Applying Language-based Static Verification in an
ARM Operating System

Matthew Danish

Boston University
md@bu.edu

9 May 2013

What do we want?

Correctness

Flexibility Responsiveness

Practicality Predictability

What do we want?

Correctness

Flexibility Responsiveness

T General

Purpose /
0s
Real

Time
0os

Practicality Predictability

What do we want?

Correctness

Flexibilit '

exibility T General
Purpose
0s

'
'

Practicality

Responsiveness

L

Real
Time
0os

Predictability

Programming Languages and Types

» Choosing or designing languages for systems
» Unix: C
» SPIN: Modula-3
» Singularity: Sing#
» sel4: Isabelle, Haskell and C
» House: Haskell

Programming Languages and Types

» Choosing or designing languages for systems
» Unix: C
» SPIN: Modula-3
» Singularity: Sing#
» sel4: Isabelle, Haskell and C
» House: Haskell

"Partial specifications" — Types —— Language

0os

Advanced
types

House

Singularity

selL4

SPIN

Unix
Low level

efficiency

Advanced
types

Singularity

House selL4

SPIN

Unix

Low level
efficiency

Can we have more advanced types and low level efficiency?

ATS

» ML-like, strong C integration, LF-style theorem proving
» Linear types (a.k.a. view types), dependent types

» Separation of proof-world and program-world,
(proof | program)

» Practical, functional programming in system setting

Terrier OS

» ARM, TI OMAP4 MP-core, SMP, USB support

» Exploring advanced types in assisting OS development
» Compact and uncluttered design, with message-passing
» Work in progress

Challenges

» Bringing high level functional programming into OS
» Using advanced types to tackle common problems
> Interfacing with the low level code where needed

» Avoiding performance impacts

Functional programming

» Nested functions

» Tail recursion elimination
» Higher order functions

» Style

Resource management

» Linear reasoning: avoid memory leaks
» “Must be used once and exactly once”

» Typical pattern: allocate, transform, and release

let val (proof_var | pointer_var) = alloc ()
val x = do_something (proof_var | pointer_var)
in free (proof_var | pointer_var)

Synchronization

» Linear reasoning for synchronization
» Ensure proper lock management

» Correct sequencing of steps

let val (outer | _) = outer_lock () in
let val (inner | _) = inner_lock (outer |) in
let val (outer | _) = inner_unlock (inner |) in

outer_unlock (outer |)

Safe use of pointers

» Concept: “value of type t is stored at address 1"
» ATS "“@-view": type @ address

fun alloc_pair(): [1l: addr] ((int, int) @ 1 | ptr 1)
fun free_pair {1: addr} (pf: (int, int) @ 1 | p: ptr 1)
» Pointers: a “dependent type” i.e. a type indexed by a value

» In this case: the value is the address

» The “@-view” validates the pointer

Array bounds checking

» Integer constraint solver
» Automatic bounds checks
» array: dependent type indexed by length

» Array access must be within 0 </ < n

fun £ {n: int | n > 3}
(a: array (int, n), len: int n): int =
let val x = A[0] in
if len > 4 then x + A[4] else x

Integer

constraints

» Not just limited to arrays

» Example from scheduler

“exists tick t such that t > now'

val [now: int] now: tick now = timer_32k_value()

fun is_earlier_than {n, m: nat}
(tn: tick n, tm: tick m): bool (n < m)

val future: [t: int | t > now] tick t =

Avoiding overhead

» Erasure of statics
» Flat types, C data representation

» Templates

ATS integration

ATS file

Generated C

Object file

Object file

Linked Kernel

» ATS acts as preprocessor
» No run-time and minimal static support

» ATS in both kernel and program components

Protection

T
Virtual Address

» Hardware memory protection optional

Physical Address

» Can rely on hardware protections when needed

» Or can switch to static verification when ready

Protection

T
Virtual Address

» All programs take advantage of ELF features for relocation

Physical Address

» Kernel has load-time linker which rewrites binary

» Can rewrite binaries into the two different memory models

Putting it together

The role of type systems in OS development
Application of advanced types for better assurance
Incremental approach to verification

Straightforward machine translation to C

vV v v v Y

Depends on compiler and hardware correctness

Advanced
types

House

Singularity
selL4

SPIN

Unix
Low level

efficiency

Advanced
types

House

Terrier
Singularity
sel4
SPIN
Unix

Low level

efficiency

seL4 and Terrier

selL4

» Haskell prototype,
Isabelle specification,
refinement proof between
specification and C

» Entire kernel, big effort

» Top-down

Terrier

> Written directly in
C/ATS mix, ATS types

» Flexible, selective effort

» Bottom-up

Future work

» Writing more proofs
» Adding further hardware support

» Deploying on an experiment

	Introduction
	What do we want?
	PL and types
	Big picture
	ATS
	Terrier
	Challenges
	Functional programming

	Using Advanced Types
	Resource management
	Synchronization
	Dependent types
	Avoiding overhead
	ATS integration
	Relocatable programs

	Putting it together
	Related Work
	Big picture
	seL4

	Conclusion

