
Backtracking Algorithms in
MCPL

using Bit Patterns and Recursion

by

Martin Richards

mr@uk.ac.cam.cl

http://www.cl.cam.ac.uk/users/mr/

Computer Laboratory

University of Cambridge

February 23, 2009

Abstract

This paper presents example programs, implemented in MCPL, that use bit pat-

tern techniques and recursion for the efficient solution of various tree search prob-

lems.

Keywords

Backtracking, recursion, bit-patterns, MCPL, queens, solitaire, pentominoes,

nonograms, boolean satisfiability.

CONTENTS i

Contents

1 Introduction 1

2 The Queens Problem 2

2.1 The queens program . 4

3 Solitaire Problems 5

3.1 Triangular solitaire . 5

3.2 The triangular solitaire program 8

3.3 A more efficent algorithm for triangular solitaire 10

3.4 The more efficient program . 13

3.5 Conventional solitaire . 16

3.6 The conventional solitaire program 17

4 The Pentominoes Problem 18

4.1 Pento . 18

4.2 The pento program . 20

4.3 Pento3 . 23

4.4 The Pento3 program . 25

4.5 The Pento4 program . 27

4.6 Pento6 . 31

4.7 The program . 32

4.8 The two player pentomino game 35

4.9 Exploring the move tree . 36

4.10 The program . 39

5 The Cardinality of D3 48

5.1 The program . 50

6 Nonograms 51

6.1 Implementation . 53

6.2 Observation . 55

6.3 The program . 56

7 Boolean Satisfiability 63

7.1 Longitudinal arithmetic . 64

7.2 Comment . 66

7.3 The program . 67

ii CONTENTS

8 Summary of Bit Pattern Techniques Used 71

8.1 poss&-poss . 71

8.2 bits&(bits-1) . 71

8.3 (pos<<1|pos>>1)&All . 71

8.4 brd&hhp . 71

8.5 (fnv!bit) brd . 71

8.6 Flipping a 32 × 32 bit map . 72

8.7 reflect and rotate . 72

8.8 Compacting a sparse bit patterns 72

8.9 Longitudinal arithmetic . 72

A Summary of MCPL 73

A.1 Outermost level declarations . 73

A.2 Expressions . 73

A.3 Constant expressions . 77

A.4 Patterns . 78

A.5 Arguments . 79

Bibliography 79

1

1 Introduction

This report has been written for two reasons. Firstly, to explore various effi-

cient algorithms for solving a variety of backtracking problems using recursion

and bit pattern techniques, and, secondly, to demonstrate the effectiveness of

MCPL[Ric97] for applications of this sort. MCPL is designed as a successor

to BCPL[RWS80]. Like BCPL, it is a simple typeless language, but incorpo-

rates features from more modern languages, particularly ML[Pau91], C, and

Prolog[CM81].

An implementation of MCPL together with all the programs described in

this report are freely available and can be obtained via my World Wide Web

Home Page[Ric]. Although the implementation is still under development and

somewhat incomplete, it is capable of running all these programs. A manual for

MCPL is also available via the same home page.

It is hoped that the MCPL notation is sufficiently comprehensible without

explanation, however a brief summary of its syntax has been included in the

appendix. For more information consult the MCPL manual.

One of the main attractions of bit pattern techniques is the efficiency of the

machine instructions involved (typically, bitwise AND, OR, XOR and shifts), and the

speed up obtained by doing 32 (or 64) simple logical operations simultaneously.

Sometimes useful results can be obtained by combining conventional arithmetic

operations with logical ones. There are many other useful bit pattern operations

that are cheap to implement in hardware but are typically not provided by ma-

chine designers. These include simple operations such as the bitwise versions of

nor (NOR), implies (IMP) and its complement (NIMP), as well as higher level oper-

ations such COMPACT to remove unwanted bits from a long bit pattern to form a

shorter one, its inverse (SPREAD), and certain permutation operations. Bit pat-

tern techniques are often even more useful on the 64 bit machines that are now

becoming more common.

If a problem can be cast in a form involving small sets then these techniques

often help. This report covers a collection of problems that serve to illustrate the

bit pattern techniques I wish to present. Some of these are trivial and some less so.

Most are useful as benchmark problems for programming languages that purport

to be good for this kind of application. It is, indeed, interesting to compare these

MCPL programs with possible ML, C, Prolog or LISP translations.

2 2 THE QUEENS PROBLEM

2 The Queens Problem

A well known problem is to count the number of different ways in which eight

queens can be placed on an 8×8 chess board without any two of them sharing the

same row, column or diagonal. It was, for instance, used as a case study in Niklaus

Wirth’s classic paper “Program development by stepwise refinement”[Wir71]. In

none of his solutions did he use either recursion or bit pattern techniques.

The program given here performs a walk over a complete tree of valid (partial)

board states, incrementing a counter whenever a complete solution is found. The

root of this tree is said to be at level 0 and represents the empty board. The root

has successors corresponding to the board states with one queen placed in the

bottom row. These are all said to be at level 1. Each level 1 state has successors

that correspond to valid board states with queens placed in the bottom two rows.

In general, any valid board state at level i (i > 0) contain i queens in the bottom

i rows and is a successor of a board state at level i − 1. The solutions to the

8-queens problem are the valid board states at level 8. Ignoring symmetries, all

these solutions are be distinct.

0 0 1 0 0 0 1 0

0011101001001100011000 0 0

Q

Q

poss

rdld

Q

Q

cols

Current row

Figure 1: The Eight Queens

The walk over the tree of valid board states can be simulated without physi-

cally constructing the tree. This is done using the function try whose arguments

ld, cols and rd contain sufficient information about the current board state for

its successors to be explored. Figure 1 illustrated how ld, cols and rd are used

to find where a queen can be validly placed in the current row without being

attacked by any queen placed in earlier rows. cols is a bit pattern containing

3

a one in for each column that is already occupied. ld contains a one for each

position attacked along a left going diagonal, while rd contains diagonal attacks

from the other diagonal. The expression (ld | cols | rd) is a bit pattern con-

taining ones in all positions that are under attack from anywhere. When this

is complemented and masked with all, a bit pattern is formed that gives the

positions in the current row where a queen can be placed without being attacked.

The variable poss is given this as its initial value.

LET poss = ~(ld | cols | rd) & all

The WHILE loop cunningly iterates over these possible placements, only execut-

ing the body of the loop as many times as needed. Notice that the expression

poss & -poss yields the least significant one in poss, as is shown in the following

example.

poss 00100010
-poss 11011110

poss & -poss 00000010

The position of a valid queen placement is held in bit and removed from poss

by:

LET bit = poss & -poss
poss -:= bit

and then a recursive call of try is made to explore the selected successor state.

try((ld|bit)<<1, cols|bit, (rd|bit)>>1)

Notice that a left shift is needed for the left going diagonal attacks and a right

shift for the other diagonal attacks.

When cols=all a complete solution has been found. This is recognised by

the pattern:

: ?, =all, ? => count++

which increments the count of solutions.

The main function (start) exercises try to solve the n-queens problem for

1 ≤ n ≤ 12. The output is as follows:

4 2 THE QUEENS PROBLEM

20> queens
There are 1 solutions to 1-queens problem
There are 0 solutions to 2-queens problem
There are 0 solutions to 3-queens problem
There are 2 solutions to 4-queens problem
There are 10 solutions to 5-queens problem
There are 4 solutions to 6-queens problem
There are 40 solutions to 7-queens problem
There are 92 solutions to 8-queens problem
There are 352 solutions to 9-queens problem
There are 724 solutions to 10-queens problem
There are 2680 solutions to 11-queens problem
There are 14200 solutions to 12-queens problem
14170>

Although the queens problem is commonly in texts on ML, Prolog and LISP,

I have seen no solutions written in these languages that approach the efficiency

of the one given here.

2.1 The queens program

GET "mcpl.h"

STATIC count, all

FUN try
: ?, =all, ? => count++

: ld, cols, rd => LET poss = ~(ld | cols | rd) & all
WHILE poss DO
{ LET bit = poss & -poss
poss -:= bit
try((ld|bit)<<1, cols|bit, (rd|bit)>>1)

}

FUN start : =>
all := 1
FOR n = 1 TO 12 DO
{ count := 0

try(0, 0, 0)
writef("There are %5d solutions to %2d-queens problem\n",

count, n)
all := 2*all + 1

}
RETURN 0

5

3 Solitaire Problems

Solitaire games are typically played on a board with an arrangement of drilled

holes in which pegs can be inserted. If three adjacent positions are in line and

have the pattern peg-peg-hole, then a move can be made. This entails moving

the first peg into the hole and removing the other peg from the board. The game

consists of finding a sequence of moves that will transform the initial configuration

of pegs to a required final arrangement. Normally the initial configuration has

only one unoccupied position and the final final arrangement is the inverse of

this.

In this section, programs for both triangular and conventional solitaire are

presented.

3.1 Triangular solitaire

Triangular solitaire is played on a triangular board with 15 holes, labelled as in

the diagram.
a

b c

d e f

g h i j

k l m n o

The initial configurations has pegs in all holes except position a, and the final

configuration is the inverse of this. A successful game thus consists of a sequence

13 moves. The program described here explores the game tree to find how many

different successful games there are. The answer turns out to be 6816.

The tree of reachable board states is similar to the one used in the queens

problem above with the root corresponding to the initial configuration and edges

corresponding to moves to adjacent positions. However, a major difference is that

different paths through the tree can lead to the same position. There are, after

all, 6816 ways of reaching the final position. Failure to take this into account

leads to a solution that is about 175 times slower.

It is therefore advisable to choose a board representation that makes it easy

to determine whether the same board position has been seen before. The method

used here is based on the observation that any board position can be specified

by 15 boolean values that could well be represented by the least significant 15

bits of a word. Such a word can be used an integer subscript to a vector that

holds information about all the 32768 different board configurations. This vector

is called scorev.

6 3 SOLITAIRE PROBLEMS

As with the queens problem, a recursive function try is used to explore the

tree without physically creating it. Its argument represents a board state and its

result is the number of different ways of reaching the final state from the given

state. Most of the work done by try is concerned with finding (and making) all

the possible moves from its given state. If this state has been seen before then

the appropriate value in scorev is returned. This will have been set when this

state was first visited. The elements of scorev are initialised to the invalid score

-1, except for the element of corresponding to the final state (scorev!1) which

is set to 1.

An important inner loop of the program is concerned with the search for

legal moves. There are six possible moves in a direction up and to the right.

These are: d-b-a, g-d-b, k-g-d, h-e-c, l-h-e, and m-i-f. There are similarly

6 possible moves in each of the other five directions, making 36 in all. Usually

only a small fraction of these are possible from a given state. To test whether the

move d-b-a can be made using our representation of the board, it is necessary

to check whether bits 4 and 2 are set to one and that bit 1 is set to zero.

The MANIFEST-constants (Pa, Pb ,..., Po are declared to make testing

these bit positions more convenient. A somewhat more efficient check for move

legality can be made if the state of each board position is represented by a pair

of bits, 01 for a peg and 10 for a hole. MANIFEST-constants (Ha, Hb ,..., Ho

provide convenient access to the first digit of the pair.

The function to test and make moves is called trymove. Its definition is as

follows:

FUN trymove
: brd, hhp, hpbits => brd&hhp -> 0, // Can’t make move

try(brd XOR hpbits) // Try new position

brd represents the board using bit pairs and hhp is a bit pattern selecting the

presence of two holes and one peg. The expression brd&hhp yield a non zero

value either a hole is found in the first two positions or a peg is found in the

third position. A non zero result thus indicates that the specified move cannot

be made, causing trymove to return zero. Otherwise, trymove calls try with the

representation of the successor board state formed by complementing all 6 bits of

the move triplet. This is cheaply computed by the expression brd XOR hpbits.

Exploration of the move d-b-a can thus be achieved by the call:

trymove(brd, Hd+Hb+Pa, Hd+Pd+Hb+Pb+Ha+Pa)

It yields the number of ways of reaching the final configuration from the board

state brd by a path whose first move is d-b-a.

3.1 Triangular solitaire 7

To improve the efficiency of the search still further, only moves originating

from pegs that are actually on the board are considered. In the function try, the

variable poss is initialised to represent the set of pegs still on the board, and this

is used in a way somewhat similar to the iteration in the queens program. The

definition of try is as follows:

FUN try : brd =>
LET poss = brd & Pbits
LET score = scorev!poss
IF score<0 DO // have we seen this board position before
{ score := 0 // No -- so calculate score for this position.

WHILE poss DO { LET bit = poss & -poss
poss -:= bit
score +:= (fnv!bit) brd

}
scorev!(brd&Pbits) := score // Remember the score

}
RETURN score

Pegs at positions d, f and m can potentially make four moves, while pegs at

any other positions are limited to two. The function fa explores the possible

moves of a peg at position a. Its definition is as follows:

FUN fa : pos => trymove(pos, Ha+Hb+Pd, Pa+Ha+Pb+Hb+Pd+Hd) +
trymove(pos, Ha+Hc+Pf, Pa+Ha+Pc+Hc+Pf+Hf)

The functions (fb,..., fo) are defined similarly. These functions are stored

(sparsely) in the vector fnv so that the expression (fnv!bit) brd will efficiently

call the search function for the selected peg. The iteration in try will thus call

only the required search functions and leave the sum of their results in score.

This score is then saved in the appropriate position of scorev removing the need

to recomputed it the next time this board state is encountered.

It turns out that only 3016 different states are visited, and of these only 370

are on solution paths. Even so, allocating a 32786 element vector to hold the

scores is probably worthwhile.

It is, perhaps, interesting to note that only four one peg positions are reachable

from the initial configuration. Which are they?

8 3 SOLITAIRE PROBLEMS

3.2 The triangular solitaire program

GET "mcpl.h"

STATIC scorev, fnv

MANIFEST Pbits = #x7FFF, SH = #X10000, Upb = Pbits,

// Peg bits
Pa = 1<<0, Pb = 1<<1, Pc = 1<<2, Pd = 1<<3, Pe = 1<<4,
Pf = 1<<5, Pg = 1<<6, Ph = 1<<7, Pi = 1<<8, Pj = 1<<9,
Pk = 1<<10, Pl = 1<<11, Pm = 1<<12, Pn = 1<<13, Po = 1<<14,

// Hole bits
Ha = Pa*SH, Hb = Pb*SH, Hc = Pc*SH, Hd = Pd*SH, He = Pe*SH,
Hf = Pf*SH, Hg = Pg*SH, Hh = Ph*SH, Hi = Pi*SH, Hj = Pj*SH,
Hk = Pk*SH, Hl = Pl*SH, Hm = Pm*SH, Hn = Pn*SH, Ho = Po*SH

FUN start : =>
initvecs()

scorev!Pa := 1 // Set the score for the final position

LET ways = try(Ha+
Pb+Pc+
Pd+Pe+Pf+

Pg+Ph+Pi+Pj+
Pk+Pl+Pm+Pn+Po)

writef("Number of solutions = %d\n", ways)
freevecs()
RETURN 0

FUN initvecs : => scorev, fnv := getvec Upb, getvec Upb
FOR i = 0 TO Upb DO scorev!i := -1

fnv!Pa := fa; fnv!Pb := fb; fnv!Pc := fc
fnv!Pd := fd; fnv!Pe := fe; fnv!Pf := fe
fnv!Pg := fg; fnv!Ph := fh; fnv!Pi := fi
fnv!Pj := fj; fnv!Pk := fk; fnv!Pl := fl
fnv!Pm := fm; fnv!Pn := fn; fnv!Po := fo

FUN freevecs : => freevec scorev
freevec fnv

FUN try : brd =>
LET poss = brd & Pbits
LET score = scorev!poss
IF score<0 DO // have we seen this board position before
{ score := 0 // No -- so calculate score for this position.

WHILE poss DO { LET p = poss & -poss
poss -:= p
score +:= (fnv!p) brd

}
scorev!(brd&Pbits) := score // Remember the score

}
RETURN score

3.2 The triangular solitaire program 9

FUN trymove
: brd, hhp, hpbits => brd&hhp -> 0, // Can’t make move

try(brd XOR hpbits) // Try new position

FUN fa : brd => trymove(brd, Ha+Hb+Pd, Pa+Ha+Pb+Hb+Pd+Hd) +
trymove(brd, Ha+Hc+Pf, Pa+Ha+Pc+Hc+Pf+Hf)

FUN fb : brd => trymove(brd, Hb+Hd+Pg, Pb+Hb+Pd+Hd+Pg+Hg) +
trymove(brd, Hb+He+Pi, Pb+Hb+Pe+He+Pi+Hi)

FUN fc : brd => trymove(brd, Hc+He+Ph, Pc+Hc+Pe+He+Ph+Hh) +
trymove(brd, Hc+Hf+Pj, Pc+Hc+Pf+Hf+Pj+Hj)

FUN fd : brd => trymove(brd, Hd+Hb+Pa, Pd+Hd+Pb+Hb+Pa+Ha) +
trymove(brd, Hd+He+Pf, Pd+Hd+Pe+He+Pf+Hf) +
trymove(brd, Hd+Hg+Pk, Pd+Hd+Pg+Hg+Pk+Hk) +
trymove(brd, Hd+Hh+Pm, Pd+Hd+Ph+Hh+Pm+Hm)

FUN fe : brd => trymove(brd, He+Hh+Pl, Pe+He+Ph+Hh+Pl+Hl) +
trymove(brd, He+Hi+Pn, Pe+He+Pi+Hi+Pn+Hn)

FUN ff : brd => trymove(brd, Hf+Hc+Pa, Pf+Hf+Pc+Hc+Pa+Ha) +
trymove(brd, Hf+He+Pd, Pf+Hf+Pe+He+Pd+Hd) +
trymove(brd, Hf+Hi+Pm, Pf+Hf+Pi+Hi+Pm+Hm) +
trymove(brd, Hf+Hj+Po, Pf+Hf+Pj+Hj+Po+Ho)

FUN fg : brd => trymove(brd, Hg+Hd+Pb, Pg+Hg+Pd+Hd+Pb+Hb) +
trymove(brd, Hg+Hh+Pi, Pg+Hg+Ph+Hh+Pi+Hi)

FUN fh : brd => trymove(brd, Hh+He+Pc, Ph+Hh+Pe+He+Pc+Hc) +
trymove(brd, Hh+Hi+Pj, Ph+Hh+Pi+Hi+Pj+Hj)

FUN fi : brd => trymove(brd, Hi+He+Pb, Pi+Hi+Pe+He+Pb+Hb) +
trymove(brd, Hi+Hh+Pg, Pi+Hi+Ph+Hh+Pg+Hg)

FUN fj : brd => trymove(brd, Hj+Hf+Pc, Pj+Hj+Pf+Hf+Pc+Hc) +
trymove(brd, Hj+Hi+Ph, Pj+Hj+Pi+Hi+Ph+Hh)

FUN fk : brd => trymove(brd, Hk+Hg+Pd, Pk+Hk+Pg+Hg+Pd+Hd) +
trymove(brd, Hk+Hl+Pm, Pk+Hk+Pl+Hl+Pm+Hm)

FUN fl : brd => trymove(brd, Hl+Hh+Pe, Pl+Hl+Ph+Hh+Pe+He) +
trymove(brd, Hl+Hm+Pn, Pl+Hl+Pm+Hm+Pn+Hn)

FUN fm : brd => trymove(brd, Hm+Hh+Pd, Pm+Hm+Ph+Hh+Pd+Hd) +
trymove(brd, Hm+Hi+Pf, Pm+Hm+Pi+Hi+Pf+Hf) +
trymove(brd, Hm+Hl+Pk, Pm+Hm+Pl+Hl+Pk+Hk) +
trymove(brd, Hm+Hn+Po, Pm+Hm+Pn+Hn+Po+Ho)

FUN fn : brd => trymove(brd, Hn+Hi+Pe, Pn+Hn+Pi+Hi+Pe+He) +
trymove(brd, Hn+Hm+Pl, Pn+Hn+Pm+Hm+Pl+Hl)

FUN fo : brd => trymove(brd, Ho+Hj+Pf, Po+Ho+Pj+Hj+Pf+Hf) +
trymove(brd, Ho+Hn+Pm, Po+Ho+Pn+Hn+Pm+Hm)

10 3 SOLITAIRE PROBLEMS

3.3 A more efficent algorithm for triangular solitaire

This second implementation is based on ideas suggested by Ken Moody [Moo82]

and Phil Hazel [Haz82]. It takes advantage of two symmetries that occur in

triangular solitaire. One is the left to right symmetry of the board and the other

is the forward-backward symmetry based on the observation that the game played

backwards from the final position has a lattice of moves that are isomorphic with

the original game, and thus only board positions up to the halfway point need

be processed.

The peg positions are represented by bit patterns given by the MANIFEST

constants A to O with the board having the following layout:

A

B C

D E F

G H I J

K L M N O

The bit patterns are chosen so that reflecting the board represented by pos about

the line A-E-M is cheaply computed by the expression:

(pos<<1 | pos>>1) & All

which essentially swaps adjacent bits. The peg positions on the line of symmetry

are represented by pairs of adjacent ones so that the swap operation leaves them

unchanged. The inverse board position of pos, where pegs are replaced by holes

and vice-versa, is cheaply computed by : pos XOR All.

Information about board positions is stored as entries in a hash table

(hashtab) that are built up by means of a breadth first scan. Entries in the

hash table have the form: [chain, pos, k, next] where chain links entries

with the same value and next links together positions with the same number of

pegs on the board, and pos represents the board position.

If pos represents a symmetric board position (σ, say) then k = N(σ) – the

number of ways of reaching σ from the initial position. If pos represents an

asymmentric position (α, say) then the entry also holds information about the

reflection of α (denoted by α). For such asymmetric positions, k = N(α)+N(α).

Note that the symmetry of the game implies that N(α) = N(α). Using the same

entry for asymmetric pairs reduces the number of table entries by very nearly a

factor of two.

The list of board positions reachable after n moves is formed in poslist

by a call scanlist(p, addpos) where p is the list of positions reachable after

3.3 A more efficent algorithm for triangular solitaire 11

n−1 moves and addpos is a function to process each successor position found. For

each position (π, say) in p, scanlist tries all possible moves to find the reachable

successors. For each possible move (π → π′), scanlist calls addpos(π′, k) to

make (or find) the hash table entry for π′, and increment its k-value by k, where

k is the k-value associated with π.

Since there is only one hash table entry for each pair of asymetric positions,

we need to check that the correct contribution is made to the k-value in all cases.

• π and π′ are both symmetric positions.

The contribution is k = N(π), which is correct. Note, however, this case

never arises with the current definition of triagular solitaire.

• π is symmetric but π′ is not.

The contribution is k = N(π), but scanlist will also find the successor π′

which will cause a second contribution of N(π) to be made, as required.

• π is asymmetric and π′ is symmetric.

The contribution is k = N(π)+N(π), which is correct since it take account

of both moves π → π′ and π → π′. Since there is only one hash table

entry for the position pair (π, π), scanlist makes no other call of addpos

relating to this pair.

• π and π′ are both asymmetric positions.

The contribution is k = N(π)+N(π), which is the required contribution for

the pair (π′, π′), taking into account both moves π → π′ and π → π′. Since

there is only one hash table entry for the position pair (π, π), scanlist

makes no other call of addpos relating to this pair.

After calling scanlist(p, addpos) for the sixth time, poslist is a list con-

taining 4 symmetric positions and 268 asymmetric pairs. All these positions

contain 8 pegs and 7 holes. A final call of scanlist now explores all moves pos-

sible from these positions to positions with 7 pegs and 8 holes. Suppose scanlist

finds a move π → π′, then, if there is a successful game using this move, by the

forward-backward symmetry the inverse of π′ will be in poslist. The number of

ways of reaching the final position from the initial position, using this move, is a

simple function of k×k’, where k and k’ are the ⁀k-values associated with π and

π′. The final result is the sum of contributions made for each such move. The

result is accumulated in ways by the call scanlist(poslist, addways). This

call will effectively call addways(π′, k) where k is the k-value associated with π

12 3 SOLITAIRE PROBLEMS

for all moves π → π′ that can currently be made. As before, there are four cases

to consider:

• π and π′ are both symmetric positions.

The required contribution is N(π)×N(π′) = k×k’. As before this case can

never arise with the current definition of triagular solitaire.

• π is symmetric but π′ is not.

The required contribution is N(π) × (N(π′) + N(π′)) = k×k’. Unfortu-

nately, scanlist will call addways for the other successor π′ and so in this

case addways should use k×k’/2 as the contribution each time. Note that

k×k’ is an even number so that the division by two is exact.

• π is asymmetric and π′ is symmetric.

The required contribution is (N(π) + N(π)) × N(π′) = k×k’. This takes

account of both moves π → π′ and π → π′. Since there is only one hash

table entry for the position pair (π, π), scanlist makes no other call of

addways relating to this pair.

• π and π′ are both asymmetric positions.

The required contribution is N(π) × N(π′) + N(π) × N(π′) which equals

k×k’/2. Since there is only one hash table entry for the position pair (π, π),

scanlist makes no other call of addways relating to this pair.

An encoding of addways that incorporates these rules is the following:

FUN addways : pos, k =>

LET k1 = lookup(pos XOR All)

IF k1 TEST symmetric pos THEN ways +:= k * k1

ELSE ways +:= k * k1 / 2

It turns out that there are no symmetric positions with 7 pegs and 8 holes

on any path from the initial position to the final position, and so addways could

have had an even simpler encoding. However this was not easy to predict.

The following program runs about 9 times faster that the earlier solution

given.

3.4 The more efficient program 13

3.4 The more efficient program

GET "mcpl.h"

MANIFEST

// Peg codes (cunningly chosen to ease reflection about A-E-M)

A=3<<18,
B=1, C=2,

D=1<<3, E=3<<21, F=2<<3,
G=1<<6, H=1<<9, I=2<<9, J=2<<6,

K=1<<12, L=1<<15, M=3<<24, N=2<<15, O=2<<12,

All = A +
B + C +

D + E + F +
G + H + I + J +

K + L + M + N + O ,

Initpos = All - A, // Initial position

Hashtabsize = 541

STATIC
spacev, spacep, poslist, hashtab, ways

FUN start : =>
spacev := getvec 50000 // It uses 2012 words
spacep := spacev
hashtab := getvec(Hashtabsize-1)
FOR i = 0 TO Hashtabsize-1 DO hashtab!i := 0

poslist := 0
addpos(Initpos, 1)

FOR i = 1 TO 6 DO
{ LET p = poslist

poslist := 0
scanlist(p, addpos)

}

ways := 0
scanlist(poslist, addways)
writef("Number of solutions = %d\n", ways)

freevec hashtab
freevec spacev
RETURN 0

14 3 SOLITAIRE PROBLEMS

FUN scanlist : p, f =>
WHILE p MATCH p : [chain, pos, k, next] =>
{ UNLESS pos&A DO { IF pos&(B+D)=(B+D) DO f(pos XOR (D+B+A), k)

IF pos&(F+C)=(F+C) DO f(pos XOR (F+C+A), k)
}

UNLESS pos&B DO { IF pos&(G+D)=(G+D) DO f(pos XOR (G+D+B), k)
IF pos&(I+E)=(I+E) DO f(pos XOR (I+E+B), k)

}
UNLESS pos&C DO { IF pos&(H+E)=(H+E) DO f(pos XOR (H+E+C), k)

IF pos&(J+F)=(J+F) DO f(pos XOR (J+F+C), k)
}

UNLESS pos&D DO { IF pos&(F+E)=(F+E) DO f(pos XOR (F+E+D), k)
IF pos&(A+B)=(A+B) DO f(pos XOR (A+B+D), k)
IF pos&(K+G)=(K+G) DO f(pos XOR (K+G+D), k)
IF pos&(M+H)=(M+H) DO f(pos XOR (M+H+D), k)

}
UNLESS pos&E DO { IF pos&(L+H)=(L+H) DO f(pos XOR (L+H+E), k)

IF pos&(N+I)=(N+I) DO f(pos XOR (N+I+E), k)
}

UNLESS pos&F DO { IF pos&(A+C)=(A+C) DO f(pos XOR (A+C+F), k)
IF pos&(D+E)=(D+E) DO f(pos XOR (D+E+F), k)
IF pos&(M+I)=(M+I) DO f(pos XOR (M+I+F), k)
IF pos&(O+J)=(O+J) DO f(pos XOR (O+J+F), k)

}
UNLESS pos&G DO { IF pos&(I+H)=(I+H) DO f(pos XOR (I+H+G), k)

IF pos&(B+D)=(B+D) DO f(pos XOR (B+D+G), k)
}

UNLESS pos&H DO { IF pos&(J+I)=(J+I) DO f(pos XOR (J+I+H), k)
IF pos&(C+E)=(C+E) DO f(pos XOR (C+E+H), k)

}
UNLESS pos&I DO { IF pos&(B+E)=(B+E) DO f(pos XOR (B+E+I), k)

IF pos&(G+H)=(G+H) DO f(pos XOR (G+H+I), k)
}

UNLESS pos&J DO { IF pos&(C+F)=(C+F) DO f(pos XOR (C+F+J), k)
IF pos&(H+I)=(H+I) DO f(pos XOR (H+I+J), k)

}
UNLESS pos&K DO { IF pos&(M+L)=(M+L) DO f(pos XOR (M+L+K), k)

IF pos&(D+G)=(D+G) DO f(pos XOR (D+G+K), k)
}

UNLESS pos&L DO { IF pos&(N+M)=(N+M) DO f(pos XOR (N+M+L), k)
IF pos&(E+H)=(E+H) DO f(pos XOR (E+H+L), k)

}
UNLESS pos&M DO { IF pos&(O+N)=(O+N) DO f(pos XOR (O+N+M), k)

IF pos&(F+I)=(F+I) DO f(pos XOR (F+I+M), k)
IF pos&(D+H)=(D+H) DO f(pos XOR (D+H+M), k)
IF pos&(K+L)=(K+L) DO f(pos XOR (K+L+M), k)

}
UNLESS pos&N DO { IF pos&(E+I)=(E+I) DO f(pos XOR (E+I+N), k)

IF pos&(L+M)=(L+M) DO f(pos XOR (L+M+N), k)
}

UNLESS pos&O DO { IF pos&(F+J)=(F+J) DO f(pos XOR (F+J+O), k)
IF pos&(M+N)=(M+N) DO f(pos XOR (M+N+O), k)

}
p := next

}

3.4 The more efficient program 15

FUN symmetric : pos => pos = (pos<<1 | pos>>1) & All

FUN minreflect : pos => LET rpos = (pos<<1 | pos>>1) & All
IF pos<=rpos RETURN pos
RETURN rpos

FUN addpos : pos, k =>
pos := minreflect pos
LET hashval = pos MOD Hashtabsize
LET p = hashtab!hashval
WHILE p MATCH p : [chain, =pos, n, ?] => n +:= k; RETURN

: [chain, ?, ?, ?] => p := chain
.

p := mk4(hashtab!hashval, pos, k, poslist)
hashtab!hashval := p
poslist := p

FUN lookup : pos =>
pos := minreflect pos
LET hashval = pos MOD Hashtabsize
LET p = hashtab!hashval
WHILE p MATCH p : [?, =pos, n, ?] => RETURN n

: [chain, ?, ?, ?] => p := chain
.

RETURN 0

FUN addways : pos, k =>
LET k1 = lookup(pos XOR All)
IF k1 TEST symmetric pos THEN ways +:= k * k1

ELSE ways +:= k * k1 / 2

FUN mk4 : a, b, c, d => LET res = spacep
!spacep+++ := a
!spacep+++ := b
!spacep+++ := c
!spacep+++ := d
RETURN res

16 3 SOLITAIRE PROBLEMS

3.5 Conventional solitaire

Conventional solitaire uses a board of the following shape:

This board has 33 peg positions which is unfortunate for bit pattern algorithms

designed to run on a 32 bit implementation of MCPL. The size of the game is

such that it is not feasible to count the number of solutions, so the program given

here just finds one solution. It uses a vector (board) to represent a 9×9 area that

contains the board surrounded by a border that is at least one cell wide. This is

declared at the beginning of start with the aid of the constants X, P and H to

represent border, peg and hole positions, respectively. The function try searches

the move tree until a solution is found, when it raises the exception Found that

is handled in start.

The strategy used by try is to find each peg on the board and explore its

possible moves. At any stage the vector movev holds a packed representation of

the current sequence of moves. These are output when the exception Found is

raised.

The argument of try is the number of pegs still to be removed. When this

reaches zero, a solution has been found if the remaining peg is in the centre. If

there are still pegs to be removed, moves in each of the four directions are tried

for each remaining peg. The board positions used in the move are held in p, p1

and p2. If position p1 holds a peg and position p2 is unoccupied then the move

can be made. This move is saved in movev, the board updated appropriately,

and a recursive call of try used to explores this new board state. On return the

previous board state is restored. The time taken to find a solution turns out to

be very dependent on the order in which the directions are tried.

3.6 The conventional solitaire program 17

3.6 The conventional solitaire program

GET "mcpl.h"

MANIFEST
X, P, H, // For boarder, Peg and Hole.
Centre=4*9+4, Last=9*9-1,
North=-9, South=9, East=1, West=-1, // Directions
Found=100 // An exception

STATIC
board,
movev = VEC 31,
dir = [East, South, West, North]

FUN start : =>

board := [X,X,X,X,X,X,X,X,X,
X,X,X,P,P,P,X,X,X,
X,X,X,P,P,P,X,X,X,
X,P,P,P,P,P,P,P,X,
X,P,P,P,H,P,P,P,X,
X,P,P,P,P,P,P,P,X,
X,X,X,P,P,P,X,X,X,
X,X,X,P,P,P,X,X,X,
X,X,X,X,X,X,X,X,X

]

try 31 // There are 31 pegs to remove
HANDLE : Found => FOR i = 31 TO 1 BY -1 DO

{ LET m = movev!i
writef("Move peg from %2d over %2d to %2d\n",

(m>>16)&255, (m>>8)&255, m&255)
}
RETURN 0

.
writef "Not found\n"
RETURN 0

FUN pack : a, b, c => a<<16 | b<<8 | c

FUN try
: 0 => IF board!Centre= P RAISE Found

: m => FOR p = 0 TO Last IF board!p= P DO // Find a peg
FOR k = 0 TO 3 DO

{ LET d = dir!k // Try a direction
LET p1 = p + d
LET p2 = p1 + d
IF board!p1= P AND board!p2= H DO // Is move possible?
{ movev!m := pack(p, p1, p2) // It is, so try making it

board!p, board!p1, board!p2 := H, H, P
try(m-1) // Explore new position
board!p, board!p1, board!p2 := P, P, H

}
}

18 4 THE PENTOMINOES PROBLEM

4 The Pentominoes Problem

There are twelve pieces, called pentominoes, that can be formed in two dimensions

by joining five unit squares together along their edges. A specimen of each piece

is pictured below.

A two dimensional rectangular board six unit wide and ten units long can be

entirely covered by these 12 pentominoes without any piece overlapping with any

other. This section presents four programs to compute the number of ways in

which the pieces can (by rotations and reflections) be fitted on the board.

The problem can be solved by exploring the tree of board states that can be

reached by placing the pieces one at time. To ensure that the tree only holds

distinct states, each piece placement covers the top leftmost unoccupied square

(the handle). All four programs discussed here use this strategy.

4.1 Pento

Each piece can be rotated and reflected to give potentially eight variants. It saves

time if all the variant forms are precalculated before the search begins.

This first program calculates the variants of each piece for each handle square.

The result is a vector pv for which the expression pv!piece!pos is the list of ways

the specified piece can be placed on the board covering handle square pos. In

forming this list all reflections and rotations of the piece are considered in addition

to possible collision with the edge of the board or squares to the left or above the

handle square.

4.1 Pento 19

This structure is initialised by calling init for each variant of each piece. The

encoding of init is straightforward but, of course, depends on the representation

chosen for the board.

The board is essentially represented by a bit pattern of length 60, with occu-

pied positions specified by ones. But, since all positions earlier than the handle

are occupied and all positions more than 25 squares ahead are unoccupied, it

is possible to represent the board by a 25 bit window and an integer giving the

window position. This greatly improves the efficiency on some machines.

The tree of board states is, as usual, searched by a function called try. Its

first argument (n) indicates how many pieces still need to be placed, and the

second and third arguments (p and board) give the current window position and

window bits.

Variants for a particular piece and handle square can be a list of 32 bit words,

one per variant. With this representation the inner loop of the tree search can

be encoded as follows:

{ MATCH list : [next, bits] =>

UNLESS bits & board DO

{ pos!n, bv!n, iv!n := p, bits, id

try(n-1, p, bits+board)

}

list := next

} REPEATWHILE list

Here, list is a non empty list of possible placements covering the handle square at

position p on the board. Within a list node, next and bits give the rest of the list

and the bit pattern for this placement, respectively. The result of bits & board

is zero if the placement is compatible with the current board state, in which case

the new state is explored by the recursive call of try.

Information about successful placements are saved in the vectors pos, bv, iv

so that solutions can be output when found.

20 4 THE PENTOMINOES PROBLEM

4.2 The pento program

GET "mcpl.h"

GLOBAL count, spacev, spacep, spacet, pv, idv, pos, bv, iv

FUN setup : =>
// Initialise the data structure representing
// rotations, reflections and translations of the pieces.
spacev := getvec 5000
spacet := @ spacev!5000
spacep := spacet

pv := getvec 11
idv := getvec 11
pos := getvec 11
bv := getvec 11
iv := getvec 11

FOR i = 0 TO 11 DO
{ LET v = getvec 59

FOR p = 0 TO 59 DO v!p := 0
pv!i, idv!i := v, ’A’+i
pos!i, bv!i, iv!i := 0, 0, 0 // Solution info

}

init(0, #0000000037) // * * * * * *
init(0, #0101010101) // *

// *
// *
// *

init(1, #020702) // *
// * * *
// *

init(2, #03010101) // * * * * * *
init(2, #03020202) // * * * *
init(2, #01010103) // * * * *
init(2, #02020203) // * * * * * *

init(2, #1701) // * *
init(2, #1710) // * * * * * * * *

init(2, #0117) // * * * * * * * *
init(2, #1017) // * *

init(3, #010701) // * * * * * *
init(3, #040704) // * * * * * * * *
init(3, #020207) // * * * * * *
init(3, #070202)

4.2 The pento program 21

init(4, #0703) // * * * * * * * * * *
init(4, #0706) // * * * * * * * * * *
init(4, #0307)
init(4, #0607)
init(4, #030301) // * * * * * *
init(4, #030302) // * * * * * * * *
init(4, #010303) // * * * * * *
init(4, #020303)

init(5, #0316) // * * * * * *
init(5, #1407) // * * * *

init(5, #1603) // * * * *
init(5, #0714) // * * * * * *

init(5, #01030202) // * * * *
init(5, #02030101) // * * * * * *
init(5, #02020301) // * * * * * *
init(5, #01010302) // * * * *

init(6, #070101) // * * * * * * * *
init(6, #070404) // * * * *
init(6, #010107) // * ** * * * * *
init(6, #040407)

init(7, #030604) // * * * * * *
init(7, #060301) // * * * * * * * *
init(7, #040603) // * * * * * *
init(7, #010306)

init(8, #030103) // * * * * * * * * *
init(8, #030203) // * * * * * * *
init(8, #0507) // * * * *
init(8, #0705)

init(9, #010704) // * * * * * *
init(9, #040701) // * * * * * * * *
init(9, #030206) // * * * * * *
init(9, #060203)

init(10, #1702) // * * * * * * * * * *
init(10, #1704) // * * * * * * * * * *
init(10, #0217)
init(10, #0417)
init(10, #01030101) // * * * *
init(10, #02030202) // * * * * * *
init(10, #01010301) // * * * * * *
init(10, #02020302) // * * * *

22 4 THE PENTOMINOES PROBLEM

// the comments eliminate reflectively different solutions
init(11, #010702) // * * * *

// init(11, #040702) // * * * * * * * * * * * *
// init(11, #020701) // * * * *
// init(11, #020704)

init(11, #030602) // * * * * * *
// init(11, #060302) // * * * * * * * *
// init(11, #020603) // * * * * * *
// init(11, #020306)

FUN freespace : =>
FOR i = 0 TO 11 DO freevec(pv!i)

freevec pv
freevec idv
freevec pos
freevec bv
freevec iv
freevec spacev

FUN mk2 : x, y => !---spacep := y
!---spacep := x
spacep

FUN init : piece, bits =>
LET word=bits, height=0
WHILE word DO { word >>:= 6; height++ }

LET pat=bits, orig=0
UNTIL pat&1 DO { pat >>:= 1; orig++ }

LET v = pv!piece
FOR p = orig TO orig + 6*(10-height) BY 6 DO
{ LET q = p

word := bits

{ v!q := mk2(v!q, pat)
IF word & #4040404040 BREAK // can’t move left any more
word <<:= 1 // move piece left one place
q++

} REPEAT
}

4.3 Pento3 23

FUN try
: <0, ?, ? => writef("Solution %d:\n", ++count); pr()

: n, p, board =>
WHILE board&1 DO { p++; board >>:= 1 }
FOR i = 0 TO n DO
{ LET pvi=pv!i, id=idv!i

MATCH pvi!p
: 0 => LOOP
: list => pv!i, idv!i := pv!n, idv!n

{ MATCH list : [next, bits] =>
UNLESS bits & board DO
{ pos!n, bv!n, iv!n := p, bits, id

try(n-1, p, bits+board)
}
list := next

} REPEATWHILE list
.
pv!i, idv!i, bv!n := pvi, id, 0

}

FUN start : =>
setup()
count := 0
try(11, 0, 0)
writef("\nNumber of solutions is %d\n", count)
freespace()
RETURN 0

FUN pr : =>
LET v = VEC 59
FOR i = 0 TO 59 DO v!i := ’-’
FOR i = 0 TO 11 DO { LET p=pos!i, bits=bv!i, id=iv!i

WHILE bits DO
{ IF bits&1 DO v!p := id

bits >>:= 1
p++

}
}

FOR row = 0 TO 9 DO
{ FOR p = 6*row+5 TO 6*row BY -1 DO writef(" %c", v!p)

newline()
}
newline()

4.3 Pento3

This program and the following two are essentially re-implementation of the

search strategy used in Fletcher [Fle65]. The method used is to search the neigh-

bourhood of the handle square for connected unoccupied squares. If an area of

5 squares is found, it will correspond to a pentomino which can be placed there,

24 4 THE PENTOMINOES PROBLEM

provided it has not already been used. The neighbourhood search can be organ-

ised as a tree with 63 leaf nodes all at a depth of 5 with each leaf identifying

which pentomino fits the unoccupied area found.

The overall search is controlled by the function try. Its first argument indi-

cates how many pentominoes have already been placed. When this reaches 12 a

solution has been found. The second argument of try is a pointer into a vector

reprsenting the board. The first few lines of try are as follows:

FUN try

: 12, ? => count++
pr board

: n, [~=0,a1] => try (n, @a1)

: n, [a,a1,a2,a3,a4,
bz,by,bx, b,b1,b2,b3, ?,
?,cy,cx, c,c1,c2, ?, ?,
?, ?,dx, d,d1, ?, ?, ?,
?, ?, ?, e] p =>

The first two pattern test for a solution and search for the handle square, re-

spectively. The third pattern is matched when the second argument (p) points

to the handle square (a). It give names to all the squares that could be cov-

ered by a pentomino covering the handle. The EVERY-statement tries all possible

pentomino placements in turn. The code:

EVERY
(0, 0, 0, 0, 0)

: =a1,=a2,=a3,=a4,=p2 => a,a1,a2,a3,a4,p2 ALL:= n; try (n, @a1)
a,a1,a2,a3,a4,p2 ALL:= 0

: =a1,=a2,=a3, =b,=p3 => a,a1,a2,a3, b,p3 ALL:= n; try (n, @a1)
a,a1,a2,a3, b,p3 ALL:= 0

...

tests a placement of the long straight piece (p2) can be placed, and then one

of the L-shaped pieces (p3). In the full program all 63 patterns are given. An

optimising MCPL compiler would compile these patterns into an efficient binary

tree of tests that does not recompute conditions that have already been evaluated.

Notice that, in the definition of start, the initial board state is given in a

readable form.

The program Pento4 is essentially the same algorithm as Pento3 but with an

explicit encoding of the binary search tree.

4.4 The Pento3 program 25

4.4 The Pento3 program

GET "mcpl.h"

STATIC
board, count=0,
p1=0, p2=0, p3=0, p4=0, p5=0, p6=0,
p7=0, p8=0, p9=0, pA=0, pB=0, pC=0

FUN try

: 12, ? => count++
pr board

: n, [~=0,a1] => try (n, @a1)

: n, [a,a1,a2,a3,a4,
bz,by,bx, b,b1,b2,b3, ?,
?,cy,cx, c,c1,c2, ?, ?,
?, ?,dx, d,d1, ?, ?, ?,
?, ?, ?, e] p =>

n++

EVERY
(0, 0, 0, 0, 0)

: =a1,=a2,=a3,=a4,=p2 => a,a1,a2,a3,a4,p2 ALL:= n; try (n, @a1)
a,a1,a2,a3,a4,p2 ALL:= 0

: =a1,=a2,=a3, =b,=p3 => a,a1,a2,a3, b,p3 ALL:= n; try (n, @a1)
a,a1,a2,a3, b,p3 ALL:= 0

: =a1,=a2,=a3,=b1,=pB => a,a1,a2,a3,b1,pB ALL:= n; try (n, @a1)
a,a1,a2,a3,b1,pB ALL:= 0

: =a1,=a2,=a3,=b2,=pB => a,a1,a2,a3,b2,pB ALL:= n; try (n, @a1)
a,a1,a2,a3,b2,pB ALL:= 0

: =a1,=a2,=a3,=b3,=p3 => a,a1,a2,a3,b3,p3 ALL:= n; try (n, @a1)
a,a1,a2,a3,b3,p3 ALL:= 0

: =a1,=a2, =b,=bx,=p4 => a,a1,a2, b,bx,p4 ALL:= n; try (n, @a1)
a,a1,a2, b,bx,p4 ALL:= 0

: =a1,=a2, =b,=b1,=p5 => a,a1,a2, b,b1,p5 ALL:= n; try (n, @a1)
a,a1,a2, b,b1,p5 ALL:= 0

...

... Many similar lines

...

: =b, =c,=c1,=c2,=p8 => a, b, c,c1,c2,p8 ALL:= n; try (n, @a1)
a, b, c,c1,c2,p8 ALL:= 0

: =b, =c,=c1, =d,=pB => a, b, c,c1, d,pB ALL:= n; try (n, @a1)
a, b, c,c1, d,pB ALL:= 0

: =b, =c,=c1,=d1,=p4 => a, b, c,c1,d1,p4 ALL:= n; try (n, @a1)
a, b, c,c1,d1,p4 ALL:= 0

: =b, =c, =d,=dx,=p3 => a, b, c, d,dx,p3 ALL:= n; try (n, @a1)
a, b, c, d,dx,p3 ALL:= 0

: =b, =c, =d,=d1,=p3 => a, b, c, d,d1,p3 ALL:= n; try (n, @a1)
a, b, c, d,d1,p3 ALL:= 0

: =b, =c, =d, =e,=p2 => a, b, c, d, e,p2 ALL:= n; try (n, @a1)
a, b, c, d, e,p2 ALL:= 0

26 4 THE PENTOMINOES PROBLEM

FUN pr : =>
writef("\nSolution number %d", count)
FOR i = 0 TO 12*8-1 DO
{ LET n = board!i
LET ch = ’*’
IF 0<=n<=12 DO ch := ".ABCDEFGHIJKL"%n
IF i MOD 8 = 0 DO newline()
writef(" %c", ch)

}
newline()

FUN start : =>
writef "Pento version 3 entered\n"

LET x = -1
board := [x,x,x,x,x,x,x,x,

x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,x,x,x,x,x,x,x]

try(0, board)

writef("\nThe total number of solutions is %d\n", count)

RETURN 0

4.5 The Pento4 program 27

4.5 The Pento4 program

GET "mcpl.h"

STATIC
depth, p, board, count, trycount,
p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC

FUN put
:[?,y], [square(=0)], [piece(=TRUE)] => square, piece := depth, FALSE

TEST depth=12
THEN { count++; pr() }
ELSE try (@y)
square, piece := 0, TRUE

: => RETURN

FUN try

: [~=0,a1] => try(@a1)

: sq [a,a1,a2,a3,a4,
bz,by,bx, b,b1,b2,b3, ?,
?,cy,cx, c,c1,c2, ?, ?,
?, ?,dx, d,d1, ?, ?, ?,
?, ?, ?, e] =>

depth++

a := depth

IF a1=0 DO { a1 := depth
IF a2=0 DO { a2 := depth

IF a3=0 DO { a3 := depth; put(sq,@a4,@p2)
put(sq, @b,@p3)
put(sq,@b1,@pB)
put(sq,@b2,@pB)
put(sq,@b3,@p3)

a3 := 0
}

IF b=0 DO { b := depth; put(sq,@bx,@p4)
put(sq,@b1,@p5)
put(sq,@b2,@p7)
put(sq, @c,@p8)

b := 0
}

IF b1=0 DO { b1 := depth; put(sq,@b2,@p5)
put(sq,@c1,@p6)

b1 := 0
}

IF b2=0 DO { b2 := depth; put(sq,@b3,@p4)
put(sq,@c2,@p8)

b2 := 0
}

a2 := 0
}

28 4 THE PENTOMINOES PROBLEM

IF b=0 DO { b := depth
IF bx=0 DO { bx := depth; put(sq,@by,@p4)

put(sq,@cx,@p9)
put(sq,@b1,@p5)
put(sq, @c,@p1)

bx := 0
}

IF b1=0 DO { b1 := depth; put(sq,@b2,@p5)
put(sq, @c,@p5)
put(sq,@c1,@p5)

b1 := 0
}

IF c=0 DO { c := depth; put(sq,@cx,@pC)
put(sq,@c1,@p7)
put(sq, @d,@p3)

c := 0
}

b := 0
}

IF b1=0 DO { b1 := depth
IF b2=0 DO { b2 := depth; put(sq,@b3,@p4)

put(sq,@c2,@p9)
// put(sq,@c1,@p1)

b2 := 0
}

IF c1=0 DO { c1 := depth; put(sq, @c,@p7)
put(sq,@c2,@pC)
put(sq,@d1,@p3)

c1 := 0
}

b1 := 0
}

a1 := 0
}

IF b=0 DO { b := depth
IF bx=0 DO { bx := depth

IF by=0 DO { by := depth; put(sq,@bz,@p3)
put(sq,@cy,@pC)
put(sq,@b1,@pB)
put(sq, @c,@p6)
put(sq,@cx,@p1)

by := 0
}

IF cx=0 DO { cx := depth; put(sq,@cy,@p9)
put(sq, @c,@p5)
put(sq,@dx,@p4)

// put(sq,@b1,@p1)
cx := 0

}
IF b1=0 DO { b1 := depth; put(sq,@b2,@pB)

put(sq, @c,@pA)
// put(sq,@c1,@p1)

b1 := 0
}

IF c=0 DO { c := depth; put(sq, @d,@pB)
// put(sq,@c1,@p1)

4.5 The Pento4 program 29

c := 0
}

bx := 0
}

IF b1=0 DO { b1 := depth
IF b2=0 DO { b2 := depth; put(sq,@a2,@p7)

put(sq,@b3,@p3)
put(sq, @c,@p6)
put(sq,@c2,@pC)
// put(sq,@c1,@p1)

b2 := 0
}

IF c=0 DO { c := depth; put(sq,@c1,@p5)
put(sq, @d,@pB)

// put(sq,@cx,@p1)
c := 0

}
IF c1=0 DO { c1 := depth; put(sq,@c2,@p9)

put(sq,@d1,@p4)
c1 := 0

}
b1 := 0

}
IF c=0 DO { c := depth

IF cx=0 DO { cx := depth; put(sq,@cy,@p8)
put(sq,@dx,@p4)
put(sq,@c1,@p6)
put(sq, @d,@pB)

cx := 0
}

IF c1=0 DO { c1 := depth; put(sq,@c2,@p8)
put(sq, @d,@pB)
put(sq,@d1,@p4)

c1 := 0
}

IF d=0 DO { d := depth; put(sq,@dx,@p3)
put(sq,@d1,@p3)
put(sq, @e,@p2)

d := 0
}

c := 0
}

b := 0
}

a := 0
depth--

30 4 THE PENTOMINOES PROBLEM

FUN pr : =>
writef("\nSolution number %d", count)
FOR i = 0 TO 12*8-1 DO
{ LET n = board!i
LET ch = ’*’
IF 0<=n<=12 DO ch := ".ABCDEFGHIJKL"%n
IF i MOD 8 = 0 DO newline()
writef(" %c", ch)

}
newline()

FUN start : =>
writef "Pento version 4 entered\n"

LET x = -1
board := [x,x,x,x,x,x,x,x,

x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,0,0,0,0,0,0,x,
x,x,x,x,x,x,x,x]

// Set all pieces initially unused
p1,p2,p3,p4,p5,p6,p7,p8,p9,pA,pB,pC ALL:= TRUE

depth, count := 0, 0

try board

writef("\nThe total number of solutions is %d\n", count)

RETURN 0

4.6 Pento6 31

4.6 Pento6

This is an alternative implementation of Pento3 using bit patterns. As usual the

search is done by the function try. The state of the board is represented using a

scheme similar that used in the first pentominoes program, that is by an integer

(p) to identify a position near the handle square and a bit pattern (brd) that

contains occupancy information about this neighbourhood of the board. Each row

of the board uses 7 bits — six for the board and one for the boundary. Manifest

constants such as A, A1, ... identify positions near the handle square and

provide a convenient means of constructing bit patterns for the various pentomino

shapes. For instance, the two possible orientations of the long straight piece are

represented by A+A1+A2+A3+A4 and A+B+C+D+E.

The function try takes five arguments: bits representing a pentomino shape,

piece identifies which pentomino is being tried, p is the position of the handle

square, brd is the current state of the board relative to this position and used is a

bit pattern indicating which pentominoes have already been used. The statement:

IF brd&bits OR used&piece RETURN

causes a return from try if the attempted placement conflicts with the edge or a

previous placement, or if the pentomino has already been used. If the placement

is legal the variables brd and used are updated, and a test performed to see if a

complete solution has been found. If not, an new handle square if found by:

WHILE brd&1 DO { brd>>:=1; p++ }

and the new border bits inserted by: brd |:= border!p, where border is an ex-

plicitly declared vector giving the border patterns for each possible handle square.

What follows is a sequence of 63 calls of try to test all possible placements. The

efficiency is improved by breaking these tests into 6 groups qualified by cheap

feasibility tests.

This implementation is easily the most efficient of the ones described so far.

32 4 THE PENTOMINOES PROBLEM

4.7 The program

GET "mcpl.h"

MANIFEST
P1=1, P2=P1*2, P3=P2*2, P4=P3*2, P5=P4*2, P6=P5*2,
P7=P6*2, P8=P7*2, P9=P8*2, Pa=P9*2, Pb=Pa*2, Pc=Pb*2,

All=P1+P2+P3+P4+P5+P6+P7+P8+P9+Pa+Pb+Pc,

A=1, A1=A<<1,A2=A<<2,A3=A<<3,A4=A<<4,
Bz=A<<4,By=A<<5,Bx=A<<6,B=A<<7,B1=B<<1,B2=B<<2,B3=B<<3,

Cy=B<<5,Cx=B<<6,C=B<<7,C1=C<<1,C2=C<<2,
Dx=C<<6,D=C<<7,D1=D<<1,

E=D<<7

STATIC
border = [

#1004020100, #0402010040, #0201004020, #0100402010, // 0
#0040201004, #4020100402, #2010040201,

#1004020100, #0402010040, #0201004020, #0100402010, // 1
#0040201004, #4020100402, #2010040201,

#1004020100, #0402010040, #0201004020, #0100402010, // 2
#0040201004, #4020100402, #2010040201,

#1004020100, #0402010040, #0201004020, #0100402010, // 3
#0040201004, #4020100402, #2010040201,

#1004020100, #0402010040, #0201004020, #0100402010, // 4
#0040201004, #4020100402, #2010040201,

#1004020100, #0402010040, #0201004020, #0100402010, // 5
#0040201004, #4020100402, #2010040201,

#7004020100, #7402010040, #7601004020, #7700402010, // 6
#7740201004, #7760100402, #7770040201,

#7774020100, #7776010040, #7777004020, #7777402010, // 7
#7777601004, #7777700402, #7777740201,

#7777760100, #7777770040, #7777774020, #7777776010, // 8
#7777777004, #7777777402, #7777777601,

#7777777700, #7777777740, #7777777760, #7777777770, // 9
#7777777774, #7777777776, #7777777777],

count=0

FUN start : =>
count := 0
try(0, 0, 0, border!0, 0)
writef("\nThe total number of solutions is %d\n", count)
RETURN 0

4.7 The program 33

FUN try : bits, piece, p, brd, used =>

IF brd&bits OR used&piece RETURN

brd, used +:= bits, piece

IF used=All DO { count++;
writef("solution %4d\n", count)
RETURN

}

WHILE brd&1 DO { brd>>:=1; p++ }
brd |:= border!p

UNLESS (A1+A2)&brd DO
{ try(A+A1+A2+A3+A4, P2, p, brd, used)

try(A+A1+A2+A3+ B, P3, p, brd, used)
try(A+A1+A2+A3+B1, Pb, p, brd, used)
try(A+A1+A2+A3+B2, Pb, p, brd, used)
try(A+A1+A2+A3+B3, P3, p, brd, used)
try(A+A1+A2+ B+Bx, P4, p, brd, used)
try(A+A1+A2+ B+B1, P5, p, brd, used)
try(A+A1+A2+ B+B2, P7, p, brd, used)
try(A+A1+A2+ B+ C, P8, p, brd, used)
try(A+A1+A2+B1+B2, P5, p, brd, used)
try(A+A1+A2+B1+C1, P6, p, brd, used)
try(A+A1+A2+B2+B3, P4, p, brd, used)
try(A+A1+A2+B2+C2, P8, p, brd, used)

}
UNLESS (A1+ B)&brd DO
{ try(A+A1+ B+Bx+By, P4, p, brd, used)

try(A+A1+ B+Bx+Cx, P9, p, brd, used)
try(A+A1+ B+Bx+B1, P5, p, brd, used)
try(A+A1+ B+Bx+ C, P1, p, brd, used)
try(A+A1+ B+B1+B2, P5, p, brd, used)
try(A+A1+ B+B1+ C, P5, p, brd, used)
try(A+A1+ B+B1+C1, P5, p, brd, used)
try(A+A1+ B+ C+Cx, Pc, p, brd, used)
try(A+A1+ B+ C+C1, P7, p, brd, used)
try(A+A1+ B+ C+ D, P3, p, brd, used)

}
UNLESS (A1+B1)&brd DO
{ try(A+A1+B1+B2+B3, P4, p, brd, used)

try(A+A1+B1+B2+C2, P9, p, brd, used)
// try(A+A1+B1+B2+C1, P1, p, brd, used)

try(A+A1+B1+C1+ C, P7, p, brd, used)
try(A+A1+B1+C1+C2, Pc, p, brd, used)
try(A+A1+B1+C1+D1, P3, p, brd, used)

}

34 4 THE PENTOMINOES PROBLEM

UNLESS (B+Bx)&brd DO
{ try(A+ B+Bx+By+Bz, P3, p, brd, used)

try(A+ B+Bx+By+Cy, Pc, p, brd, used)
try(A+ B+Bx+By+B1, Pb, p, brd, used)
try(A+ B+Bx+By+ C, P6, p, brd, used)
try(A+ B+Bx+By+Cx, P1, p, brd, used)
try(A+ B+Bx+Cx+Cy, P9, p, brd, used)
try(A+ B+Bx+Cx+ C, P5, p, brd, used)
try(A+ B+Bx+Cx+Dx, P4, p, brd, used)

// try(A+ B+Bx+Cx+B1, P1, p, brd, used)
try(A+ B+Bx+B1+B2, Pb, p, brd, used)
try(A+ B+Bx+B1+ C, Pa, p, brd, used)

// try(A+ B+Bx+B1+C1, P1, p, brd, used)
try(A+ B+Bx+ C+ D, Pb, p, brd, used)

// try(A+ B+Bx+ C+C1, P1, p, brd, used)
}
UNLESS (B+B1)&brd DO
{ try(A+ B+B1+B2+A2, P7, p, brd, used)

try(A+ B+B1+B2+B3, P3, p, brd, used)
try(A+ B+B1+B2+ C, P6, p, brd, used)
try(A+ B+B1+B2+C2, Pc, p, brd, used)

// try(A+ B+B1+B2+C1, P1, p, brd, used)
try(A+ B+B1+ C+C1, P5, p, brd, used)
try(A+ B+B1+ C+ D, Pb, p, brd, used)

// try(A+ B+B1+ C+Cx, P1, p, brd, used)
try(A+ B+B1+C1+C2, P9, p, brd, used)
try(A+ B+B1+C1+D1, P4, p, brd, used)

}
UNLESS (B+ C)&brd DO
{ try(A+ B+ C+Cx+Cy, P8, p, brd, used)

try(A+ B+ C+Cx+Dx, P4, p, brd, used)
try(A+ B+ C+Cx+C1, P6, p, brd, used)
try(A+ B+ C+Cx+ D, Pb, p, brd, used)
try(A+ B+ C+C1+C2, P8, p, brd, used)
try(A+ B+ C+C1+ D, Pb, p, brd, used)
try(A+ B+ C+C1+D1, P4, p, brd, used)
try(A+ B+ C+ D+Dx, P3, p, brd, used)
try(A+ B+ C+ D+D1, P3, p, brd, used)
try(A+ B+ C+ D+ E, P2, p, brd, used)

}

4.8 The two player pentomino game 35

4.8 The two player pentomino game

A game of pentominoes between two people can be played on a chess board. The

players play alternately and the first who is unable to move loses. A draw is

clearly not possible in this game. It has been shown by Orman [Orm96] that

the first player can force a win. Various winning first moves were verified by

a program that exhaustively searched the game tree. The program presented

here performs a simple version of such a search. It could easily be augmented to

include the heuristics used by Orman to improve its efficiency but this has not

been done here since it obscures the bit pattern techniques which are the purpose

of this example.

A piece placement can be represented a pattern of 76 bits composed of 64

bits to identify the board squares used and 12 bits to identify the piece. Two

placements are mutually compatible if the intersection of their bit patterns is

empty.

The program first precomputes the complete set of 2308 possible placements

as a list of triplets placing them between the pointers p1 and q1. This is done by

the code:

p1 := stackp
mappieces addallrots
q1 := stackp

which calls init 12 times, passing it addallrots and bit patterns giving the

shape and identity of each pentomino. init computes all translations, both hor-

izontally and vertically, of its given pentomino passing the 76 bit representation

to addallrots by means of the call: f(w1, w0, piece), f being the first argu-

ment of init. addallrots calls addpos for each of the 8 possible rotations and

reflections the placement can have. Right to left reflection of the 8 × 8 board

represented by a pair of 32 bit words is done by the following function:

FUN reflect : [w1, w0] =>
w0 := (w0�)<<7 | (w0�)>>7 |

(w0�)<<5 | (w0�)>>5 |
(w0�)<<3 | (w0�)>>3 |
(w0�)<<1 | (w0�)>>1

w1 := (w1�)<<7 | (w1�)>>7 |
(w1�)<<5 | (w1�)>>5 |
(w1�)<<3 | (w1�)>>3 |
(w1�)<<1 | (w1�)>>1

Its argument is a pointer to the pair of 32 bit words w1 and w0 that represent the

lower and upper half of the board. Each half is reflected by simple (if tedious)

assignments. The rotate function is perhaps slightly more subtle. It definition is

as follows:

36 4 THE PENTOMINOES PROBLEM

FUN rotate : [w1, w0] =>
LET a = (w0�)<<4 | w1�
LET b = (w1�)>>4 | w0�

a := (a & #X00003333)<<2 | (a & #X0000CCCC)<<16 |
(a & #XCCCC0000)>>2 | (a & #X33330000)>>16

b := (b & #X00003333)<<2 | (b & #X0000CCCC)<<16 |
(b & #XCCCC0000)>>2 | (b & #X33330000)>>16

w0 := (a & #X00550055)<<1 | (a & #X00AA00AA)<<8 |
(a & #XAA00AA00)>>1 | (a & #X55005500)>>8

w1 := (b & #X00550055)<<1 | (b & #X00AA00AA)<<8 |
(b & #XAA00AA00)>>1 | (b & #X55005500)>>8

Here the rotation is done in three stages, by first moves the four 4 × 4 corners

cyclicly round one position, then the 16 2× 2 sized squares are moved in smaller

cycles, and finally, the individual bits of these 2 × 2 squares are rotated. The

mechanism is efficient since many of the individual bit movements are done in

simultaneously.

The function addpos pushes a 76 bit placement represented by it arguments

w1, w0 and piece onto the placement stack provided it is distinct from all those

already present. This check is done with the aid of a closed hash table of size

4001. The hash function: ABS((w1+1)*(w0+3)) MOD Hashtabsize was chosen

with care to achieve reasonable efficiency. I was not able to devise a satisfactory

perfect hashing function for the job.

The set of 296 distinct first moves (all placements with rotational and reflective

symmetries removed) are calculated initially and placed between p0 and q0. the

code to do this is:

p0 := stackp
mappieces addminrot
q0 := stackp

where addminrot is a function adds only a carefully selected “minimum” of the

8 possible rotations and reflections of each placement it is given.

4.9 Exploring the move tree

Having constructed the sets of initial moves and placements, the exploration of

the move tree is initiated by the code:

TEST try76(1, p0, q0, p1, q1)
THEN writes "\nFirst player can force a win\n"
ELSE writes "\nFirst player cannot force a win\n"

4.9 Exploring the move tree 37

The first argument (1) is the move number being considered which must be

selected from the moves bracketed between p0 and q0, and the last two arguments

bracket the set of placements from which the replies can be selected is specified.

The function try76 selects a move from its given move set placing it 76 bit

representation in w1, w0 and piece. It then constructs the set of possible replies

that do not conflict with the selected move, pushing them onto a stack. If no

replies are possible then the selected move is a winner and try76 return TRUE to

indicate this success. If, however, replies are possible try76 typically calls itself

recursively to explore the tree of moves from the new board state.

A minor complication in the encoding of try76 is to allow it to follow a user

specified path in the move tree. This allows the program to explore the move

tree from a particular state, such as just as after the following first move:

which, as Osman states, can force a win. This move turns out to have 1181

possible replies, and so each of these can be separately explored.

Each move uses one pentomino and 5 board squares so after two moves, 10

squares and two pentominoes will have been used. The corresponding 12 bit

positions will thus be zero for every possible reply. These replies can thus be

compressed from 76 bits to 64 bits without loss of information. This compression

clearly improves the efficiency of the subsequent search.

The compression is done by the function cmp64, whose arguments are: the

move number (n), whose 76 bit possible piece placements are bracketed by the

arguments p and q. The remaining arguments w1bits, w0bits and pbits iden-

tify the board squares and pieces used by the available placements. These were

computed in try76 while the set of replies were being formed.

The function cmpput64 is called by cmp64 to compact each 76 bit placement

to its 64 bits form by packing the remaining piece bits into available board po-

sitions, pushing the resulting word pair onto the placement stack. The encoding

of cmpput64 is straightforward.

Having completed the compression to 64 bit form, cmp64 calls try64 to resume

the tree exploration using this new representation.

The stucture of try64 is the same as that of try76, but is more efficient

since it uses word pairs rather than triplets and also does not include the code

to following a user provided path.

38 4 THE PENTOMINOES PROBLEM

After 8 moves, a further compression to 32 bits is possible since 32 > 76−8×6.

In fact this compression can often be done after 7 or even 6 moves, since sufficient

unoccupied squares may be unreachable using any of the remaining pieces. This

compression is triggered by testing:

bits w1bits + bits w0bits <= 32

where bits counts the number of ones present in its argument. It definition is as

follows:

FUN bits : 0 => 0
: w => 1 + bits(w&(w-1))

Notice that the expression w&(w-1) removes a single one from w.

The compaction from 64 bits to 32 is done by packing the bits in the senior

half into available positions in the junior half, and it is done by the function

cmp32 aided by cmpput32. These functions a somewhat similar to cmp64 and

cmpput64

The final tree exploration using 32 bit representations is then carried out by

try32 which is similar but even simpler than try64.

Information concerning the compression is saved in w1bits64, w0bits64,

pbits64, prn64, w1bits32, w0bits32 and prn32 so that the compressed rep-

resentations can be expanded to 76 bits when printing the board for debugging

purposes.

The function to print the board state is called pr and it uses exp32 and

exp64 to expand the board representation from 32 and 64 bit representations,

respectively.

4.10 The program 39

4.10 The program

GET "mcpl.h"

GLOBAL count:200,
stackv, stackp, stackt, p0, q0, p1, q1

MANIFEST
P1=1, P2=1<<1, P3=1<<2, P4 =1<<3, P5 =1<<4, P6 =1<<5,
P7=1<<6, P8=1<<7, P9=1<<8, P10=1<<9, P11=1<<10, P12=1<<11

FUN setup : =>
// Initialise the set of possible piece placements on
// the 8x8 board allowing for all rotations, reflections
// and translations. The generate the set of truly
// distinct first moves.

stackv := getvec 500000
stackt := @ stackv!500000
stackp := stackv

p1 := stackp
mappieces addallrots
q1 := stackp
writef("\nThere are %4d possible first moves", (q1-p1)/(3*Bpw))
p0 := stackp
mappieces addminrot
q0 := stackp
writef("\nof which %4d are truly distinct\n", (q0-p0)/(3*Bpw))

FUN mappieces : f =>
hashtab := getvec Hashtabsize
FOR i = 0 TO Hashtabsize DO hashtab!i := 0

init(f, #x1F, P1) // * * * * * *
init(f, #x020702, P2) // * * *

// *

init(f, #x010F, P3) // * * * * *
init(f, #x010701, P4) // * * * *

// *

init(f, #x0703, P5) // * * * * *
init(f, #x030E, P6) // * * * * *

init(f, #x070101, P7) // * *
init(f, #x030604, P8) // * * *

// * * * * *

init(f, #x0507, P9) // * * * *
init(f, #x010704, P10) // * * * * *

// *

init(f, #x0F02, P11) // * *
init(f, #x010702, P12) // * * * * * * *

// *
freevec hashtab

40 4 THE PENTOMINOES PROBLEM

FUN freestack : => freevec stackv

FUN addminrot : w1, w0, piece =>
LET mw1=w1, mw0=w0

rotate(@w1)
IF w1<mw1 OR w1=mw1 AND w0<mw0 DO mw1, mw0 := w1, w0
rotate(@w1)
IF w1<mw1 OR w1=mw1 AND w0<mw0 DO mw1, mw0 := w1, w0
rotate(@w1)
IF w1<mw1 OR w1=mw1 AND w0<mw0 DO mw1, mw0 := w1, w0
reflect(@w1)
IF w1<mw1 OR w1=mw1 AND w0<mw0 DO mw1, mw0 := w1, w0
rotate(@w1)
IF w1<mw1 OR w1=mw1 AND w0<mw0 DO mw1, mw0 := w1, w0
rotate(@w1)
IF w1<mw1 OR w1=mw1 AND w0<mw0 DO mw1, mw0 := w1, w0
rotate(@w1)
IF w1<mw1 OR w1=mw1 AND w0<mw0 DO mw1, mw0 := w1, w0
addpos(mw1, mw0, piece)

FUN addallrots : w1, w0, piece =>
addpos(w1, w0, piece)
rotate(@w1)
addpos(w1, w0, piece)
rotate(@w1)
addpos(w1, w0, piece)
rotate(@w1)
addpos(w1, w0, piece)
reflect(@w1)
addpos(w1, w0, piece)
rotate(@w1)
addpos(w1, w0, piece)
rotate(@w1)
addpos(w1, w0, piece)
rotate(@w1)
addpos(w1, w0, piece)

FUN init : f, word0, piece =>
LET word1 = 0

{ LET w1=word1, w0=word0

{ f(w1, w0, piece)
IF (w0|w1) & #x80808080 BREAK // can’t move left any more
w1, w0 <<:= 1, 1 // move piece left one place

} REPEAT

IF word1 & #xFF000000 RETURN
word1 := word1<<8 + word0>>24
word0 <<:= 8

} REPEAT

4.10 The program 41

STATIC hashtab

MANIFEST Hashtabsize = 4001 // Large enough for 2308 entries

FUN addpos : w1, w0, piece =>
LET hashval = ABS((w1+1)*(w0+3)) MOD Hashtabsize

{ LET p = hashtab!hashval

UNLESS p DO { hashtab!hashval := stackp // Make new entry
!stackp+++ := w1
!stackp+++ := w0
!stackp+++ := piece
RETURN

}

IF p!0=w1 AND p!1=w0 RETURN // Match found

hashval++
IF hashval>Hashtabsize DO hashval := 0

} REPEAT

FUN reflect : [w1, w0] =>
w0 := (w0�)<<7 | (w0�)>>7 |

(w0�)<<5 | (w0�)>>5 |
(w0�)<<3 | (w0�)>>3 |
(w0�)<<1 | (w0�)>>1

w1 := (w1�)<<7 | (w1�)>>7 |
(w1�)<<5 | (w1�)>>5 |
(w1�)<<3 | (w1�)>>3 |
(w1�)<<1 | (w1�)>>1

FUN rotate : [w1, w0] =>
LET a = (w0�)<<4 | w1�
LET b = (w1�)>>4 | w0�

a := (a & #X00003333)<<2 | (a & #X0000CCCC)<<16 |
(a & #XCCCC0000)>>2 | (a & #X33330000)>>16

b := (b & #X00003333)<<2 | (b & #X0000CCCC)<<16 |
(b & #XCCCC0000)>>2 | (b & #X33330000)>>16

w0 := (a & #X00550055)<<1 | (a & #X00AA00AA)<<8 |
(a & #XAA00AA00)>>1 | (a & #X55005500)>>8

w1 := (b & #X00550055)<<1 | (b & #X00AA00AA)<<8 |
(b & #XAA00AA00)>>1 | (b & #X55005500)>>8

FUN bits : 0 => 0
: w => 1 + bits(w&(w-1))

42 4 THE PENTOMINOES PROBLEM

STATIC path = VEC 12,
w1v = VEC 12,
w0v = VEC 12,
mvn = VEC 12,
mvt = VEC 12

FUN start : =>
LET argv = VEC 50
LET stdout = output()

IF rdargs(",,,,,,,,,,,,TO/K", argv, 50)=0 DO
{ writef "Bad arguments\n"

RETURN 0
}

FOR i = 0 TO 11 DO path!(i+1) := argv!i -> str2numb(argv!i), -1

UNLESS argv!12=0 DO selectoutput(findoutput(argv!12))

setup()

TEST try76(1, p0, q0, p1, q1)
THEN writes "\nFirst player can force a win\n"
ELSE writes "\nFirst player cannot force a win\n"

freestack()

UNLESS argv!12=0 DO endwrite()

RETURN 0

FUN try76 : n, p, q, np, nq =>
LET s=stackp, t=p, lim=q

UNLESS path!n<0 DO { t := @p!(3*(path!n-1)); IF t<lim DO lim := t+1 }

WHILE t < lim DO
{ LET w1 = !t+++ // Choose a move

LET w0 = !t+++
LET piece = !t+++

w1v!n, w0v!n := w1, w0 // Save the move for printing
mvn!n, mvt!n := (t-p)/(3*Bpw), (q-p)/(3*Bpw)

IF path!n>=0 AND path!(n+1)<0 DO
{ writef "\nConsidering board position:"
FOR i = 1 TO n DO writef(" %d/%d", mvn!i, mvt!i)
newline(); newline(); pr n

}

4.10 The program 43

LET r=np, w1bits=0, w0bits=0, pbits=0
stackp := s

UNTIL r>=nq DO // Form the set of of possible replies
{ LET a = !r+++

LET b = !r+++
LET c = !r+++
UNLESS a&w1 OR b&w0 OR c&piece DO { !stackp+++ := a

!stackp+++ := b
!stackp+++ := c
w1bits |:= a
w0bits |:= b
pbits |:= c

}
}

// The possible replies are stored between s and stackp

IF s=stackp RETURN TRUE // The chosen move is a winner

// Explore the possible replies
TEST n>=2 AND path!(n+1)<0
THEN UNLESS cmp64(n+1, s, stackp, w1bits, w0bits, pbits) RETURN TRUE
ELSE UNLESS try76(n+1, s, stackp, s, stackp) RETURN TRUE

}

// We cannot find a winning move from the available moves
stackp := s
RETURN FALSE

FUN cmp64 : n, p, q, w1bits, w0bits, pbits =>
LET s = stackp

w1bits64, w0bits64, pbits64, prn64 := w1bits, w0bits, pbits, n

// Compress the representation of the moves from 76 to 64 bits.
UNTIL p>=q DO { LET w1 = !p+++

LET w0 = !p+++
LET piece = !p+++
cmpput64(w1, w0, piece)

}

LET res = try64(n, s, stackp)

prn64 := 20
stackp := s
RETURN res

44 4 THE PENTOMINOES PROBLEM

FUN try64 : n, p, q =>
LET s=stackp, t=p

WHILE t < q DO
{ stackp := s

LET w1 = !t+++ // Choose a move
LET w0 = !t+++

w1v!n, w0v!n := w1, w0

mvn!n, mvt!n := (t-p)/(2*Bpw), (q-p)/(2*Bpw)

IF n=4 DO
{ writef("\n\nTrying Move %d: %3d/%d:\n", n, mvn!n, mvt!n)
pr n

}
IF n=5 DO newline()
IF n=6 DO
{ FOR i = 1 TO n DO writef("%3d/%d ", mvn!i, mvt!i)
writes " \^m"

}

LET r=p, w1bits=0, w0bits=0

UNTIL r>=q DO // Form the set of of possible replies
{ LET a = !r+++
LET b = !r+++
UNLESS a&w1 OR b&w0 DO { !stackp+++ := a

!stackp+++ := b
w1bits, w0bits |:= a, b

}
}

// The possible replies are stored between s and stackp

IF s=stackp RETURN TRUE // Move n is a winner

// See if this move n was a winner
TEST bits w1bits + bits w0bits <= 32
THEN UNLESS cmp32(n+1, s, stackp, w1bits, w0bits) RETURN TRUE
ELSE UNLESS try64(n+1, s, stackp) RETURN TRUE

}

// We cannot find a winning move from the available moves
stackp := s
RETURN FALSE

4.10 The program 45

FUN cmp32 : n, p, q, w1bits, w0bits =>
LET s = stackp
w1bits32, w0bits32, prn32 := w1bits, w0bits, n

// Compact the representation of the moves from 64 to 32 bits.
UNTIL p>=q DO { LET w1 = !p+++

LET w0 = !p+++
cmpput32(w1, w0)

}

LET res = try32(n, s, stackp)

prn32 := 20
stackp := s
RETURN res

FUN try32 : n, p, q =>
LET s=stackp, t=p

WHILE t < q DO
{ LET w0 = !t+++ // Choose a move

// w0v!n := w0
// newline(); pr n

LET r = p
stackp := s

UNTIL r>=q DO // Form the set of possible replies
{ LET a = !r+++

UNLESS a&w0 DO !stackp+++ := a
}

IF s=stackp RETURN TRUE // Move n is a winner
IF n=11 LOOP // Move n is a loser
UNLESS try32(n+1, s, stackp) RETURN TRUE

}

// We cannot find a winning move from the available moves
stackp := s
RETURN FALSE

46 4 THE PENTOMINOES PROBLEM

STATIC
chs = CVEC 64,
w1bits64, w0bits64, pbits64, prn64=20,
w1bits32, w0bits32, prn32=20,
prw1, prw0

FUN pr : n =>
FOR i = 1 TO 64 DO chs%i := ’.’

FOR p = 1 TO n DO
{ LET ch = ’A’+p-1

IF p=n DO ch := ’*’
prw1, prw0 := w1v!p, w0v!p

IF p>=prn32 DO exp32() // expand from 32 to 64 bits
IF p>=prn64 DO exp64() // expand from 64 to 76 bits
// prw1 and prw0 now contain the board bits

FOR i = 1 TO 64 DO // Convert to and 8x8 array of chars
{ IF prw0&1 DO chs%i := ch
prw0 >>:= 1
UNLESS i MOD 32 DO prw0 := prw1

}
}

FOR i = 1 TO 64 DO // Output the 8x8 array
{ writef(" %c", chs%i)

IF i MOD 8 = 0 DO newline()
}
newline()

4.10 The program 47

FUN cmpput64 : w1, w0, piece =>
LET w1bits=~w1bits64, w0bits=~w0bits64, pbits=pbits64
LET pbit = ?
WHILE pbits AND w0bits DO
{ LET w0bit = w0bits & -w0bits

pbit := pbits & -pbits
IF piece&pbit DO w0 |:= w0bit // Move a piece bit into w0
pbits -:= pbit
w0bits -:= w0bit

}
WHILE pbits AND w1bits DO
{ LET w1bit = w1bits & -w1bits

pbit := pbits & -pbits
IF piece&pbit DO w1 |:= w1bit // Move a piece bit into w1
pbits -:= pbit
w1bits -:= w1bit

}
!stackp+++ := w1
!stackp+++ := w0

FUN cmpput32 : w1, w0 =>
LET w1bits=w1bits32, w0bits=~w0bits32
WHILE w1bits AND w0bits DO
{ LET w1bit = w1bits & -w1bits

LET w0bit = w0bits & -w0bits
IF w1&w1bit DO w0 |:= w0bit // Move a w1 bit into w0
w1bits -:= w1bit
w0bits -:= w0bit

}
!stackp+++ := w0

FUN exp64 : =>
prw1 &:= w1bits64 // Remove the piece bits from
prw0 &:= w0bits64 // the w1 and w0 bit patterns

FUN exp32 : => // Move various bits from prw0 into prw1
LET w1bits=w1bits32, wobits=~w0bits32
prw1 := 0
WHILE w1bits AND w0bits DO
{ LET w1bit = w1bits & -w1bits

LET w0bit = w0bits & -w0bits
IF prw0&w0bit DO { prw0 -:= w0bit; prw1 |:= w1bit }
w1bits -:= w1bit
w0bits -:= w0bit

}

48 5 THE CARDINALITY OF D3

5 The Cardinality of D3

This is a program to show that there are 120549 elements in the domain D3 as

described on pages 113–115 of “Denotational Semantics” by J.E.Stoy[Sto77].

We start with a base domain (D0) having just the two elements ⊥ and ⊤

satisfying the relation ⊥ ⊑ ⊤.

The domain D1 = D0 → D0 is the domain of monotonic functions from D0

to D0. It contains three elements denoted by ⊥, 1 and ⊤ satisfying the relations

⊥ ⊑ 1 and 1 ⊑ ⊤.

The domain D2 = D1 → D1 is the domain of monotonic functions from D1 to

D1. It contains ten elements that we will denote by the letters A. . . J , satisfying

relations that form the lattice shown in figure 2.

J

I

GH

F E

D

B

C

A

Figure 2: The D2 lattice

Finally, D3 is defined to be the domain of monotonic functions D2 → D2, and

the problem is to compute the number of elements in D3.

A function fǫD2 can be denoted by a sequence of ten elements abcdefghij

giving the values of f(A), f(B), . . . , f(J), respectively. The program searches for

all such functions satisfying the monotonicity constraint:

x ⊑ y ⇒ f(x) ⊑ f(y)

It does this by successively selecting values for j, i . . . a, passing, on at each stage,

the contraints about future selections. All possible values for j are tried by the

call:

try(fJ, A+B+C+D+E+F+G+H+I+J)

49

For each possible setting (x, say) it calls fJ(tab!x) whose argument represents

the set of elements that can be assigned to i, the vector tab providing the mapping

between an element and the set of elements smaller than it.

Sometimes it is neccesary to pass two contraint sets to try. An example is

the call:

try(fF, a&b, a)

Here,a is the set of elements smaller than the one already chosen for g and b is the

set of elements smaller than that already chosen for h. All possible values for f

are thus in a&b. The last argument of this call provides the set of possible values

that e can have. The definitions of the functions fA to fJ are thus straightforward

encodings of the monotonicity constraints resulting from the D2 lattice.

50 5 THE CARDINALITY OF D3

5.1 The program

GET "mcpl.h"

MANIFEST A=1, B=1<<1, C=1<<2, D=1<<3, E=1<<4,
F=1<<5, G=1<<6, H=1<<7, I=1<<8, J=1<<9

STATIC tab = VEC J,
count = 0

FUN start : => tab!J := A+B+C+D+E+F+G+H+I+J
tab!I := A+B+C+D+E+F+G+H+I
tab!H := A+B+C+D +F +H
tab!G := A+B+C+D+E+F+G
tab!F := A+B+C+D +F
tab!E := A+B +D+E
tab!D := A+B +D
tab!C := A+B+C
tab!B := A+B
tab!A := A

// tab!e = the set of elements <= e in the lattice D2

try(fJ, A+B+C+D+E+F+G+H+I+J)
writef("Number of elements in D3 = %d\n", count)
RETURN 0

FUN try : f, a, b => UNTIL a=0 DO { LET x = a & -a
a -:= x
f(tab!x, b)

}

// J
FUN fJ : a => try(fI, a) // |a

// I
FUN fI : a => try(fH, a, a) // |a

// / \
// H |

FUN fH : a, b => try(fG, b, a) // a| |b
// | G

FUN fG : a, b => try(fF, a&b, a) // b| |a
// \ / \
// F |

FUN fF : a, b => try(fE, b, a) // a| |b
// | E

FUN fE : a, b => try(fD, a&b, b) // b| |a
// / \ /
// | D

FUN fD : a, b => try(fC, b, a) // b| |a
// C |

FUN fC : a, b => try(fB, a&b) // a| |b
// \ /
// B

FUN fB : a => try(fA, a) // |a
// A

FUN fA : => count++ // |

51

6 Nonograms

A nonogram is an ancient Japanese puzzle in which a pixel map has to be found

that fits into a rectangular grid satisfying constraints consisting of numbers given

at the end of each row and at the bottom of each column. Such puzzles have

appeared for some time in the London Sunday Telegraph.

A solution to a typical 5 × 5 nonogram is given below.

2

2

1

1 2

2 1

3

3 1 1
1

1
1

43210
.

.

. .

..

..

..

. .

.
0

1

2

3

4

2

The marked squares form contiguous groups whose lengths must match the

numbers at the end of the row or column. For instance, row 2 has the pattern
.. consisting of contiguous regions of lengths 1 and 2 agreeing with

the numbers at the end of that row. Contiguous regions must be separated by at

least one dotted square.

The puzzle can be solved by considering each row in turn and deducing from its

numerical constraint whether any of its squares have forced values. For instance,

for row 2, the only possible arrangements are:

..

..

. .

and hence that row must be of the form where the empty squares

() denote unresolved positions. Applying this method to all the rows tells us

that any solution must have the form:

2

2

1

1 2

2 1

3

3 1 1
1

1
1

43210

0

1

2

3

4

2

We now apply the same method to the columns. For instance, the only arrange-

ments now possible for column 3 are:

52 6 NONOGRAMS

.

.. .

..

from which we can deduce that this column has the form . . . After

processing each column the state of the board is:

2

2

1

1 2

2 1

3

3 1 1
1

1
1

43210

.

..

0

1

2

3

4

2

If we continue to apply this process to the rows and columns we eventually reach

a state where no further resolution is possible. For this puzzle, this state is:

2

2

1

1 2

2 1

3

3 1 1
1

1
1

43210
.

.

.

..

..

..

.

0

1

2

3

4

2

To continue from here, we have to try both alternative settings (or .) for one

of the unresolved squares and, for each setting, continue the resolution as before.

For this puzzle, setting row 0 column 1 to results in the solution:

2

2

1

1 2

2 1

3

3 1 1
1

1
1

43210
.

.

. .

..

..

..

. .

.
0

1

2

3

4

2

and setting it to a dotted square (.) another solution is obtained:

2

2

1

1 2

2 1

3

3 1 1
1

1
1

43210
.

.

.

..

..

..

.

0

1

2

3

4

.

.

.

2

6.1 Implementation 53

6.1 Implementation

A program to implement this algorithm can clearly take advantage of bit pattern

techniques for the representation of the board and the filtering of the constraints,

while recursion can be used as a convenient method to control the backtracking.

To solve problems for boards of up to 32 × 32, we can use two 32-bit words

to represent each row. One identifying which positions have known values and

other specifying what the known values are. The bit patterns for each row are

held in the vectors knownv and boardv. Rows are numbered from 0 to rupb and

columns are numbered from 0 to cupb. The least significant position of the bit

patterns hold information about column 0.

The specification of the puzzle is given by a data file such as the following

(which specifies the problem discussed above):

row 2
row 1
row 1 2
row 2 1
row 3

col 3
col 1 2
col 1 1
col 1 1
col 2

This is read in by the function readdata whose argument is the title of the

data file. It initialises to vectors rdatav and cdatav to hold pointers to zero

terminated vectors holding the constraint data. On reading the above data, it

leaves rdatav as follows:
01 02 0 1 0 2 2 01 3

rdatav

It initialises cdatav similarly. A check is made to ensure that number of squares

that must be marked to satisfy the row constraints equals the number required

to satisfy the column constraints.

The freedom of a constraint is the number of different positions the rightmost

marked region of each row can have. For row 2, the freedom is 2 since the possible

arrangements are:

54 6 NONOGRAMS

..

..

. .

The freedom of row r can be calculated by the call freedom(rdata!r,cupb),

where freedom is defined as follows:

FUN freedom : p, upb => IF !p=0 RETURN 0

LET free = upb+2

free -:= !p + 1 REPEATWHILE !+++p

RETURN free

As can be seen, the freedom of a constraint depends on the length of the row,

the number of regions and the sum of their lengths.

The function readdata calculates the freedom of all constraints saving the

results in the appropriate elements of rfreedomv for the rows and cfreedomv for

the columns.

The search for solutions is made by calling allsolutions after initialising

the elements of knownv and boardv to zero to indicate that all board positions to

unknown. From this state, the rows and columns are processed by a call of solve

which returns when no more resolution is possible. It returns FALSE if it reached

a dead-end state from which no solution is possible, otherwise it returns TRUE.

When no unresolved squares remain, a solution has been found, but otherwise

the position of an unresolved square is chosen and placed in row and bit. The

current state of knownv and boardv is saved in local vectors kv and bv. The

selected square is set to by:

knownv!row, boardv!row |:= bit, bit

This branch of the search tree is then explored by the recursive call of

allsolutions. On return, knownv and boardv is restored from kv and bv and

the selected square set to the other possible value (.) by:

knownv!row |:= bit

A tail-recursive call of allsolutions is then made by means of the repeat loop.

This explores the other branch of the search tree.

The function solve processes the rows using the function dorows and then

flips the board about a diagonal so the the columns can processed by a second

call of dorows. The flip operation is performed by flip which calls flipbits

twice, once to flip the 32 × 32 bitmap boardv and once for knownv. flipbits

swaps bits (i, j) with (j, i) for all positions in its given bitmap — essentially 1024

6.2 Observation 55

bit moves. However, the algorithm does this is 5 stages, swapping square areas

of sizes 16, 8, 4, 2, and finally 1, using five calls of xchbits. The definitions of

these functions are as follows:

FUN flipbits : v => xchbits(v, 16, #x0000FFFF)
xchbits(v, 8, #x00FF00FF)
xchbits(v, 4, #x0F0F0F0F)
xchbits(v, 2, #x33333333)
xchbits(v, 1, #x55555555)

FUN xchbits
: v, n, mask => LET i = 0

{ FOR j = 0 TO n-1 DO
{ LET q= @ v!(i+j)

LET a=q!0, b=q!n
q!0 := a & mask | b<<n &~mask
q!n := b &~mask | a>>n & mask

}
i +:= n+n

} REPEATWHILE i<32

The first argument of xchbits is the bitmap vector, the second argument (n) give

the size of square regions being moved, and the third argument (mask) identifies

which row bits are involved. The process is closely analagous to the discrete fast

Fourier transform algorithm in that it takes log n stages each of which applies a

butterfly operation n times.

The function dorows tries (using try) all possible mark arrangements that are

compatible with the row constraints and the current known state of the board. If

it finds that more is now known it sets change to true, to cause another iteration

(within solve) of the resolution process.

It first argument of try is a pointer to the size of the next contiguous region

to place. If this is zero then the arrangement is complete, and is legal if the call

of ok returns true. The bitwise OR of all legal arrangements are accumulated

in orsets, and andsets accumulates the corresponding intersection. These are

used in dorows to determine whether new information has be discovered.

If the first argument of try points to a non zero value, it attempts to place a

region of this size in each remaining possible positions, calling try recursively to

place the remaining regions.

6.2 Observation

Although this algorithm works well enough, it efficiency could be improved by

not reprocessing any row whose known information has not changed since it was

last processed.

56 6 NONOGRAMS

6.3 The program

GET "mcpl.h"

STATIC
cupb, rupb, spacev, spacet, spacep, boardv, knownv,
cdatav, rdatav, cfreedomv, rfreedomv,
rowbits, known, orsets, andsets,
change, count, tracing

FUN start : =>
LET argv = VEC 50
LET datafile = "nonograms/demo"

IF rdargs("DATA,TO/K,TRACE/S", argv, 50)=0 DO
{ writef "Bad arguments for NONOGRAM\n"

RETURN 20
}

UNLESS argv!0=0 DO datafile := argv!0
UNLESS argv!1=0 DO
{ LET out = findoutput(argv!1)

IF out=0 DO
{ writef("Cannot open file %s\n", argv!1)
RETURN 20

}
selectoutput(out)

}

tracing := argv!2

UNLESS initdata() DO
{ writes "Cannot allocate workspace\n"

UNLESS argv!1=0 DO endwrite()
retspace()
RETURN 20

}

UNLESS readdata datafile DO
{ writes "Cannot read the data\n"

UNLESS argv!1=0 DO endwrite()
retspace()
RETURN 20

}

count := 0
allsolutions()

writef("%d solution%s found\n", count, count=1 -> "", "s")

UNLESS argv!1=0 DO endwrite()
retspace()
RETURN 0

6.3 The program 57

FUN initdata : => // returns TRUE if successful
spacev := getvec 100000
spacet := @ spacev!100000
spacep := spacev
cupb := 0
rupb := 0
boardv := getvec 31
knownv := getvec 31
cdatav := getvec 31
rdatav := getvec 31
cfreedomv:= getvec 31
rfreedomv:= getvec 31

IF spacev=0 OR boardv=0 OR knownv=0 OR cdatav=0 OR rdatav=0 OR
cfreedomv=0 OR rfreedomv=0 RETURN FALSE

FOR i = 0 TO 31 DO
{ boardv!i := 0

knownv!i := 0
cdatav!i := 0
rdatav!i := 0
cfreedomv!i := 0
rfreedomv!i := 0

}

RETURN TRUE

FUN retspace : =>
IF spacev DO freevec spacev
IF boardv DO freevec boardv
IF knownv DO freevec knownv
IF cdatav DO freevec cdatav
IF rdatav DO freevec rdatav
IF cfreedomv DO freevec cfreedomv
IF rfreedomv DO freevec rfreedomv

FUN readdata : filename => // Returns TRUE if successful
LET stdin = input()
LET data = findinput filename

IF data=0 DO
{ writef("Unable to open file %s\n", filename)

RETURN FALSE
}

selectinput data

LET argv = VEC 200
cupb, rupb := -1, -1

58 6 NONOGRAMS

{ LET ch = rdch()
WHILE ch=’\s’ OR ch=’\n’ DO ch := rdch()
IF ch=Endstreamch BREAK
unrdch()

IF rdargs("ROW/S,COL/S,,,,,,,,,,,,,,,,,,,", argv, 200)=0 DO
{ writes("Bad data file\n")
endread()
selectinput stdin
RETURN FALSE

}

IF argv!0 = argv!1 DO
{ writes "Expecting ROW or COL in data file\n"
endread()
selectinput stdin
RETURN FALSE

}

IF argv!0 DO rdatav!++rupb := spacep
IF argv!1 DO cdatav!++cupb := spacep

FOR i = 2 TO 20 DO
{ IF argv!i = 0 BREAK
!spacep+++ := str2numb(argv!i)

}
!spacep+++ := 0

} REPEAT

FOR x = 0 TO cupb DO cfreedomv!x := freedom(cdatav!x, rupb)
FOR y = 0 TO rupb DO rfreedomv!y := freedom(rdatav!y, cupb)

IF tracing DO
{ FOR x = 0 TO cupb DO writef("cfreedom!%2d = %2d\n", x, cfreedomv!x)

FOR y = 0 TO rupb DO writef("rfreedom!%2d = %2d\n", y, rfreedomv!y)
}

endread()

selectinput stdin

UNLESS marks(cdatav, cupb)=marks(rdatav, rupb) DO
{ writes("Data sumcheck failure\n")

writef("X marks = %d\n", marks(cdatav,cupb))
writef("Y marks = %d\n", marks(rdatav,rupb))
RETURN FALSE

}

RETURN TRUE

6.3 The program 59

FUN marks : v, upb =>
LET res = 0
FOR i = 0 TO upb DO { LET p = v!i

UNTIL !p=0 DO res +:= !p+++
}

RETURN res

FUN freedom : p, upb => IF !p=0 RETURN 0
LET free = upb+2
free -:= !p + 1 REPEATWHILE !+++p
RETURN free

FUN allsolutions : =>
{ UNLESS solve() RETURN // no solutions can be found from here

LET row=0, bit=0

FOR i = 0 TO rupb DO
{ LET unknown = ~ knownv!i

IF unknown DO { row, bit := i, unknown & -unknown
BREAK

}
}

// test to see if a solution has been found
IF bit=0 DO
{ writef("\nSolution %d\n\n", ++count)

prboard()
RETURN

}

// There may be a solution from here.
// Try both possible settings of the unresolved square
// given by pos and bit.

IF tracing DO
{ writes "\nNo more direct resolution available in the following:\n"

prboard()
}

60 6 NONOGRAMS

{ LET bv = VEC 31
LET kv = VEC 31

// save current state
FOR i = 0 TO 31 DO bv!i, kv!i := boardv!i, knownv!i

knownv!row, boardv!row |:= bit, bit

IF tracing DO
{ writes "So, try setting an unresolved square to mark\n"
prboard()

}

allsolutions()

// restore saved state
FOR i = 0 TO 31 DO boardv!i, knownv!i := bv!i, kv!i

}

// Space for bv and kv is released at this point so that the
// tail recursive call of allsolutions is more economical.

knownv!row |:= bit

IF tracing DO
{ writes "Try setting a unresolved square to blank\n"

prboard()
}

} REPEAT

// solve returns FALSE is no solution possible from here
FUN solve : =>

{ change := FALSE
UNLESS dorows() RETURN FALSE
flip()
UNLESS dorows() DO { flip(); RETURN FALSE }
flip()

} REPEATWHILE change

RETURN TRUE

6.3 The program 61

// dorows returns FALSE if no solution possible from current state
FUN dorows : =>
FOR row = 0 TO rupb DO
{ orsets, andsets := 0, #xFFFFFFFF

rowbits, known := boardv!row, knownv!row
try(rdatav!row, 0, 0, rfreedomv!row)

UNLESS (andsets & orsets) = andsets RETURN FALSE
rowbits, known |:= andsets, ~orsets | andsets
IF known=knownv!row LOOP
boardv!row, knownv!row, change := rowbits, known, TRUE
IF tracing DO { newline(); prboard() }

}
RETURN TRUE

FUN try
: [0], set, ?, ? => // end of piece list

IF ok(set, cupb+1) DO // Have we found a valid setting
{ IF tracing DO // Yes, we have.

{ FOR col = 0 TO cupb DO
writef(" %c", set>>col & 1 -> ’*’, ’.’)

writes " possible line\n"
}
orsets |:= set // Accumulate the "or" and
andsets &:= set // "and" sets.

}

: [size, next], set, col, free =>

LET piece = 1<<size - 1
FOR i = 0 TO free DO
{ LET nset = set | piece<<(col+i)

LET ncol = col+i+size+1
IF ok(nset, ncol) DO try(@ next, nset, ncol, free-i)

}

// ok returns TRUE if the given mark placement is
// compatible with the current known board settings
FUN ok : set, npos =>
LET mask = known & (1<<npos - 1)
RETURN (set XOR rowbits) & mask = 0

62 6 NONOGRAMS

// flip will flip the nonogram about a diagonal axis from
// the top left of the picture.
// Remember that the top left most position is represented
// by the least significant bits of boardv!0 and knownv!0

FUN flip : =>
cdatav, rdatav := rdatav, cdatav
cfreedomv, rfreedomv := rfreedomv, cfreedomv
cupb, rupb := rupb, cupb

flipbits boardv
flipbits knownv

// flipbits swaps bit (i,j) with bit (j,i) for
// all bits in a 32x32 bitmap. It does it in 5 stages
// by swapping square areas of sizes 16, 8, 4, 2 and
// finally 1.

FUN flipbits : v => xchbits(v, 16, #x0000FFFF)
xchbits(v, 8, #x00FF00FF)
xchbits(v, 4, #x0F0F0F0F)
xchbits(v, 2, #x33333333)
xchbits(v, 1, #x55555555)

FUN xchbits
: v, n, mask => LET i = 0

{ FOR j = 0 TO n-1 DO
{ LET q= @ v!(i+j)
LET a=q!0, b=q!n
q!0 := a & mask | b<<n &~mask
q!n := b &~mask | a>>n & mask

}
i +:= n+n

} REPEATWHILE i<32

FUN prboard : =>
FOR y = 0 TO rupb DO
{ LET row=boardv!y, known=knownv!y

FOR x = 0 TO cupb DO
TEST (known>>x & 1)=0
THEN writes(" ?")
ELSE TEST (row>>x & 1)=0

THEN writes(" .")
ELSE writes(" M")

newline()
}
newline()

63

7 Boolean Satisfiability

The program described here is an implementation of a variant of the Davis-

Putman algorithm[DP60] to enumerates the settings of propositional variables

that will cause a given boolean expression to be satisfied.

The boolean expression is given in conjunctive normal form held in a file. Pos-

itive and negative integers represent positive and negated propositional variables,

respectively. The terms (or clauses) are given as sequences of integers enclosed in

parentheses and the sequence of terms is terminated by the end of file. Thus, for

example, the expression: (A∨B)∧(A∨B∨C)∧(A∨B∨C) could be represented

by the file:

(1 -2)
(1 2 3)
(-1 2 3)

For simplicity, only variables numbered 1 to 32 are allowed.

For the expression to be satisfied each of its terms must be satisfied, and for

a term to be satisfied either one of its positive variables must be set to true, or

one of its negated variables must be false. The algorithm essentially explores

a binary tree whose nodes represent boolean expressions with edges leading to

expressions in which a selected variable is set either to true or false. A leaf of

the tree is occurs when either no terms remain to be satisfied or when an empty

(and therefore unsatisfiable) term is found. The efficiency is greatly affected by

the choice of which variable to set at each stage.

A term can be empty, a singleton, a doublet or a term containing more than

two variables. An expression containing an empty term cannot be satisfied. If it

contains a singleton then the singleton variable has a forced value. If the expres-

sion contains neither empty nor singleton terms, then a variable is selected and

set successively to its two possible boolean values. If any doublets are present,

the positive or negated variable that occurs most frequently in doublets is chosen,

otherwise the most frequently used positive or negated variable occurring in any

term is preferred. The advantage of doublet variables is that one of their alter-

native settings will generate singletons. It is probably best to set the variable

first to that value that causes its terms to be satisfied, since this tends to lead to

a solution earlier. If there are no solutions, or we are enumerating all of them,

then the order in which the two tree branches are searched has no effect on the

total time taken to complete the task.

This strategy can be implemented conveniently using bit pattern representions

of the terms. In this implementation, a term is represented by two 32 bit values,

the first identifying its positive variables and the second the negated ones. The

64 7 BOOLEAN SATISFIABILITY

function readterms reads the file of terms pushing them, as word pairs, onto a

term stack whose free end is pointed to by stackp. The number of variables used

is returned in varcount. This is calculated by evaluating bits(all), where all

identifies all variables used in the expression. The definition of bits has been

described already on page 38.

The call try(p, q, tset, fset) explores a node of the tree. The arguments

p and q bracket the region of the term stack containing the terms of the expres-

sion belonging to this node, and the arguments, tset and fset, indicate which

variables have already been set to true and false, respectively. It first searches

for an unsatisfied term that is now either empty or a singleton.

During this scan each term is successively placed in pterm and nterm. Notice

that a term is already satified if either pterm&tset or nterm&fset is non zero.

If the term is unsatisfied, a simplified version of it is formed in tposs and fposs

by removing from pterm and nterm all variables that have known settings. The

code to do this is:

avail := ~(tset|fset)
tposs := pterm & avail // Remaining pos vars in this term.
fposs := nterm & avail // Remaining neg vars in this term.

The variables still active in the term are placed in vars by the assignment:

vars := tposs|fposs. If vars is zero, an empty term has been found, indicating

that the current expression is unsatisfiable. A variable can be removed from vars

by the assignment: vars &:= vars-1. If after this, vars is zero then the term

was a singleton and tset or fset updated appropriately. This process repeats

until no empty or singleton terms are remain.

At this stage count holds the number of larger terms still to be satisfied. If

more than a third of the current terms are satisfied, the data is compressed by

filtering them out, by a call of filter. This ensures that, at all times, a high

proportion of the terms under consideration are still active, whilst guaranteeing

that the term stack will never needs to hold more than three times the number

of terms in the original expression.

The program now counts how many times each variable is used in both dou-

blets and larger terms in both the positive and negated forms. It does this using

longitudinal arithmetic.

7.1 Longitudinal arithmetic

In longitudinal arithmetic, 32 counters are packed into the elements of a vector p,

say. The element p!0 holds the least significant bit of each counter, and the more

7.1 Longitudinal arithmetic 65

significant bits are held in p!1, p!2,...,p!n. The function inc can be used to

increment several of the counters simultaneously. Its definition is as follows:

FUN inc : p, w => WHILE w DO { !p, w := !p XOR w, !p & w; p+++ }

Here, w is a bit pattern indicating which counters are to be incremented. The

replacement for the least significant word is therefore: !p XOR w and the carry

bits are: !p & w. The while loop ensures that the carry is propagated as far as

necessary. It is easy to show that, if only one counter is being incremented, then

the body of the while loop is executed twice per call on average. If two or more

counters are simultaneous incremented this average is only slightly larger.

The function val can be used to convert a longitudinal counter to a conven-

tional integer. It definition is as follows:

FUN val : p, n, bit => LET res = 0
UNTIL n<0 TEST bit & p!n--

THEN res := 2*res + 1
ELSE res := 2*res

RETURN res

The arguments p and n give the vector and its upper bound, and bit identifies

which counter is to be converted. The result is accumulated, from the most

significant end, in res.

In this application, four vectors, all with upperbound 16, are used to hold

counters. They are:

• p2 – to hold the counts of positive variables occurring in doublets,

• n2 – to hold the counts of negated variables occurring in doublets,

• p3 – to hold the counts of positive variables occurring in larger terms, and

• n3 – to hold the counts of negated variables occurring in larger terms.

They are incremented appropriately for each term by the code:

TEST bits(tposs|fposs) = 2 // Is the term a doublet or larger?
THEN { inc(p2, tposs); inc(n2, fposs) } // A doublet
ELSE { inc(p3, tposs); inc(n3, fposs) } // A larger term

The program now searches for a suitable variable to select by first looking at the

doublet counters:

LET pv=p2, nv=n2, k=16
UNTIL pv!k OR nv!k OR k<0 DO k-- // Search the doublet counts

66 7 BOOLEAN SATISFIABILITY

and if no doublet variables are found, it looks through the counters for larger

terms:

IF k<0 DO { pv, nv, k := p3, n3, 16
UNTIL pv!k OR nv!k DO k-- // Search the larger terms

}

At this stage, one or both of pv!k or nv!k will be non zero, indicating which

variable have the larger counts. Variables with non maximal counts are filtered

out by:

LET pbits=pv!k, nbits=nv!k
UNTIL --k<0 DO { LET pw=pbits & pv!k, nw=nbits & nv!k

IF pw|nw DO pbits, nbits := pw, nw
}

Variables with maximal counts are left in pbits for positive occurrences and

nbits for negative ones. If any positive variables has a maximal count, one is

chosen (pbits & -pbits) and try called twice, first setting this variable true

and then to false. Similar code is used when a negated variable is chosen.

7.2 Comment

Although this implementation is limited to expressions with no more than 32

distinct variables, it can easily be extended to deal with more. It should, however,

be noted that the algorithm can be applied as soon as the expression under

consideration becomes simple enough. If this strategy is adopted, it is probably

worth using a 64 bit implementation, provided the available hardware is suitable.

7.3 The program 67

7.3 The program

GET "mcpl.h"

STATIC
stackv, stackp, stackt, varcount,
p2 = VEC 16, n2 = VEC 16, p3 = VEC 16, n3 = VEC 16

FUN bits : 0 => 0
: w => 1 + bits(w&(w-1))

FUN start : =>
LET filename = "cnfdata"
LET argv = VEC 50

UNLESS rdargs("DATA,TO/K", argv,50) DO
{ writef "Bad arguments for SAT\n"

RETURN 20
}

IF argv!0 DO filename := argv!0

stackv := getvec 500000
stackp := stackv
stackt := @stackv!500000

IF argv!1 DO selectoutput(findoutput(argv!1))

IF readterms filename DO
{ writef("Solving SAT problem: %s\n", filename)

writef("It has %d variables and %d terms\n\n",
varcount, (stackp-stackv)/(2*Bpw))

try(stackv, stackp, 0, 0)
}
IF argv!1 DO endwrite()
freevec stackv
RETURN 0

68 7 BOOLEAN SATISFIABILITY

// readterms reads a file representing a cnf expression.
// Typical data is as follows:
// (1 -2) (1 2 3) (-1 -2 3)
// It return TRUE if successful.

FUN readterms : filename =>
LET stdin=input(), data=findinput filename
LET ch=0, all=0

IF data=0 DO { writef("Can’t find file: %s\n", filename)
RETURN FALSE

}

selectinput data

{ // Skip to start of next term (if any).
ch := rdch() REPEATUNTIL ch=’(’ OR ch=Endstreamch

IF ch=Endstreamch DO { endread()
selectinput stdin
varcount := bits all
RETURN TRUE

}

LET pterm=0, nterm=0

{ LET var = readn() // Read a variable.
MATCH var
: 0 => BREAK // No more variables in this term.
: 1 .. 32 => pterm |:= 1<<(var-1)
: -32 .. -1 => nterm |:= 1<<(-var-1)
: ? => writef("Var %4d out of range\n", var)

} REPEAT

// Test the term for validity.
UNLESS pterm|nterm DO writef "An empty term found\n"
IF pterm&nterm DO writef "A tautologous term found\n"

all |:= pterm|nterm

!stackp+++ := pterm // Insert into the term stack
!stackp+++ := nterm

} REPEAT

FUN filter : p, q, tset, fset =>
UNTIL p>=q DO
{ LET pterm = !p+++ // Get a term

LET nterm = !p+++

// If it is unsatisfied push it onto the term stack.

UNLESS pterm&tset OR nterm&fset DO { !stackp+++ := pterm
!stackp+++ := nterm

}
}

7.3 The program 69

FUN try : p, q, tset, fset =>

// p points to the first term
// q points to just beyond the last
// tset variables currently set true
// fset variables currently set false

LET t, tcount, count
LET pterm, nterm, avail, tposs, fposs

// Scan for empty or singleton terms
{ t, tcount, count := p, 0, 0

UNTIL t>=q DO
{ pterm := !t+++

nterm := !t+++

IF pterm&tset OR nterm&fset LOOP // Term already satisfied.

avail := ~(tset|fset)
tposs := pterm & avail // Remaining pos vars in this term.
fposs := nterm & avail // Remaining neg vars in this term.

LET vars = tposs|fposs
IF vars=0 RETURN // An empty term can’t be satified.
vars &:= vars-1 // Remove one variable.
TEST vars=0 THEN { tcount++ // A singleton term found.

tset |:= tposs
fset |:= fposs

}
ELSE count++ // A larger term found.

}
} REPEATWHILE tcount // Repeat until no singletons found.

UNLESS count DO { writef("Solution found:\n")
prterm(tset, fset)
newline()
RETURN

}

LET s = stackp

IF count < (q-p)/(3*Bpw) DO // Filter if less than 2/3 remain.
{ filter(p, q, tset, fset)

p, q := s, stackp
}

FOR n = 0 TO 16 DO p2!n, n2!n, p3!n, n3!n ALL:= 0

t := p

70 7 BOOLEAN SATISFIABILITY

// Scan for doublet or larger terms
UNTIL t>=q DO
{ pterm := !t+++

nterm := !t+++

IF pterm&tset OR nterm&fset LOOP // Term already satisfied

avail := ~(tset|fset)
tposs := pterm & avail // remaining pos vars in this term
fposs := nterm & avail // remaining neg vars in this term

TEST bits(tposs|fposs) = 2 // Is the term a doublet or larger?
THEN { inc(p2, tposs); inc(n2, fposs) } // A doublet
ELSE { inc(p3, tposs); inc(n3, fposs) } // A larger term

}

LET pv=p2, nv=n2, k=16
UNTIL pv!k OR nv!k OR k<0 DO k-- // Search the doublet counts

IF k<0 DO { pv, nv, k := p3, n3, 16
UNTIL pv!k OR nv!k DO k-- // Search the larger terms

}
// pv!k ~= 0 or nv!k ~= 0 or both.

// Find variable(s) with maximal count (at least one exists).
LET pbit, nbit = pv!k, nv!k
UNTIL --k<0 DO { LET pw=pbit & pv!k, nw=nbit & nv!k

IF pw|nw DO pbit, nbit := pw, nw
}

TEST pbit
THEN { pbit &:= -pbit // Choose just one variable

try(p, q, tset+pbit, fset) // Try setting it to set true
try(p, q, tset, fset+pbit) // Try setting it to set false

}
ELSE { nbit &:= -nbit // Choose just one variable

try(p, q, tset, fset+nbit) // Try setting it to set false
try(p, q, tset+nbit, fset) // Try setting it to set true

}
stackp := s

FUN prterm : tset, fset => // Print the setting, eg:
LET i = 0 // 2 -3 5 6 -11
WHILE tset|fset DO { i++

IF tset&1 DO writef(" %d", i)
IF fset&1 DO writef(" %d", -i)
tset, fset >>:= 1, 1

}

FUN inc : p, w => WHILE w DO { !p, w := !p XOR w, !p & w; p+++ }

FUN val : p, n, bit => LET res = 0
UNTIL n<0 TEST bit & p!n--

THEN res := 2*res + 1
ELSE res := 2*res

RETURN res

71

8 Summary of Bit Pattern Techniques Used

This section highlights the main bit pattern techniques used in this report.

8.1 poss&-poss

This selects of one element from a set. See pages 3, 7, 50, 59 and 66. Notice that

the assignment: pbit &:= -pbit uses this mechanism.

8.2 bits&(bits-1)

This removes of one element from a set. See page 38. Notice that the assignment:

bits &:= bits-1 uses this mechanism.

8.3 (pos<<1|pos>>1)&All

With a carefully chosen representation of the triangular solitaire board, this ex-

pression reflects the left and right halves of the board. See pages 10.

8.4 brd&hhp

Using two separate bits to represent each peg position in solitaire allows a cheap

test (brd&hhp) to determine whether a move is legal. See page 6.

8.5 (fnv!bit) brd

This expression provides a quick way of calling a function that depends on

which bit occurs in bit. It is used on page 7. It is efficient provided the

vector fnv is not too large. Other possible solutions include the use of a

MATCH statement or, more subtly, the use of a perfect hashing function as

in: ((fnv!(bit MOD Fnvsize))(...), but Fnvsize must be carefully chosen!

As an aside, the well known birthday problem (23 people typically do not have

distinct birth dates) leads one to believe that a perfect hash function is likely

to require a wastefully sparse hash table. However, the function hash defined as

follows:

FUN hash : bit => (bit>>1 MOD 29)

is a perfect hash function for the 29 values: 1<<0, ..., 1<<28. It might be

called perfectly perfect since all 29 entries in the hash table are used. An anal-

ogous result holds when the divisor is 19. A few other good values suitable for

72 8 SUMMARY OF BIT PATTERN TECHNIQUES USED

wordlengths upto 64 bits are 2, 4, 5, 9, 11, 13, 19, 25, 29, 37, 53, 59, 61 and

67. These work almost well if the right shift is omitted from the hash function.

Unfortunately, on modern machines MOD is relatively expensive. A faster hash-

ing function could be based on a hardware implementation of some variant of

⌊log
2
w⌋.

8.6 Flipping a 32 × 32 bit map

The function flipbits, described on page 55, flips a bit map about a diagonal.

8.7 reflect and rotate

These functions, described on section 4.8, reflect and rotate an 8×8 bitmap used

in the two player pentomino game.

8.8 Compacting a sparse bit patterns

This was done by the function cmpt64 to compact a 76 bit pattern to 64 bits,

and by cmpt32 to compact 64 bits to 32 bits. Both these functions are described

on page 37.

8.9 Longitudinal arithmetic

The functions inc and val, described on page 65, illustrate the use of longitudinal

arithmetic.

73

A Summary of MCPL

In the syntactic forms given below

E denotes an expression,

K denotes a constant expression,

A denotes an argument list,

P denotes a pattern,

N denotes a variable name,

M denotes a manifest name.

A.1 Outermost level declarations

These are the only constructs that can occur at the outermost level of the pro-

gram.

MODULE N

This directive must occur first, if present.

GET string

Insert the file named string at this point.

FUN N : P => E :..: P => E .

The main procedure has name: start. Functions may only be defined at the

outermost level, hence they have no dynamic free variables.

EXTERNAL N : string ,.., N : string

The “: string”s may be omitted.

MANIFEST M = K ,.., M = K

The “= K”s are optional. When omitted the next available integer is used.

STATIC N = K ,.., N = K

The “= K”s are optional, and when omitted the corresponding variable is not

initialised. The Ks may include strings, tables and functions.

GLOBAL N : K ,.., N : K

The “: K”s may be omitted, and when omitted the next available integer is

used.

A.2 Expressions

N Eg: abc v1 a s err

These are used for variable and function names. They start with lower case

letters.

74 A SUMMARY OF MCPL

M Eg: Abc B1 A S for

These are used for manifest constant names. They start with upper case

letters.

inumb Eg: 1234 #x7F 0001 #377 #b 0111 1111 0000

?

This yields an undefined value.

TRUE FALSE

These are constants equal to -1 and 0, respectively.

char Eg: ’A’ ’\n’ ’XYZ’

The characters are packed into a word as consecutive bytes. The rightmost

character being placed in the least significant byte position. Such constants

can be thought of as base 256 integers.

string Eg: "abc" "Hello\n"

Strings are zero terminated for compatibility with C.

TABLE [E ,.., E]

This yields an initialised static vector. The elements of the vector are not

necessarily re-initialised on each evaluation of the table, particularly if the

initial values are constants.

[E ,.., E]

This yields an initialised local vector. The space allocated in current scope.

VEC K

This yields an uninitialised local word vector with subscripts from 0 to K.

The space is allocated on entry to the current scope.

CVEC K

This yields an uninitialised local byte vector with subscripts from 0 to K. The

space is allocated on entry to the current scope.

(E)

Parentheses are used to group an expression that normally yields a result.

{ E }

Braces are used to group an expression that normally has no result.

EA

This is a function call. To avoid syntactic ambiguity, A must be a name (N or

M), a constant (inumb, ?, TRUE, FALSE, char or string), or it must start with

(or [.

@ E

This returns the address of E. E must be either a variable name (N) or a

subscripted expression (E!E, E%E, !E or %E).

A.2 Expressions 75

E ! E ! E

This is the word subscription operator. The left operand is a pointer to the

zeroth element of a word vector and the right hand operand is an integer

subscript. The form !E is equivalent to E!0.

E % E % E

This is the byte subscription operator. The left operand is a pointer to the

zeroth element of a byte vector and the right hand operand is an integer

subscript. The form %E is equivalent to E%0.

++ E +++ E -- E --- E

Pre increment or decrement by 1 or Bpw (bytes per word).

E ++ E +++ E -- E ---

Post increment or decrement by 1 or Bpw.

~ E + E - E ABS E

These are monadic operators for bitwise NOT, plus, minus and absolute value,

respectively.

E << E E >> E

These are logical left and right shift operators, respectively.

E * E E / E E MOD E E & E

These are dyadic operators for multplication, division, remainder after divi-

sion, and bitwise AND, respectively.

E + E E - E E | E

These are dyadic operators for addition, subtraction, and bitwise OR, respec-

tively.

E XOR X

This returns the bitwise exclusive OR of its operands.

E relop E relop ... E

where relop is any of =, ∼=, <, <=, > or >=. It return TRUE only if all the

individual relations are satisfied. Each E is evaluated atmost once.

NOT E E AND E E OR E

These are the truth value operators.

E -> E, E

This is the conditional expression construct.

E ,.., E := E ,.., E E ,.., E ALL:= E

This is the simultaneous assignment operator. All the expressions are evalu-

ated then all the assignments done.

76 A SUMMARY OF MCPL

E ,.., E op:= E ,.., E

Where op:= can be any of the following: >>:=, <<:=, *:=, /:=, MOD:=, &:=,

+:=, -:=, or XOR:=.

RAISE A

This transfers control to the the currently active HANDLE. Up to three argu-

ments can be passed.

TEST E THEN E ELSE E

IF E DO E

UNLESS E DO E

These are the conditional commands. They are less binding than assignment

and typically do not yield results.

WHILE E DO E

UNTIL E DO E

E REPEATWHILE E

E REPEATUNTIL E

E REPEAT

FOR N = E TO E BY K DO E

FOR N = E TO E DO E

FOR N = E BY K DO E

FOR N = E DO E

These are the repetitive commands. The FOR command introduces a new

scope for locals, and N is a new variable within this scope.

VALOF E

This introduces a new scope for locals and defines the context for RESULT

commands within E.

MATCH A : P => E :..: P => E .

EVERY A : P => E :..: P => E .

E HANDLE : P => E :..: P => E .

In each of these construct, the dot (.) is optional. The arguments (A) are

matched against the patterns (P), and control passed to the first expression

whose patterns match. For the EVERY construct, all guarded expressions

whose patterns match are evaluated. The HANDLE construct defines the

context for RAISE commands. A RAISE command will supply the arguments

to be matched by HANDLE.

RESULT E RESULT

Return from current VALOF expression with a value. RESULT with no argument

is equivalent to RESULT ?.

A.3 Constant expressions 77

EXIT E EXIT

Return from the current function or MATCH, EVERY or HANDLE construct

with a given value. EXIT with no argument is equivalent to EXIT ?.

RETURN E RETURN

Return from current function with a value. RETURN with no argument is equiv-

alent to RETURN ?.

BREAK LOOP

Respectively, exit from, or loop in the current repetitive expression.

E ;..; E

Evaluate expressions from left to right. The result is the value of the last

expression. Any semicolon at the end of a line is optional.

LET N = E ,.., N = E

This construct declares and possibly initialises some new local variables. The

allocation of space for them is done on entry to the current scope. New local

scopes are introduced by FUN, MATCH, EVERY, HANDLE, =>, VALOF, and FOR. The

“=E”s are optional, but, if present, cause the corresponding variable to be

initialised when the LET contruct is reached.

A.3 Constant expressions

These are used in MANIFEST, STATIC and GLOBAL declarations, in VEC

expressions, in the step length of FOR commands, and in patterns.

The syntax of constant expressions is the same as that of ordinary expressions

except that only constructs that can be evaluated at compile time are permitted.

These are:

M , inumb, ?, TRUE, FALSE, char,

(K), { K },

~ K, + K, - K, ABS K,

K << K, K >> K,

K * K, K / K, K MOD K, K & K,

K + K, K - K, K | K,

K XOR K,

K relop K relop ... K,

NOT K, K AND K, K OR K,

K -> K, K

TEST K THEN K ELSE K

78 A SUMMARY OF MCPL

A.4 Patterns

Patterns are used in function definitions, MATCH, EVERY and HANDLE con-

structs. Patterns are matched against parameter values held in consecutive stor-

age locations. Pattern matching is applied from left to right, except that any

assignments are done at the end and only if the entire match was successful.

N

The current location is given name N .

?

This will always match the current location.

K

The value in the current location must equal K.

K..K

The value in the current location must greater than or equal to the first K

and less than or equal to the second K.

(P)

Parentheses are used for grouping.

P ,.., P

The current location and adjacent ones are matched by the corresponding P s.

[P ,.., P]

The value of the current location is a pointer to consective locations matched

by the P s.

PP

The value in the current location is matched by both P s.

P OR P

One or other pattern must match. The patterns must only be constants (K)

or ranges (K..K).

< E <= E > E >= E = E ~= E

The value of the current location must be <E, <=E, etc.

:= E

If the entire match is successful, the current location is updated with the value

of E.

op:= E

If the entire match is successful, the current location is modified by the speci-

fied operation with E.

A.5 Arguments 79

A.5 Arguments

Arguments are used in function calls and in MATCH, EVERY, GOTO and

RAISE commands. They cause a number of expressions to be evaluated and

placed in consecutive locations ready to be matched by one or more patterns.

E

()

(E ,..., E)

An argument list is either an expression, or a, possibly empty, list of expres-

sions separated by commas and enclosed in parentheses. The argument in a

function call must start with (or [, or be a name, a constant, ?, TRUE or

FALSE.

References

[CM81] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer

Verlag, Berlin, 1981.

[DP60] Martin Davis and Hilary Putman. A computing procedure for quati-

fication theory. Journal of the Association for Computing Machinery,

7(3):201–215, July 1960.

[Fle65] John G. Fletcher. A program to solve the pentomino problem by the

recursive use of macros. Communications of the ACM, 8(10):621–623,

October 1965.

[Haz82] P. Hazel. Private communication. Cambridge University Computer

Laboratory, 1982.

[Moo82] J.K.M. Moody. Private communication. Cambridge University Com-

puter Laboratory, 1982.

[Orm96] H.K. Orman. Pentominoes: A first player win. In R.J.Nowakowski,

editor, Games of No Chance. Cambridge University Press, 1996.

[Pau91] L.C. Paulson. ML for the Working Programmer. Cambridge University

Press, Cambridge, 1991.

[Ric] M. Richards. My WWW Home Page. www.cl.cam.ac.uk/users/mr/.

80 REFERENCES

[Ric97] M. Richards. MCPL Programming Manual. Technical Report No 431,

Cambridge University Computer Laboratory, July 1997.

[RWS80] M. Richards and C. Whitby-Strevens. BCPL - the language and its

compiler. Cambridge University Press, Cambridge, 1980.

[Sto77] J. Stoy. Denotational Semantics: The Scott-Stratchey Approach to Pro-

gramming Language Theory, pages 113–115. MIT Press, Cambridge

Mass., 1977.

[Wir71] N. Wirth. Program development by stepwise refinement. Comm. ACM,

14:221–227, 1971.

