(B, x, y) : P to the

substituted derivation.

· The arguments are correct : We derive

JΓK ` JBK : J(B,M,1M) ∈ JP K[y∗(JMK)/xR,1y∗(JMK)/yR,M/x,1M/y]

by noticing using computation rules that :

J(B,M,1M) ∈ JP K[y∗(JMK)/xR,1y∗(JMK)/yR,M/x,1M/y]

≡β B ∈ JP K[M/x, JMK/xR,1M/y,1y∗(JMK)/yR]

7

and therefore conversion and (3) allow us to conclude. Finally, we have to

check that target point and path are correct ie. JΓK ` U : C and JΓK ` V : M =

U which are given by (9) and (10).

Let K be the following term:

J∀xR:U∈JCK,yR:V∗(JMK)=xR.J∀x:C,y:M=x.P (B,U,V)∈JP K[U/x,V/y](T, JUK, JV K)

We now want to check that : JΓK ` K : J∀x:C,y:M=x.P (B,U, V) ∈ JP [U/x, V/y]K
using path-induction, we have to show that :

· The predicate is well-formed :

JΓK, xR : U ∈ JCK, yR : V∗(JMK) = xR `
J∀x:C,y:M=x.P (B,U, V) ∈ JP K[U/x, V/y] : Typei

which is obtained by substituting x and y in (2) using (9) and (10) and by ap-

plying JΓK ` J∀x:C,y:M=x.P (B,U, V) : P [U/x, V/y] to the substituted derivation.

· The arguments are correct : We use (*) for type checking T and we use (4) and

(5) for type checking JUK and JV K.

4 Canonicity in parametric loop spaces

The goal of this section is to prove Theorem 2. The following lemma is needed

to perform the main induction in Lemma 3. The proofs terms are described in a

semi-formal style for reading purpose, they could be easily constructed from the

prose. However, as a consequence of Thereom 2, the precise shape of these terms

is not important. In this section, we use p � q and p−1 to denote respectively the

concatenation of paths and the inverse.

Lemma 2. Let P : A→ Type be a type family and u : P a for some a : A and assume

we have φ : ∀x : A.P x → a = x. Then, for all p : a = a such that p∗(u) = u, we

have 1 = p.

Proof. By applying the functorial action of path on p∗(u) = u using φa we obtain a

two dimensional path φa(p∗(u)) = φa(u) and by the naturality of transport (Lemma

2.3.11 in [8]), we obtain a path p∗(φa(u)) = φa(u). The left-hand side path p∗(φa(u))

is transport over an identity type, we therefore have p∗(φa(u)) = φa(u) � p and

therefore φa(u) � p = φa(u). So, we conclude 1 = p by cancelling by φa(u) and by

symmetry.

Here is the main induction which allows us to derive Theorem 2:

Lemma 3. Let A, P , a, u and φ de�ned as in previous lemma. Then for all n-

dimensional loop p : Ωn(A, a), the type family JΩnK(A,P, a, u) : Ωn(A, a) → Type
satis�es : ∀p : Ωn(A, a).JΩnK(A,P, a, u) p→ ωn(A, a) = p.

Proof. By induction on n, the base case is exactly witness by φ. For the inductive

step, we need to prove ∀p : Ωn+1(A, a).p ∈ JΩn+1K(A,P, a, u) → ωn+1(A, a) = p

8

which is convertible to :

∀p : Ωn(a = a, 1).p ∈ JΩnK(a = a, λq : a = a.q∗(u) = u, 1, 1)→ ωn(a = a, 1) = p

We may therefore apply the induction hypothesis by providing a proof that ∀q : a =

a.q∗(u) = u→ 1 = q which is given by previous lemma.

We can deduce :

Theorem 2 (Canonicity for loop spaces). If ` M : ∀A : Type, a : A.Ωn(A, a) then

there is a term π such that ` π : ∀A : Type, a : A.ωn(A, a) = M Aa.

Proof. The abstraction theorem gives us a proof JMK that ∀A : Type, AR : A →
Type, a : A, aR : AR a.(M Aa) ∈ JΩnK(A,AR, a, ar) by instantiating AR with λx :

A.a = x we can conclude by applying previous lemma.

Note that as a corollary, the proof π is unique up to propositional equality (and so

on). If we have two such proofs π and π′ then (π Aa)�(π′Aa)−1 is of type ωn(A, a) =

ωn(A, a) which is Ωn+1(A, a). Therefore, by applying the previous theorem we obtain

a proof of (π Aa)�(π′Aa)−1 = ωn+1(A, a) which is also (π Aa)�(π′Aa)−1 = 1ωn(A,a).

Therefore we conclude (π Aa) = (π′Aa).

5 Groupoid laws

In this section, we start by describing a fragment MLID of the previous type sys-

tem MLTT. This sub-system is used to characterise groupoid laws. Informally, it is

obtained from MLTT by removing the rules abstraction, application and uni-

verses and by restricting valid sequents to the contractible contexts de�ned in the

introduction. In the absence of function spaces, the rule path-induction has to

be strengthened in order to be able to make a path induction along a path which is

not the last one of the context. Therefore, we need to extend the grammar of terms

in MLID with terms of the shape J∀x:C,y:M=x,∆.P (B,U, V,
−→
W) where ∆ is a context

and where the vectorial notation
−→
W denotes a tuple (W1, ...,Wn) of terms.

The typing rules are given in Figure 2. Formally a context Γ is said to be con-

tractible if Γ contr is derivable; the reader should notice that all contexts occurring

in derivations of MLID are contractible. In the typing rules, we write Γ `
−→
W : ∆

to denote the conjunction for k = 1, · · · , n of Γ ` Wk[A1/y1, · · · , Ak−1/yk−1] : Ak
when ∆ is of the shape y1 : A1, · · · , yn : An. Moreover, [

−→
W/∆] denotes the iterated

substitution [W1/y1, · · · ,Wn[A1/y1, · · · , An−1/yn−1]/yn].

In order to embed MLID into MLTT, we translate extended path inductions into

normal ones according to the following translation :

J∀x:C,y:M=x,∆.P (B,U, V,
−→
W) ≡

λ−→x : ∆.(J∀x:C,y:M=x.∀∆.P (λx : ∆[M/x,1CM/y].B, U, V)−→x)

where −→y : ∆ means that y1, · · · , yn are the variables assigned in ∆, and where

∀∆, λ∆, and (J −→x) denote respectively iterated products, abstractions and appli-

9

A : Type0, x : A contr
init

Γ contr Γ ìd B : Type0 Γ ìd M : B

Γ, x : B, p : M =B x contr
contr

Γ ìd M : C Γ ìd N : C Γ ìd C : Type0

Γ ìd M =C N : Type0

identity

Γ ìd M : C

Γ ìd 1CM : M =C M

reflexivity

Γ contr (x : A) ∈ Γ

Γ ìd x : A
variable

Γ ìd M : A′ Γ ìd A
′ : Type0 A′ ≡β A

Γ ìd M : A
conversion

Γ ìd M : C

Γ, x : C, y : M = x,∆ ìd P : Type0

Γ,∆[M/x,1CM/y] ìd B : P [M/x,1CM/y]

Γ ìd U : C

Γ ìd V : M = U

Γ ìd
−→
W : ∆

Γ ìd J∀x:C,y:M=x,∆.P (B,U, V,
−→
W) : P [U/x, V/y,

−→
W/∆]

extended-path-induction

Fig. 2. The minimal fragment MLID of type theory with identity types.

cations. It is then straightforward to check that extended-path-induction is an

admissible rule of MLTT.

Groupoid laws are characterized by a contractible context and a derivable type

in MLID (Figure 3 contains some examples of groupoid laws):

De�nition (Groupoid law). A groupoid law is a term of the shape ∀Γ.C such that

Γ ìd C : Type0.

The only groupoid laws in the �initial� contractible context A : Type, a : A are

loop spaces. Since we do not change the base type and the base point of loop

spaces in this section we simply denote by ωn (resp. Ωn) the terms ωn(A, a) (resp.

Ωn(A, a)). Using these notations we have :

Lemma 4. If A : Type, a : A ìd T : Type0, then

(i) there exists |T | ∈ N such that T ≡β Ω|T |,

(ii) moreover, if A : Type, a : A ìd W : T then W ≡β ω|T |.

Proof. We proceed by induction on the derivation of A : Type, a : A ìd T : Type0.

We notice that the only two possible last used rules are identity and variable

since Type0 does not inhabit Type0 it is not possible to invoke extended-path-

induction nor conversion.

(i) In the variable case, we necessarily have T ≡ A and therefore we can conclude

by taking |T | = 0. In the identity case, T is of the shape M =C N and by

induction hypothesis M ≡β ω|C|, N ≡β ω|C| and C ≡β Ω|C|. So we conclude

by taking |T | = |C|+ 1.

(ii) Without loss of generality (MLTT is normalizing) we can assume that W is

in normal form. We proceed by a (nested) induction on the derivation A :

10

refl : ∀X : Type, x : X.x = x sym : ∀X : Type, x : X.x = y → y = x

concat : ∀X : Type, x : X, y : X.x = y → ∀z : X.y = z → x = z

assoc : ∀X : Type, x : X, y : X, p : x = y, z : X, q : y = z, t : X, r : z = t.

concatX xz (concatX xy p z q) t r = concatX xy p t (concatX y z q t r)

neutral : ∀X : Type, x : X, y : X, p : x = y.(concatX xy p y (reflX y)) = p

idem : ∀X : Type, x : X, y : X, p : x = y.symX y x (symX xy p) = p

horizontal : ∀X : Type, x : X, y : X, p : x = y, p′ : x = y.p = p′ →

∀z : X, q : x = z, q′ : x = z.q = q′ → concatX xy p z q = concatX xy p′ z q′

Fig. 3. Examples of groupoid laws with aliases for canonical inhabitants

Type, a : A ìd W : T , we treat each possible case (identity and conversion

are obviously impossible since T cannot be Type0):
• variable: In this case, we necessarily have W ≡ a and T ≡ A. So we have

|T | = 0 and W ≡ ω0.
• reflexivity: In this case, W and T are respectively of the shape 1CM and

M =C M . By induction hypothesis, we have M ≡β ω|C|. Therefore |T | =

|C|+ 1 and W ≡β ω|C|+1.
• extended-path-induction: This is in fact an impossible case. We would

haveW of the shape J∀x:C,y:M=x,∆.P (B,U, V,
−→
Z) and by induction hypothesis,

we would haveM ≡β ω|C| ≡β U and V ≡β ω|C|+1. Therefore V is a re�exivity

and so W is not in normal form.

The previous lemma allow us to �nd a canonic instantiation of any contractible

context given by :

(A : Type, a : A)+ = (A, a)

(Γ, x : A, y : M =C x)+ = (Γ+, ω|C[Γ+/Γ]|, ω|C[Γ+/Γ]|+1)

The following lemma state that this instantiation is correct :

Lemma 5.

Γ contr implies A : Type0, a : A ìd Γ+ : Γ (1)

Γ ìd T : Type0 implies T [Γ+/Γ] ≡β Ω|T [Γ+/Γ]| (2)

Γ ìd T : Type0 and Γ ìd M : T implies M ≡β ω|T [Γ+/Γ]| (3)

Proof. We proceed by induction on size of derivations in MLID. We prove (1) by

inspecting the last possible rule :

• initial: Γ is of the shape A : Type0, a : A and Γ+ = (A, a). By using two times

variable, we check that : (A : Type0, a : A) ìd (A, a) : (A : Type0, a : A).

• contractible: Γ is of the shape ∆, x : B, p : M =B x with ∆ ìd B : Type0

and Γ ìd M : B. By induction hypothesis, we have A : Type0, a : A ìd ∆+ : ∆,

B[∆+/∆] ≡β Ω|B[∆+/∆]| andM [∆+/∆] ≡β ω|B[∆+/∆]|. It is then easy to check us-

ing conversion that we have (A : Type0, a : A) ìd (∆+, ω|C[Γ+/Γ]|, ω|c[Γ+/Γ]|+1) :

11

(∆, x : B, p : M =B x).

To prove (2) and (3), we notice that within the derivation of Γ ìd T : Type0 there

is a strictly smaller derivation of Γ contr so we can use the induction hypothesis to

obtain A : Type0, a : A ìd Γ+ : Γ. Now by substitution, we derive that A : Type0, a :

A ìd T [Γ+/Γ] : Type0 and A : Type0, a : A ìd M [Γ+/Γ] : T [Γ+/Γ]. We conclude

that T [Γ+/Γ] ≡β Ω|T [Γ+/Γ]| and M ≡β ω|T [Γ+/Γ]| by previous lemma.

Lemma 6 (All groupoid laws are inhabited). If Γ ìd T : Type0, then there exists

θΓ.T such that Γ ìd θΓ.T : T .

Proof. The contractible context Γ is of the shape

A : Type0, a : A, x1 : C1, y1 : M1 = x1, . . . , xn : Cn, yn : Mn = xn

we construct θΓ.c by n successive extended path-inductions (from left to right).

After all the inductions, it remains to �nd an inhabitant of T [Γ+/Γ] in the context

A : Type0, a : A. But thanks to the previous lemma, we know that T [Γ+/Γ] ≡β
Ω|T [Γ+/Γ]|, therefore using conversion we can use ω|T [Γ+/Γ]|. Spelled out, the term

θΓ.T is :

θΓ.T ≡ J∀x1:C1,y1:M1=x1,...,xn:Cn,yn:Mn=xn.T (

J∀(x2:C2,y2:M2=x2,...,xn:Cn,yn:Mn=xn.T)[ω|C1|/x1,ω|C1|+1/y1](

· · ·J∀(xn:Cn,yn:Mn=xn.T)[∆+/∆](ω|T [Γ+/Γ]|, xn, yn) · · · , x2, y2), x1, y1)

where ∆ is the context such that Γ = ∆, xn : Cn, yn : Mn = xn.

As a corollary, we obtain the following theorem :

Theorem 3 (Canonicity for groupoid laws in MLID). If Γ ìd T : Type and if we

have two terms M and N such that Γ ìd M : T and Γ ìd N : T , then there is a

proof π such that Γ ` π : M = N .

Proof. Simply notice that Γ `M = N : Type0 and apply previous lemma.

The reader should remark here that the proof π is also unique up to equality (by

applying the theorem toM = N !). We are now ready to show that previous theorem

may be generalized to the whole system MLTT by using parametricity theory.

Theorem 4 (Canonicity of inhabitants of groupoid laws inMLTT). If Γ ìd T : Type,
`M : ∀Γ.T and ` N : ∀Γ.T , then there is a proof π such that −→γ : Γ ` π : (M −→γ) =

(N −→γ).

Proof. By successive extended path-inductions (from left to right), we can derive
−→γ : Γ ` (M −→γ) = (N −→γ) from a derivation of A : Type0, a : A ` (M Γ+) =

(N Γ+). We notice that the type of (M Γ+) is T [Γ+/Γ] which is typable in MLID; by

substitution we have A : Type0, a : A ìd T [Γ+/Γ] : Type0. Therefore Lemma 5 gives

us that T [Γ+/Γ] ≡β Ωn for some n ∈ N. Using conversion, we have A : Type0, a :

A ` (M Γ+) : Ωn. Therefore (M Γ+) is an inhabitant of a parametric loop space;

therefore we can invoke Theorem 2 to obtain of proof that (M Γ+) = ωn. Similarly

12

we have a proof of (N Γ+) = ωn and by concatenating them we obtain a proof of

(M −→γ) = (N −→γ).

Finally, using the same arguments as at the end of Section 4 we can prove that

π is unique up to propositional equality (and so on).

6 Discussions

6.1 The de�nition of groupoid laws

Our de�nition of MLID is inspired by an unpublished note written by Brunerie [3].

Our syntax for contractible contexts is a bit more general: in Brunerie's de�nition

the starting point of paths occurring at odd positions are always variable (ie. Mk is

always a variable) and there is no computation rules in his syntax. Brunerie de�nes

ω-groupoids as models of its syntax, since the absence of computation rules makes

his framework more free about how coherence issues are dealt with. However, the

goal of our syntax is not give the general syntax for weak ω-groupoids but rather

to study only the groupoid structure in the particular case of type theory where

computation rules are the natural way to deal with coherence. Nevertheless, it

would be an interesting future work to make a precise comparison between other

de�nitions of ω-groupoids and models of MLID.

The semantical nature of Garner and van den Berg [9] makes it quite di�cult

to relate to our work, however we believe that Lumsdaine's construction [5] of a

contractible globular operad may be described in our framework.

6.2 The n-ary case

Throughout this article, we only use the unary case of parametricity theory, but

it could be easily generalized to the binary case by transporting along two paths :

Jx = yK2 ≡ λ(p : x = y)(q : x′ = y′).p∗(q∗(xR)) = yR. This translation is well-typed

under the binary translation Jα : Typei, x : α, y : αK2 given by

αα′ : Typei, αR : α→ α′ → Typei, x : α, x′ : α′, xR : αR xx
′, y : α, y′ : α′, yR : αR y y

′

The translation J1αxK2 : 1αx∗
(
1αx′∗(xR)

)
= xR of 1αx is given by J1αxK2 ≡ 1αR xx

xR
which

is de�ned under the translated context Jα : Type, x : αK2. Similarly, the translation

of path-induction is obtained by nesting 2+1 path-induction:

JJ(B,U, V)K2 ≡ J(J(J(JBK2, U, V), U ′, V ′), JUK2, JV K2)

It is a routine check to generalize the abstraction theorem of Section 3, in order

to a have a binary version of parametricity. Likewise, the n-ary case, is obtained

by transporting along n path and the translation of path-induction is obtained by

nesting n+ 1 path-inductions.

13

6.3 Encoding identity types with inductive families.

In dependent type systems that support inductive families, it is possible to encode

identity types by an inductive predicate [4]. For instance, in the coq proof assistant:

Inductive paths (A : Type) (a : A) : A → Type := idpath : paths A a a.

As explained in [2] (Section 5.4), the parametricity translation extends well to

inductive families. The idea is to translate an inductive type I by a new inductive IR
whose constructors are the translation of constructors of I. Likewise, the elimination

scheme for IR is the translation of the one of I.

Inductive paths_R (A : Type) (A_R : A → Type) (a : A) (a_R : A_R a) :

forall x, A_R x → paths A a x → Type :=

idpath_R : paths_R A A_R a a_R a a_R (idpath A a).

There is an equivalence of types (in the homotopy theory sense, see [8]) between

this inductive type and our translation of identity. It is obtained by using the

induction principle associated with pathsR in one direction; and by nested path-

inductions on p and on the proof of transport along p in the other direction. This

indicates that they are morally the same; it may convince the reader that the results

of the last two sections could have been carried out using the encoding instead of

the primitive notion of identity types.

6.4 Dealing with axioms

While formalizing proofs that need axioms which are independent, it is a common

practice to simply add them in the context. Then, if one want to use the para-

metricity translation, he also needs to provide a witness of the parametricity of the

axiom. Therefore axioms that can prove their own parametricity are well-behaved

with respect to the translation. More formally, we say that a closed type P : Type
is provably parametric if the type ∀h : P, h ∈ JP K is inhabited. We will now give two

examples of axioms using identity types which are provably parametric.

• uniqueness of identity proofs (UIP) : Let uip be the following type uip ≡ ∀X :

Type, x y : X, p q : x = y.p = q. We want to �nd an inhabitant of ∀f : uip.f ∈
JuipK. The statement f ∈ JuipK unfolds into ∀JX : Type, x y : X, p q : x =

yK.(f Ax y p q)∗(pR) = qR. The conclusion is an equality between paths, so it is

provable using f .

• function extensionality : Let funext be the following type funext ≡ ∀A :

Type, B : A → Type, f g : ∀x : A.Bx.(∀x : A.f x = g x) → f = g. In his original

development, Voedvoesky showed that funext is logically equivalent (there is a

function in both directions) to the so-called weak extensionality (see [8]). It is

de�ned by weakext ≡ ∀A : Type, P : A→ Type.(∀x : A.ContrP x)→ Contr (∀x :

A.P x)) where ContrA ≡ ∃x : A.∀y : A.x = y is the predicate for contractible

types; ie. types which are equivalent to the singleton type. We now sketch the

proof that weakext is provably parametric (and thus so is funext). The main

idea is to notice that M ∈ JContrAK is logically equivalent to Contr (JAKM1)

14

where M1 is the �rst projection of M . The unfolding of k ∈ JweakextK is:

∀A : Type, AR : A→ Type, P : A→ Type, PR : (∀x : A, xR : AR x.P x→ Type),

φ : (∀x : A.Contr (P x)), φR : (∀x : A, xR : AR x.(φx) ∈ JContrP xK).
(k AP φ) ∈ JContr (∀x : A.P x)K

Therefore, using the logical equivalence in one direction we can deduce the conclu-

sion from Contr (k AP φ)1 ∈ J∀x : A.P x)K). Then using k : weakext two times,

it is enough to prove that ∀x : A, xR : AR x.Contr ((k AP φ)1x) ∈ JP xK) (1).

Notice that (k AP φ)1 x =A (φx)1 because A is contractible. So we can trans-

port along this path in (1) to obtain ∀x : A, xR : AR x.Contr ((φx)1 ∈ JP xK)
(2). Now, using the other direction of logical implication, (2) is implied by

∀x : A, xR : AR x.(φx) ∈ JContr (P x)K) which is exactly the type of φR.

7 Conclusion

This work shows that parametricity theory may be used to deduce properties about

the algebraic structure of identity types. It allows to give formal arguments to prove

canonicity results about de�nitions in a proof-relevant setting.

The most important question that remains open is whether or not we can extend

the translation and the uniqueness property of groupoid laws to deal with Voevod-

sky's univalence axiom. One way to solve this question would be to prove that

univalence axiom is provably parametric which would yield to a positive answer to

the question of the compatibility of parametricity theory and univalence. Regard-

less of the answer to this problem, solving it would give a better understanding of

polymorphic type quanti�cations in univalent universes.

References

[1] Henk Barendregt. Lambda Calculi with Types. In Handbook of Logic in Computer Science, pages
117�309. Oxford University Press, 1992.

[2] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Proofs for free - parametricity for dependent
types. J. Funct. Program., 22(2):107�152, 2012.

[3] Guillaume Brunerie. Syntactic grothendieck weak ∞-groupoids. Available as http://uf-ias-2012.
wikispaces.com/file/view/SyntacticInfinityGroupoidsRawDefinition.pdf.

[4] Peter Dybjer. Inductive families. Formal Asp. Comput., 6(4):440�465, 1994.

[5] Peter LeFanu Lumsdaine. Weak omega-categories from intensional type theory. In Pierre-Louis Curien,
editor, TLCA, volume 5608 of Lecture Notes in Computer Science, pages 172�187. Springer, 2009.

[6] Zhaohui Luo. Ecc, an extended calculus of constructions. In LICS, pages 386�395. IEEE Computer
Society, 1989.

[7] John C. Reynolds. Types, Abstraction and Parametric Polymorphism. In IFIP Congress, pages 513�523,
1983.

[8] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics.
http://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

[9] Benno van den Berg and Richard Garner. Types are weak ω-groupoids. Proceedings of the London
Mathematical Society, 102(2):370�394, 2011.

15

http://uf-ias-2012.wikispaces.com/file/view/SyntacticInfinityGroupoidsRawDefinition.pdf
http://uf-ias-2012.wikispaces.com/file/view/SyntacticInfinityGroupoidsRawDefinition.pdf
http://homotopytypetheory.org/book

	Introduction
	Presentation of the syntax
	Extending Relational Parametricity to Identity types
	Canonicity in parametric loop spaces
	Groupoid laws
	Discussions
	The definition of groupoid laws
	The n-ary case
	Encoding identity types with inductive families.
	Dealing with axioms

	Conclusion
	References

