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Step 1: Initialisation

Vertices in depth first search discovery order from 1 to n.

For each vertex v from 1 to n set:

parent [v] := DFS tree parent of v
succs [v] := the given list of successors
preds [v] :=list of predecessors

semi [v] = v

idom[v] =0

ancestor[v] := 0

best [v] = v

bucket [v] =0

Note that indirection in BCPL normally uses expressions
such as parent!v, but for compatibility with other lan-
guages parent [v] is also allowed.
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Steps 2, 3 and 4

FOR w = n TO 2 BY -1 DO
{ LET p = parent [w]

step2: FOR each v in preds([w] DO
{ LET u = EVAL(v)
IF semil[w] > semilu] DO

semi[w] := semi[u]
+
add w to bucket[semi [w]]
LINK(p, w)

step3: FOR each v in bucket [p]
{ LET u = EVAL(v)
idom[v] := semi[ul<semil[v] -> u, p
}
bucket[p] := 0

step4: FOR w = 2 TO n DO
UNLESS idom([w] = semi[w] DO
idom[w] := idom[idom[w]]
idom[1] := 0
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Very Simple LINK and EVAL

LET LINK(v, w) BE ancestor[w] := v

LET EVAL(v) = VALQF
{ LET a = ancestor[v]

WHILE ancestor[a] DO
{ IF semi[v] > semil[a] DO v :
a := ancestor[al]

Il
)

// v is now the vertex
// with earliest semidominator
//  of any in the ancestor chain.

RESULTIS v
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Simple LINK and EVAL

LET LINK(v, w) BE ancestor[w] :=v
LET EVAL(v) = VALOF
{ UNLESS ancestor[v] RESULTIS v
COMPRESS (v)
RESULTIS best[v]
+

AND COMPRESS(v) BE
{ LET a = ancestorl[v]

UNLESS ancestor[a] RETURN
COMPRESS (a)

IF semi[best[v]] > semi[best[al] DO
best [v] r= best [a]

ancestor[v] := ancestorl[a]
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Sophisticated EVAL

This version of EVAL calls COMPRESS to perform the
following optimisation of the ancestor chain wherever possi-
ble.

If there is an ancestor link from x to y and one from y to
z, then the link from x to y is replaced by one from x to z
updating the best field of x if necessary.

The effect of this optimisation is to modify the ancestor
links so that the ancestor chain length is less than 2 for

every wertex in the original chain. This clearly increases the
efficiency of later calls of EVAL.

LET EVAL(v) = VALOF
{ UNLESS ancestor[v] RESULTIS best[v]
COMPRESS (v)
RESULTIS semi[best[ancestor[v]]] < semi[best[v]] ->
best [ancestor[v]], best [v]
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Sophisticated LINK
LET LINK(v, w) BE

{ LET s =w
{ LET cs = childl[s] // cs = child(s)
LET bcs = cs —> best[cs], O // bcs = best(child(s))
TEST cs &

semi [best[w]] < semi[bcs] // bcs=0 only when cs=0
THEN { // Combine the first two trees in the child chain,
// making the larger one the combined root.

LET ccs = childl[cs] // ccs = child(child(s))

LET ss = sizels] // sc = size(s)

LET scs = sizel[cs] // scs = size(child(s)

LET sccs = ccs->sizelccs],0 // sccs=size(child(child(s))

TEST ss-scs >= scs-sccs // Compare first two tree sizes.

THEN { ancestor([cs] := s // The first is larger or equal.
child[s] := ccs

ELSE { sizel[cs] := ss // The second is larger.

ancestor[s] := cs
s := cs
by
+
ELSE { BREAK }
} REPEAT

// Now combine the two forests giving the combination the
// child chain of the smaller forest. The other child chain is
// then collapsed, giving all its trees ancestor links to v.

best!s := best!w

IF sizel[v]<size[w] DO { LET t = s; s := child[v]; child[v] :=t }
sizel[v] := sizel[v] + sizelw]

WHILE s DO { ancestor([s] := v; s := childl[s] }
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Balanced Trees

The number next to each vertex v in the following dia-
gram is semi|best[v]] and, in the child chains, these are non
decreasing. Note that child links are like reversed ancestor
links but with this monotonicity property.
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Balanced Trees 1

Just before LINK is called the best value of q may have
been reduced possibly requiring its child chain to be modified
to reinstate its monotonicity.
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Balanced Trees 2
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Balanced Trees 3
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Balanced Trees 4a

The following is the result if the forest rooted at v had
fewer vertices than the forest that was rooted at w.
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Balanced Trees 4b

The following is the result if the forest rooted at v had
the same number or more vertices than the forest that was
rooted at w.
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Experimental Results

Results BCPL
bcplprogs/dom/1t.b which applies the three variants

from  running  the program

of the algorithm to random graphs.

Random Graph Cintcode Instruction Counts

Nodes  Edges Seed v.simple simple  sophisticated
1000 1500 1 284819 272331 321589
1000 2000 1 455097 317233 358262
1000 2500 1 1180722 376698 388822
1000 3000 1 2440849 445055 416713
1000 5000 1 5680947 630373 542251
1000 10000 1 12848479 1049128 850692

10000 50000 1 334315826 6614589 5432695

10000 100000 1 949583241 10928097 8541841

100000 400000 1 - 56932784 48589754
100000 123289 1 £ 24592148 25380561 32042239
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