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ABSTRACT
Intelligent sensors using deep learning to comprehend video streams
have become commonly used to track and analyse the movement
of people and vehicles in public spaces. The models and hardware
become more powerful at regular and frequent intervals. However,
this computational marvel has come at the expense of heavy energy
usage. If intelligent sensors are to become ubiquitous, such as being
installed at every junction and frequently along every street in a
city, then their power draw will become non-trivial, posing a severe
downside to their usage. We explore Multi-Object Tracking (MOT)
solutions based on our custom system that use less power while
still maintaining reasonable accuracy.

CCS CONCEPTS
•Computer systems organization→ Sensor networks; •Com-
puting methodologies→ Computer vision.
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1 INTRODUCTION
Dynamic digital twins [9] and other embedded sensor networks [7]
are becoming popular ways to gather data about the built environ-
ment in real-time for immediate analysis or reaction. This requires
ubiquitous installation of sensors, some of which may be naturally
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low-power (such as temperature sensors), but others invoke com-
putationally intensive workloads. We have been exploring a sensor
design that can solve the Multi-Object Tracking (MOT) problem us-
ing video camera input, using machine learning techniques to distil
the high-bandwidth image stream down to relatively few numbers
that can be easily transmitted without significant bandwidth or
privacy concerns.

The MOT problem takes as input an image sequence and a set of
objects of interest. Solutions must trace their movement through-
out the image sequence while maintaining the distinct identity of
each object. We approach this problem by finding bounding boxes
around objects in each frame and using tracking and data associa-
tion techniques to find correspondences between bounding boxes
in successive frames. It is important to determine if a bounding box
is being drawn around a newly introduced object, of if a previously-
known object has disappeared. Altogether, this is known as the
‘tracking-by-detection’ approach [3].

Most approaches to solving the MOT problem are computation-
ally and power-intensive. Feeding the video stream into software
running on a high-performance workstation with a top-end GPU
will produce a highly accurate result but with intensive power re-
quirements: VoVNet [11] significantly reduces power requirements
for object detection but still required 63.9W when tested on a work-
station with a NVIDIA Titan X GPU. There are deployments [13]
with such powerful equipment, but we believe they are using much
more power than is necessary for the task, and at a large scale this
raises environmental concerns. We focus on low-power solutions,
ideally in the single-digit watt range.

2 RELATEDWORK
Lujic, et al. [12] proposed InTraSafEd5G (Increasing Traffic Safety
with Edge and 5G) as an application of object detection to help pre-
vent crashes between turning drivers and people who are walking
or cycling at junctions. They deployed a Raspberry Pi 4 with Coral
EdgeTPU running the SSD MobileNet v2 model to detect people
at a real-life installation with a camera pointing at a junction in
Vienna. The presence of people was then transmitted using MQTT
over 5G to drivers running a special mobile phone app that then
would display a warning message in the driver’s view. The average
information delivery latency was about 108ms in their experiment.

Fernández-Sanjuro, et al. [6] developed a real-time multi-object
tracking-by-detection system on the NVIDIA Jetson TX2 embedded
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computing board with Pascal GPU. The object detector is based
on customised YOLOv3 architecture and the tracker is a combina-
tion of an appearance-based correlation filter tracker (KCF) and a
motion-based Kalman Filter tracker. To reach real-time speeds the
object detector is only used on every eleventh frame. The Jetson
is a more powerful computer than the Raspberry Pi and consumes
approximately 15W under load, about twice as much as the Pi.
SkyNet [19] is also a Jetson-based project with an object detec-
tion model developed from the bottom-up to capture hardware
limitations.

The previous iteration of DeepDish [4] explored object detection
and tracking on the Raspberry Pi. It demonstrated feasible CPU-
only tracking-by-detection and showed power usage could be kept
to within 7Wwhen not overclocking the CPU. One surprising result
was that low framerate did not necessarily affect the accuracy of
the results — in terms of a people-counting metric. In some cases
the result was even improved by lower framerates. DeepDish is
the basis of the current work, however the detection and tracking
engine has been completely rewritten for high-performance and
flexibility on various platforms, and works with either GPUs or
Coral EdgeTPUs when available.

MARLIN [2] is an object detection and tracking system for aug-
mented reality with an explicit goal of reducing energy drain on
mobile phones (it was tested on the LG G6 and Google Pixel 2). They
used the Tiny YOLO object detector but focused on finding ways
to avoid invoking it because the detection latency is 1,200ms and it
consumes an additional 1.7-1.9W when running. Object tracking
is maintained using optical flow and they trained and evaluated a
‘change detector’ based on random forest classifiers to determine
if the object detector needed to be run again. They compared this
against methods that simply skipped frames and a baseline method
that ran detection on every frame. They found thatMARLIN reduces
power consumption by 34% on average with a typical accuracy loss
of less than 10%.

3 EXPERIMENTAL SETUP
3.1 Hardware
Our edge node is a Raspberry Pi 4B, which is a Broadcom BCM2711
system-on-chip with a quad-core Cortex-A72 (ARM v8) 64-bit pro-
cessor running at 1.5GHz, with 4GB of RAM. We have connected
a Google Coral EdgeTPU device to one of the USB 3.0 ports to
provide hardware acceleration for specially compiled models. Ed-
geTPUs work well for convolutional neural networks and other
simple feed-forward networks.

3.2 Software
We use the TensorFlow-Lite (TFLite) engine for evaluation on the
Raspberry Pi, and the controlling software is written in Python
3.7 running under Hypriot, a Debian-based operating system cus-
tomised for Raspberry Pi and specialised to run Docker. Our soft-
ware runs within a Docker container based on the BalenaLib frame-
work, with the necessary libraries and modules all ready to go.

3.3 Test harness
In order to simulate the capture of live video, we have written the
program with a queue feeder thread to read video files at a constant

framerate (such as 25 FPS) and offer the video frame to the main
thread for a limited time period until the next one is ready. If the
input queue of the main thread is not ready to accept the video
frame when the time elapses, then that video frame is dropped and
the feeder moves onto the next one. This allows us to simulate
the effects of live video while being able to make comparisons
against existing well-known video sets with ground-truth data and
metric-analysis scripts, such as those from MOT15 [10] including
its multi-object tracking accuracy (MOTA) metric.

Power consumption is measured by a Tasmota smart plug. When-
ever the power usage changes by more than 0.1W, this sensor trans-
mits the new numbers using MQTT over Wi-Fi to our experiment-
monitoring workstation. DeepDish also transmits its telemetry
using MQTT to the same computer, so its data can be correlated
with the power readings, and average power usage measured over
the running time of a test.

4 ALGORITHM
We follow the basic architectural concept of DeepSORT [18], as
shown in Figure 1, but with substantial modifications to object
detection, feature encoding and tracking/association.

4.1 Object detection
We use a pluggable object detection architecture designed to sup-
port numerous models and new ones to come. At the time of this
writing, here are some notable examples we support that generally
fall into the following categories:

• TFLite models, and their quantised EdgeTPU versions:
– EfficientDet Lite [1]
– SSD MobileNet v1 and v2 [8]

• YOLOv5 [16] family of models, converted into TFLite and
EdgeTPU-supporting formats:
– In particular, the smaller and faster architectures, namely:
YOLOv5n, YOLOv5s and their recent updates, YOLOv5n6
and YOLOv5s6

• Other models that fit in the TensorFlow object detection
family, but are less suitable for edge computing:
– EfficientDet family of models (D0. . .D7) [15]
– CenterNet ResNet101 and CenterNet HG104 [5]

The output of the object detector is mapped into a common
interface composed of bounding boxes, labels and confidence scores
for each. If the background-subtraction option is enabled then we
prune any bounding boxes that do not contain regions of motion.
If there are no objects detected in the scene, and powersaving is
enabled, then we begin an artificial slowing-down process that
intentionally bottlenecks the pipeline so that the object detector
runs less frequently while there are no objects in the scene. Once
any object is detected, the pipeline returns to full speed.

4.2 Feature encoding and tracking
The DeepSORT-based feature-extraction step uses the DeepFLOW
CNN model trained on the Motion Analysis and Re-identification
Set (MARS) data-set [14] using the cosine metric learning tech-
nique [17]. Compared to the original work, we use smaller input
sizes of 16x32 and 32x64 to reduce latency. In order to speed up
processing times even further, we have also retrained a modified
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Figure 1: Tracking-by-detection pipeline.

Feature Encoder MOTA
constant 40.8%

8x16-mod 41.4%
16x32 41.4%
32x64 41.2%

Table 1: Comparing the accuracy performance of four fea-
ture encoders, with object detections in all cases provided
by the high-quality EfficientDet D7 model (see Section 4.2).

version of this model (‘8x16-mod’) with several layers removed, on
a smaller input size of 8x16 pixels, and found it to run much faster
with basically no loss of tracking accuracy. See Table 1 for a com-
parison of encoders and MOTA on the ‘TUD-Stadtmitte’ example
from MOT15, with object-detections in this case provided by the
high-quality EfficientDet D7 model running on an NVIDIA GeForce
RTX 2080Ti GPU.

In performing these tests, we converted the encoder model to the
TFLite format and modified it to accept a fixed batch-size so that
the deployed device need not run the full TensorFlow stack, but
only the much smaller tflite-runtime package, while still efficiently
processing batches (TFLite cannot handle variable input sizes in
the same manner as the full-blown TensorFlow). As a control mea-
sure we also implemented a ‘constant’ image-encoder that always
returns the same unit-vector for any input, which shows that a
significant amount of the value of the tracking module comes from
the data association portion discussed below.

Although running in batches reduces fixed overhead, feature
extraction must be run separately on each person detected, there-
fore this portion of the algorithm scales linearly by the number of
people that need tracking. Association of tracks with known history
of objects is performed by the DeepSORT method of combining
Mahalanobis distance computed on Kalman Filter distributions as
well as the cosine metric distance computed on extracted feature
vectors as discussed above. Objects that are new to the tracking
history are assigned a fresh identification number, and objects that
fail to be found for over 60 frames are considered to have left the
scene.

4.3 Pipeline
One of the goals with the complete rewrite of DeepDish was to
architect it in a scalable way. This has been achieved by structuring
the pipeline as a series of asynchronous Python tasks connected
by queues, based on the asyncio module. The frame capture loop,

Model e2e f2f obj enc cpu fif
EfficientDet-Lite0 459 175 162 78 231% 2.2
SSDMobileNetV1 409 104 65 99 296% 3.9
SSDMobileNetV2 384 99 64 92 296% 3.8

YOLOv5n6-320x320 537 188 175 104 227% 2.4
YOLOv5s6-320x320 455 194 183 50 183% 2.0

Table 2: Latencies (in ms) for various pipeline components,
comparing various object detector models (see Section 4.3).

object detector and feature encoder all run in separate threads in
order to ensure that they do not block the cooperatively-scheduled
asynchronous pipeline. The result has been a success, with the
pipeline capable of processing multiple ‘frames-in-flight’ at a time.
We instrumented the code to measure performance in several ways;
all of the below are averages over the course of a single run on the
MOT15 ‘TUD-Stadtmitte’ sample with the object detector running
on every frame:
e2e (ms) The time it takes from when a frame enters the pipeline

to when the pipeline finishes with it.
f2f (ms) The time between invocations of the same pipeline

stage by consecutive frames, a.k.a. 1/framerate.
obj (ms) The latency of the object detector per frame.
enc (ms) The latency of the feature encoder per frame.
cpu Average CPU utilisation.
fif Average number of frames-in-flight in the pipeline.
Table 2 shows instrumentation output for several sample runs.

Note that the f2f timings are significantly smaller than the e2e; this
means frames are hitting the end of the pipeline much more quickly
than it takes for a single frame to be processed. Some of the e2e
latency comes from waiting in queues, however both obj and enc
measure the latency of some of the significant computations that
take place in the pipeline and their combination is always longer
than the f2f time; this indicates that the pipeline is at the very least
performing object detection and feature encoding in parallel on
consecutive frames.

The previous generation DeepDish had frame-to-frame per-
formance (on an overclocked Raspberry Pi) modelled as T (n) =
130 + 36n milliseconds where n is the number of people detected in
the scene. All of the runs shown in Table 2 have comparable perfor-
mance to T (2), some significantly better than T (1), on a recorded
scene with 4-5 people on average. The differences are: use of the
EdgeTPU, pipelining to take advantage of the multiple CPU cores,
and a faster and lighter-weight feature-encoder.
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Figure 2: Power and accuracy at different CPU clock-speeds
(discussed in Sections 5.1 and 6.3).

5 REDUCING POWER USAGE
5.1 Underclocking
We experimentedwith underclocking the Raspberry Pi 4BCPU from
the normal 1.5GHz to see how it would affect power consumption
and performance. We tested different CPU clock-speeds under the
object detector model SSDMobileNetV1 and the constant feature
encoder, skipping two out of every three frames. The MOT15 video
‘TUD-Stadtmitte’ was fed into the test harness at a steady rate of 25
FPS, whether or not the system could keep up. The scatter plot in
Figure 2 shows the averageMOTA and power readings from six runs
at eleven different CPU frequency settings, of which the 1.5GHz is
the factory setting and those below it constitute underclocking.

It should be noted there is significant variability as frame-drop-
ping affected the results. In general, though, we can see that un-
derclocking causes an immediate reduction in accuracy without
necessarily reducing power usage, at least not until the clock-speed
is drastically lowered, severely affecting accuracy.

5.2 EdgeTPU effect
We experimented with holding all settings constant except for
swapping between the EdgeTPU and CPU-only versions of SSD-
MobileNetV1. These experiments were conducted on the ‘TUD-
Campus’ and ‘TUD-Stadtmitte’ videos from MOT15. Unsurpris-
ingly, connecting and using the Coral EdgeTPU increases power
consumption of the whole device, on average from 5.4W to 6.3W in
these tests. However, the acceleration of the EdgeTPU also greatly
increased the MOTA scores, as can be seen in Figure 3.

5.3 Choice of model
We looked at whether the object detector model affected the power
usage of the Raspberry Pi. We tested six models, all of which use
the EdgeTPU to some extent, running them six times each on five
different videos (the ones listed in Table 3). The results are shown
in Figure 4. The corresponding latencies are shown in Figure 5.
Power consumption was effectively the same for all the models
tested. Latencies varied substantially, with the MobileNet models
winning handily; see Section 6.2 for further discussion.
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Figure 3: Two sample videos from MOT15 are tested for
power usage and accuracy, first running on CPU, and then
boosted with the EdgeTPU (see Section 5.2).
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Figure 4: Comparison of power consumption by different ob-
ject detector models (see Section 5.3).

6 ACCURACY
6.1 Comparison to GPU
The DeepDish software is also able to run on workstations with
GPUs. We collected accuracy results of such high-power runs for
comparison purposes. With a GPU available, we chose to use the
high-quality EfficientDet D7 object detection model and to run
it alongside a 32x64 feature encoder generated from the original
DeepSORT neural architecture. These tests were run with no time
constraints on an Intel Core i9-based workstation equipped with
one NVIDIA GeForce RTX 2080Ti GPU using videos from MOT15
to produce the MOTA scores in Table 3. We selected these particular
videos, from the available benchmark set, because these ones largely
fit the target use-case of DeepDish, which is motion-tracking people
or vehicles in urban or interior scenes.
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Figure 5: Comparison of latency of different object detector
models (see Section 5.3).

Video MOTA
PETS09-S2L1 78.7%
TUD-Campus 63.2%

ETH-Pedcross2 50.6%
ADL-Rundle-6 55.6%

TUD-Stadtmitte 41.2%
Table 3: Accuracy of DeepDish running on a high-powered
workstation with GPU (see Section 6.1).

6.2 Accuracy and choice of model on the Pi
We examined accuracy on a model-by-model basis more closely
for two of the MOT15 videos, ‘TUD-Campus’ (Figure 6) and ‘ETH-
Pedcross2’ (Figure 7), first without overclocking and then at 2.0GHz
and higher voltage. Both videos have a fair amount of pedestrian
activity, the latter being a longer and more complex video with a
moving camera.We ran them on the test harness at 25 FPS, dropping
frames whenever the pipeline was no longer able to accept them in
time. We note that the performance of the SSDMobileNet family
continues to hold up, with its low latency (Figure 5) seeming to
make a big difference in outcome. EfficientDet-Lite0 comes in third,
dragged down by its higher running time,meaning thatmore frames
must be dropped. Surprisingly, the YOLOv5 family does poorly,
even using the newer ‘n6’ and ‘s6’ variants; it only manages to
achieve somewhat better latencies when using the 256x256 input
size, but then their MOTA scores come out worse than the ones
from EfficientDet-Lite0 (with its 320x320 input).

6.3 Overclocking
While overclocking goes against the grain of this work, because it
increases power consumption, we looked at it to see whether the
accuracy / power trade-offmight beworthwhile sometimes. Figure 2
shows MOTA and power consumption at a range of frequencies, all
the way up to 2.0GHz, in the manner described in Section 5.1. The
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Figure 6: Video ‘TUD-Campus’: accuracy vs choice of model
(see Section 6.2).
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Figure 7: Video ‘ETH-Pedcross2’: accuracy vs choice of
model (see Section 6.2).

chart shows that overclocking does increase power consumption
sigificantly, but also accuracy. This is most likely because fewer
frames are dropped. In this test it was possible to keep average
power usage under 7W even when overclocked to 1.8GHz, while
gaining most of the accuracy advantage of higher speeds.

7 CONCLUSION
The previous generation DeepDish relied on overclocking at least to
1.9GHz in order to bring the frame processing latency to within tol-
erable margins. That setup consumed 8.5W under load and brought
the CPU temperature to 57C, ultimately requiring active cooling
and ventilation.
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In comparison, the complete redesign of the pipeline and util-
isation of the EdgeTPU has resulted in a lower average power
consumption with quicker frame-processing latency. The MOTA
metric is affected by lower framerates in much different way that
the aforementioned people-counting metric was in the older work
(see Section 2 discussion on [4]). However, these lower scores can
be ameliorated to some extent through overclocking at the cost
of additional power consumption. In practice, the parameters and
choice of model may require some tuning for each particular scene
that DeepDish is monitoring.

We have shown results for a viable object detector and tracking
system able to run on hardware rated for wattage in the single-
digits. Furthermore, we should be able to take advantage of faster
and more accurate EdgeTPU-based object detection models as they
are developed. In the future, our work could be improved by po-
tential advancements such as a combined object-detecting and
feature-encoding model, or the addition of support for LSTM object
detection models to the EdgeTPU.

7.1 Source code
DeepDish is open-source and may be found on the web at:
https://github.com/AdaptiveCity/deepdish.
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