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Programming Languages and Types

» Choosing or designing languages for systems
» Unix: C
» SPIN: Modula-3
» Singularity: Sing#
» sel4: Isabelle, Haskell and C
» House: Haskell
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Can we have more advanced types and low level efficiency?



ATS

» ML-like, strong C integration, LF-style theorem proving
» Linear types (a.k.a. view types), dependent types

» Separation of proof-world and program-world,
(proof | program)

» Practical, functional programming in system setting



Terrier OS

» ARM, TI OMAP4 MP-core, SMP, USB support

» Exploring advanced types in assisting OS development
» Compact and uncluttered design, with message-passing
» Work in progress



Challenges

» Bringing high level functional programming into OS
» Using advanced types to tackle common problems
> Interfacing with the low level code where needed

» Avoiding performance impacts



Functional programming

» Nested functions

» Tail recursion elimination
» Higher order functions

» Style



Resource management

» Linear reasoning: avoid memory leaks
» “Must be used once and exactly once”

» Typical pattern: allocate, transform, and release

let val (proof_var | pointer_var) = alloc ()
val x = do_something (proof_var | pointer_var)
in free (proof_var | pointer_var)



Synchronization

» Linear reasoning for synchronization
» Ensure proper lock management

» Correct sequencing of steps

let val (outer | _) = outer_lock () in
let val (inner | _) = inner_lock (outer | ) in
let val (outer | _) = inner_unlock (inner | ) in

outer_unlock (outer | )



Safe use of pointers

» Concept: “value of type t is stored at address 1"
» ATS "“@-view": type @ address

fun alloc_pair(): [1l: addr] ((int, int) @ 1 | ptr 1)
fun free_pair {1: addr} (pf: (int, int) @ 1 | p: ptr 1)
» Pointers: a “dependent type” i.e. a type indexed by a value

» In this case: the value is the address

» The “@-view” validates the pointer



Array bounds checking

» Integer constraint solver
» Automatic bounds checks
» array: dependent type indexed by length

» Array access must be within 0 </ < n

fun £ {n: int | n > 3}
(a: array (int, n), len: int n): int =
let val x = A[0] in
if len > 4 then x + A[4] else x



Integer

constraints

» Not just limited to arrays

» Example from scheduler

“exists tick t such that t > now'

val [now: int] now: tick now = timer_32k_value()

fun is_earlier_than {n, m: nat}
(tn: tick n, tm: tick m): bool (n < m)

val future: [t: int | t > now] tick t =



Avoiding overhead

» Erasure of statics
» Flat types, C data representation

» Templates



ATS integration

ATS file

Generated C

Object file

Object file

Linked Kernel

» ATS acts as preprocessor
» No run-time and minimal static support

» ATS in both kernel and program components



Protection

T
Virtual Address

» Hardware memory protection optional

Physical Address

» Can rely on hardware protections when needed

» Or can switch to static verification when ready



Protection

T
Virtual Address

» All programs take advantage of ELF features for relocation

Physical Address

» Kernel has load-time linker which rewrites binary

» Can rewrite binaries into the two different memory models



Putting it together

The role of type systems in OS development
Application of advanced types for better assurance
Incremental approach to verification

Straightforward machine translation to C

vV v v v Y

Depends on compiler and hardware correctness
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seL4 and Terrier

selL4

» Haskell prototype,
Isabelle specification,
refinement proof between
specification and C

» Entire kernel, big effort

» Top-down

Terrier

> Written directly in
C/ATS mix, ATS types

» Flexible, selective effort

» Bottom-up



Future work

» Writing more proofs
» Adding further hardware support

» Deploying on an experiment
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