The Lengauer Tarjan Algorithm
for Computing the
Immediate Dominator Tree
of a Flowgraph
by
Martin Richards

mr@cl.cam.ac.uk
http://www.cl.cam.ac.uk/ mri0

Revised: Fri Jul 28 15:07:06 BST 2017

University Computer Laboratory
JJ Thomson Avenue

Pembroke Street

Cambridge, CB3 0FD

@ B/

\ O— @/@
O—B

RN

O—O—OF—O—0—0

—O

O—O—O—O—O—0O

<2

a
(=]

Processing Node 15

@ Node being processed

O Immediate predecessor of 15

DFS Tree edges to nodes > 15

/

=)

|

©

N

[y
=]

Semidominator of 21

A

w

O—O—O—O—O—O—0O

©
)

Processing Node 7

@ Node being processed

O Immediate predecssors of 7

p—

[%)

DFS Tree edges to nodes > 7

w

wn =~
@H @
[\%} e w
=Y
)
[54 @
I\
N

®—0
@)

a“ o
®

Processing Node 2

@ Node being processed

O Immediate predecessor of 2

—o

| =

®

DFS Tree edges to nodes > 2

[\9]

®.

[

[\%)
[
(]
[}
N

O—O—0—0—0
©
O—0:
®

w T
o
‘al\)

©
A

Nodes with Semidominator 18

Q Nodes with semidominator 18

DFS Tree edges to nodes > 18

Sdom/Idom

) 7Q @/Q

@H
[\°)
IH
=

[

[
[
&
[y
[}

@,
®

21/21 18/21

/

©
OF

22/22 24/24

w

O—O—O

N

|
®
®

ofllo
®

Nodes with Semidominator 2

@ Node being processed

O Nodes with semidominator 2

©.

[\%]

DFS Tree edges to nodes > 2

®©

@N
D N

©)

18/21

22/22 24/24

N
o)
®

16/16

©:

Nodes with Semidominator 1

@ Node being processed

O Nodes with semidominator 1

©.

~
J—

DFS Tree edges to nodes > 1

@N @»—t
@ S

OF

18/21

22/22 24/24

@A
= =

o]e:
o)
®

111 16/16

Final Phase

©.

O Nodes changed in final pass

~
[y

S @5 G’D”

©;

4/4 18/21<-2
11 24/24
© O ©® oL, & ©

2/14<-1

1
o)
®

3/6<-1

11 16/16

©,
®

Step 1: Initialisation

Vertices in depth first search discovery order from 1 to n.

For each vertex v from 1 to n set:

parent [v] := DFS tree parent of v
succs [v] := the given list of successors
preds [v] :=list of predecessors

semi [v] = v

idom[v] =0

ancestor[v] := 0

best [v] = v

bucket [v] =0

Note that indirection in BCPL normally uses expressions
such as parent!v, but for compatibility with other lan-
guages parent [v] is also allowed.

10

Steps 2, 3 and 4

FOR w = n TO 2 BY -1 DO
{ LET p = parent [w]

step2: FOR each v in preds([w] DO
{ LET u = EVAL(v)
IF semil[w] > semilu] DO

semi[w] := semi[u]
+
add w to bucket[semi [w]]
LINK(p, w)

step3: FOR each v in bucket [p]
{ LET u = EVAL(v)
idom[v] := semi[ul<semil[v] -> u, p
}
bucket[p] := 0

step4: FOR w = 2 TO n DO
UNLESS idom([w] = semi[w] DO
idom[w] := idom[idom[w]]
idom[1] := 0

11

Very Simple LINK and EVAL

LET LINK(v, w) BE ancestor[w] := v

LET EVAL(v) = VALQF
{ LET a = ancestor[v]

WHILE ancestor[a] DO
{ IF semi[v] > semil[a] DO v :
a := ancestor[al]

Il
)

// v is now the vertex
// with earliest semidominator
// of any in the ancestor chain.

RESULTIS v

12

Simple LINK and EVAL

LET LINK(v, w) BE ancestor[w] :=v
LET EVAL(v) = VALOF
{ UNLESS ancestor[v] RESULTIS v
COMPRESS (v)
RESULTIS best[v]
+

AND COMPRESS(v) BE
{ LET a = ancestorl[v]

UNLESS ancestor[a] RETURN
COMPRESS (a)

IF semi[best[v]] > semi[best[al] DO
best [v] r= best [a]

ancestor[v] := ancestorl[a]

13

Before calling EVAL(17)

©.

@ About to call EVAL(17)

——
[\°)

Anscestor link

O,

‘ Best link

()

—®

@.
4-—/

14

After calling EVAL(17)

©.

@ Just after calling EVAL(17)

——
[

Anscestor link

©

‘ Best link

(]

—©

15

Sophisticated EVAL

This version of EVAL calls COMPRESS to perform the
following optimisation of the ancestor chain wherever possi-
ble.

If there is an ancestor link from x to y and one from y to
z, then the link from x to y is replaced by one from x to z
updating the best field of x if necessary.

The effect of this optimisation is to modify the ancestor
links so that the ancestor chain length is less than 2 for

every wertex in the original chain. This clearly increases the
efficiency of later calls of EVAL.

LET EVAL(v) = VALOF
{ UNLESS ancestor[v] RESULTIS best[v]
COMPRESS (v)
RESULTIS semi[best[ancestor[v]]] < semi[best[v]] ->
best [ancestor[v]], best [v]

16

Sophisticated LINK
LET LINK(v, w) BE

{ LET s =w
{ LET cs = childl[s] // cs = child(s)
LET bcs = cs —> best[cs], O // bcs = best(child(s))
TEST cs &

semi [best[w]] < semi[bcs] // bcs=0 only when cs=0
THEN { // Combine the first two trees in the child chain,
// making the larger one the combined root.

LET ccs = childl[cs] // ccs = child(child(s))

LET ss = sizels] // sc = size(s)

LET scs = sizel[cs] // scs = size(child(s)

LET sccs = ccs->sizelccs],0 // sccs=size(child(child(s))

TEST ss-scs >= scs-sccs // Compare first two tree sizes.

THEN { ancestor([cs] := s // The first is larger or equal.
child[s] := ccs

ELSE { sizel[cs] := ss // The second is larger.

ancestor[s] := cs
s := cs
by
+
ELSE { BREAK }
} REPEAT

// Now combine the two forests giving the combination the
// child chain of the smaller forest. The other child chain is
// then collapsed, giving all its trees ancestor links to v.

best!s := best!w

IF sizel[v]<size[w] DO { LET t = s; s := child[v]; child[v] :=t }
sizel[v] := sizel[v] + sizelw]

WHILE s DO { ancestor([s] := v; s := childl[s] }

17

Balanced Trees

The number next to each vertex v in the following dia-
gram is semi|best[v]] and, in the child chains, these are non
decreasing. Note that child links are like reversed ancestor
links but with this monotonicity property.

Subtree ancestor link

Child link
V a 31
a‘.
&"
27
LINK(v,w) .-~/ o
. o 0 25
/, 27, ‘
v ® ov N
V4
y ® 0% p o
) o %9 © ®* ® oV o"
! 3 23 3 47
. :)
v @33 @’ @3
W 63 4 2 47
o 18 3 ® @ ©
10 48 ® o 29
o oV o ® & O
35 13. 37
@ 50 o)
45 31 .
28
4 ® o
o 0" o
‘s Yo 43/ \ 3 13
42
5 27 @Y L@ @ ®
o o o
23 65
4 54 @ [
ol PY b ® .30 0 2
" ® o
® 39

18

Balanced Trees 1

Just before LINK is called the best value of q may have
been reduced possibly requiring its child chain to be modified
to reinstate its monotonicity.

Subtree ancestor link

Child link
Vel
27
LINK(v, w) »s ®
35
o o o
‘e i
48 23
® 05 6 o
42. . .54 . .13 18
30@ 23 Yo o o
S @33 0% @3
31
We g 9 @Y
18 43
0 48 ® & /',
® oV [® O O
37
35 1
@30 ® s I)
45 31
33 28
9 @% o pey o
s 3 3/ \ 3 13
42
25 47 @ 7@ @ ®
o O [
23 65
4 54 @ [
0! gss b o .30 o 2
® O
Pet 19
@ 46 6‘ 31
o o

19

Balanced Trees 2

Subtree ancestor link

Child link
Vv P
27
LINK(v, w) »s ®
35
e oV
48 23
® 0% 65 o
42' . .54 . .13 18
30@ 23 e o)
@33 @ @3
31
We 29 Y9 @V
‘o o”
40 48 39 29
® o o ® & O
35 1 37
o s)
45 31 @30

33 28
4 o o
1. .95 .27

‘s %o a3/ \ 3 13
2
25 47 @ 7@ @ ®
o O ®

23 65

4 54 @ [
0! gss ® 0 o' = 2

® O

o

20

Balanced Trees 3

Subtree ancestor link

Child link
v .31
Yy
LINK(v, w) s
‘e @i
48 23
® 0% 65 o
42. . .54 . .13 18
309 23 Yo .47 o
" @33 0% @3 .
We 20 2@ ©
S 18 43
4 o’ * % W e e
® oV
37
@30 [2 e @
45 31 .
28
9 @% ® pey o
36
() = 42 43 31 '13
.25 .47 o .37 ® o
23 65
4 54 @ [
ol o5 b () '30 4‘ .29
18 39
® ® % 65 31

21

Balanced Trees 4a

The following is the result if the forest rooted at v had
fewer vertices than the forest that was rooted at w.

Subtree ancestor link

Child link
1
Ve
27
LINK(v, w) »s ®
o 0¥ o>
® oV
48 23
® 0 6 o
‘e ® © ® o- 18
30@ 23 ‘e .47 o
@3 .95 @3
Wedl 29 7@ @Y
18 43
40 3 ® 6 29
e o o ® 0 O
35 1 37
@5 o S I)
45 31 “
28
4 ® o
1. .95 '27
‘s A a3/ \31 13
42
25 47 @ 7@ @ o
o o o
23 65
4 54 @ [
o P b ® .30 ” 2
® O

22

Balanced Trees 4b

The following is the result if the forest rooted at v had
the same number or more vertices than the forest that was
rooted at w.

E— Subtree ancestor link

Child link

LINK(v, w)

@30
¢e 41.’ \.95
o ol \,

o

A

" 43/ 65/ 'y

23

Experimental Results

Results BCPL
bcplprogs/dom/1t.b which applies the three variants

from running the program

of the algorithm to random graphs.

Random Graph Cintcode Instruction Counts

Nodes Edges Seed v.simple simple sophisticated
1000 1500 1 284819 272331 321589
1000 2000 1 455097 317233 358262
1000 2500 1 1180722 376698 388822
1000 3000 1 2440849 445055 416713
1000 5000 1 5680947 630373 542251
1000 10000 1 12848479 1049128 850692

10000 50000 1 334315826 6614589 5432695

10000 100000 1 949583241 10928097 8541841

100000 400000 1 - 56932784 48589754
100000 123289 1 £ 24592148 25380561 32042239

24

