
Functional Pearl: Four slot asynchronous
communication mechanism

Matthew Danish

September 17, 2013

Introduction

I Low-level systems programming with dependent types

I Simpson, 1989. Four slot fully asynchronous communication
mechanism.

reader writer

latest
coherent
data

I No synchronization or delay caused to reader or writer

I Reader sees single piece of coherent data from writer

I Requires a “four slot array” to operate safely

Four slot mechanism: state

Global state

I The ’reading’ variable, R : bit.

I The ’latest’ variable, L : bit.

I The 2-slot bit array of indices, slot : {bit, bit}.
I The 4-slot array of data, array : {{α, α}, {α, α}}.

Local state

I The ’pair’ chosen by writer or reader wp, rp : bit.

I The ’index’ chosen by writer or reader wi , ri : bit.

Four slot mechanism: dataflow

'pair'

'index' reader

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
0010111100011001100
0011101110111011110
0101111000110110110
1011110001101111100

writer

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
0010111100011001100
0011101110111011110
1100010110001100110
1011110001101111100

array[0,0]

array[1,0]

array[0,1]

array[1,1]

1 0slot[]:

'reading'

'latest'

Four slot mechanism: incoherence

'pair'

'index'

reader

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
0010111100011001100
0011101110111011110
0101111000110110110
1011110001101111100

writer

0110010100010010001
0100101101010000100
0100101000010000100
0101011111001000011
0010000100010100001
0010111100011001100
0011101110111011110
1100010110001100110
1011110001101111100

array[0,0]

array[1,0]

array[0,1]

array[1,1]

1 0slot[]:

'reading'

'latest'

incoherent!

Four slot mechanism

Writer

WS1 wp ← ¬R

WS2 wi ← ¬slot [wp]

WS3 write data (wp,wi , item)

WS4 slot [wp]← wi

WS5 L← wp

Reader

RS1 rp ← L

RS2 R ← rp

RS3 ri ← slot [rp]

RS4 item← read data (rp, ri)

RS5 return item

Four slot mechanism

Writer

WS1 wp ← ¬R

WS2 wi ← ¬slot [wp]

WS3 write data (wp,wi , item)

WS4 slot [wp]← wi

WS5 L← wp

Reader

RS1 rp ← L

RS2 R ← rp

RS3 ri ← slot [rp]

RS4 item← read data (rp, ri)

RS5 return item

Arbitrary interleaving

I Suppose L = 1 and R = 0

WS1 wp ← ¬R RS1 rp ← L

I Now wp = rp

WS2 wi ← ¬slot [wp] RS2 R ← rp

RS3 ri ← slot [rp]

I And wi 6= ri

WS3 write data (wp,wi , item) RS4 item← read data (rp, ri)

I . . .

Arbitrary interleaving

I Suppose L = 1 and R = 0

WS1 wp ← ¬R RS1 rp ← L

I Now wp = rp

WS2 wi ← ¬slot [wp] RS2 R ← rp

RS3 ri ← slot [rp]

I And wi 6= ri

WS3 write data (wp,wi , item) RS4 item← read data (rp, ri)

I . . .

Arbitrary interleaving

I Suppose L = 1 and R = 0

WS1 wp ← ¬R RS1 rp ← L

I Now wp = rp

WS2 wi ← ¬slot [wp] RS2 R ← rp

RS3 ri ← slot [rp]

I And wi 6= ri

WS3 write data (wp,wi , item) RS4 item← read data (rp, ri)

I . . .

Arbitrary interleaving

I Suppose L = 1 and R = 0

WS1 wp ← ¬R RS1 rp ← L

I Now wp = rp

WS2 wi ← ¬slot [wp] RS2 R ← rp

RS3 ri ← slot [rp]

I And wi 6= ri

WS3 write data (wp,wi , item) RS4 item← read data (rp, ri)

I . . .

Coherency property

Theorem (Coherency)

The writer and the reader do not access the same data slot at the
same time. More precisely, this assertion must be satisfied at
potentially conflicting program points WS3 and RS4:

wp 6= rp ∨ wi 6= ri

Problem:
wp and rp (wi and ri) are local variables in separate processes

Coherency property

Theorem (Coherency)

The writer and the reader do not access the same data slot at the
same time. More precisely, this assertion must be satisfied at
potentially conflicting program points WS3 and RS4:

wp 6= rp ∨ wi 6= ri

Problem:
wp and rp (wi and ri) are local variables in separate processes

Static dependent types to the rescue!

I Observed values of atomic variables R, L, slot [] can tell us
facts about unseen state, for instance:

I
RS2 R ← rp

WS1 wp ← ¬R

}
wp 6= rp at WS1

I
WS1 wp ← ¬R

RS2 R ← rp

}
wp

?
= rp at WS1

Property (Interaction of WS1 and RS2)

If wp = rp at WS1 then WS1 preceded RS2.

Static dependent types to the rescue!

I Observed values of atomic variables R, L, slot [] can tell us
facts about unseen state, for instance:

I
RS2 R ← rp

WS1 wp ← ¬R

}
wp 6= rp at WS1

I
WS1 wp ← ¬R

RS2 R ← rp

}
wp

?
= rp at WS1

Property (Interaction of WS1 and RS2)

If wp = rp at WS1 then WS1 preceded RS2.

Static dependent types to the rescue!

I Observed values of atomic variables R, L, slot [] can tell us
facts about unseen state, for instance:

I
RS2 R ← rp

WS1 wp ← ¬R

}
wp 6= rp at WS1

I
WS1 wp ← ¬R

RS2 R ← rp

}
wp

?
= rp at WS1

Property (Interaction of WS1 and RS2)

If wp = rp at WS1 then WS1 preceded RS2.

Static dependent types to the rescue!

Theorem
If WS1 precedes RS2 then it also precedes RS3 ri ← slot [rp].

reader

writer
controls

L, slot[]

controls
R

usesuses

I The writer controls the values of slot [] and L

I The reader has only one choice for rp, ri .

I Therefore, the writer merely needs to pick the opposite index.

I Let’s encode these kind of properties into types.

WS1

wp ← ¬R

absview ws1_read_v (R: bit, rstep: int, rp: bit)

fun get_reading_state ():
[rstep: nat]

[R, rp: bit | R == rp || (R <> rp ==> rstep < 2)]

(ws1_read_v (R, rstep, rp) | bit R)

WS2

wi ← ¬slot [wp]

absview ws2_slot_v (s: bit, rp: bit, ri: bit)

fun get_write_slot_index {R, wp, rp: bit} {rstep: nat} (

pfr: !ws1_read_v (R, rstep, rp) |

wp: bit wp

): [s, ri: bit | (rstep < 3 && wp == rp) ==> s == ri)]

(ws2_slot_v (s, rp, ri) | bit s)

WS3

write data (wp,wi , item)

fun{a: t@ype} write_data

{R, s, wp, wi, rp, ri: bit | wp <> rp || wi <> ri} {rstep: nat} (

pfr: !ws1_read_v (R, rstep, rp),

pfs: !ws2_slot_v (s, rp, ri) |

wp: bit wp, wi: bit wi, item: a

): void

WS4

slot [wp]← wi

absview ws4_fresh_v (p: bit)

fun save_write_slot_index

{R, s, wp, wi, rp, ri: bit | wi <> s} {rstep: nat} (

pfr: !ws1_read_v (R, rstep, rp),

pfs: ws2_slot_v (s, rp, ri) |

wp: bit wp, wi: bit wi

): (ws4_fresh_v wp | void)

WS5

L← wp

fun save_latest_state

{R, rp, wp: bit | wp <> R} {rstep: nat} (

pfr: ws1_read_v (R, rstep, rp),

pff: ws4_fresh_v wp |

wp: bit wp

): void

write

(* Step 1 *)

val (pfr | R) = get_reading_state ()

val wp = not R

(* Step 2 *)

val (pfs | s) = get_write_slot_index (pfr | wp)

val wi = not s

(* Step 3 *)

val _ = write_data (pfr, pfs | wp, wi, item)

(* Step 4 *)

val (pff | _) = save_write_slot_index (pfr, pfs | wp, wi)

(* Step 5 *)

val _ = save_latest_state (pfr, pff | wp)

WS1 wp ← ¬R

WS2 wi ← ¬slot
[
wp

]

WS3 write data
(
wp ,wi , item

)

WS4 slot
[
wp

]
← wi

WS5 L← wp

Conclusion

I No overhead: Types erased during compilation.

I Each step compiles to a line or two of C code.

I Dependent types mixed with systems programming.

I Stronger specifications, more confidence, fewer bugs.

