EDSAC Initial Orders and Squares Program

UNIVERSITY OF CAMBRIDGE

Martin Richards

EDSAC

EDSAC (Electronic Delay Storage Automatic Computer), pictured below, was the world's first stored-program computer to operate a regular computing service. Maurice Wilkes lead the team responsible for its design and construction. It ran its
first program succesfully on May 6,1949 .

EDSAC's main memory used mercury delay lines to hold 512 words of 35 bits. We will use the notation: $w[0]$, $w[2], \ldots, w[1022]$ to refer to these words of memory. Each word could be split into two 17 -bit halves, separated by a at address $2 n$, namely $w[2 n]$, consisted of the concatenation of $m[2 n+1]$, a padding bit, and $m[2 n]$. Note that $m[1]$ is the senior half of $w[0]$.

The machine had two central registers visible to the user: the 71 -bit accumulator and the 35 -bit multiplier register. We will use the notation ABC to represent the whole accumulator, and A and $A B$ to represent its senior 17 and 35 bits, respectively. We will use RS to represent the whole multiplier register and R to represent its senior 17 bits. The leftmost bit of each register was the sign bit and the remaining bits form a binary fraction.
EDSAC's machine instructions (also called orders) occupied 17 bits. The leftmost 5 bits was the operation code, the next bit was unused, the following 10 bits was the address field and the last bit specified (where appropriate) whether the order used 17 or 35 -bit operands.

Order format:

Orders were punched on paper tape and consisted of: a character that directly gave the 5 -bit operation code, followed by zero or more decimal digits giving the address, and terminated by S or L specifying the operand length bit. For example, R16S assembled to 00100000000100000 and T11L to 00101000000010111 . Note that the characters R and T had codes 4 and 5 , respectively.

The Character Set

EDSAC used 5 -bit integers (0 to 31) to represent characters using two shifts: letters and figures. In letter shift the codes 0 to 31 respectively represented: P, Q, W, E, R, T, Y, U, I, O, J, figs, S, Z, K, lets, null, F, cr, D, sp, H, N, M, lf, L, X, G, A, B, C and V. In figure shift the encoding was as follows: $0,1,2,3,4,5,6,7,8,9$, ?, figs, $",+,($, lets, null, $\$$, cr, ;, sp, $£$, , ., lf, $,, /, \#,-, ?,:$ and $=$. In these tables, $i g s, c r, s p$ and $l f$ denote figure shift, carriage return, space and line feed, and on the ASCII characters $\#$, \square and read as codes $0(\mathrm{P}), 7(\mathrm{U})$ and $27(\mathrm{G})$, respectively. The machine could read paper tape at a rate of 50 characters per second and output to a Creed teleprinter at nearly 7 characters per second.

The 1949 Instruction set

EDSAC's instructions in 1949 was very simple and were executed at a rate of about 600 per second. They were as follows:

The numerical values in the accumulator and multiplier registers are normally thought of as signed binary fractions, but integer operations could also be done easily. For example, the order V1S can be interpreted as adding the product of the suitable shift, the integer result can be placed in the senior 17 bits of A ready for storing in memory.

Initial Orders

The four glass panels on your right contain 20 segments of 5 track paper tape. Reading from right to left and from top to bottom, the first five segments correspond to the initial orders, and the remaining 15 to a program to compute squares. The

The initial orders were written by David Wheeler in May 1949 to load and enter a paper tape represention of a program When EDSAC was started, these initial orders were placed in memory locations 0 to 30 by a mechanism involving uniselec tors before execution stared from location 0 .
The glass panels give a paper tape representation of these orders even though no such paper tape ever existed. The following is an annotated listing of this program.

Order bit pattern			Loc	Order	Meaning	Comment
00101	00000000000	0	0 :	TOS	$m[0]=A ; A B C=0$	
10101	00000000010	0	1:	H2S	$\mathrm{R}=m$ [2]	Put $10 \ll 11$ in R
00101	00000000000	0	2 :	TOS	$m[0]=A ; A B C=0$	
00011	00000000110	0	3:	E6S	goto 6	Jump to main loop
00000	00000000001	0	4:	P1S	data 2	The constant 2
00000	00000000101	0	$5:$	P5S	data 10	The constant 10
00101	00000000000	0	6:	TOS	$m[0]=A ; A B C=0$	Start of the main loop
01000	00000000000	0	7:	IOS	$m[0]=r d c h()$	Get operation code
11100	00000000000	0	8 :	AOS	$\mathrm{A}+=m[0]$	Put it in A
00100	00000010000	0	$9:$	R16S	ABC>> $=6$	Shift and store it
00101	00000000000	1	10:	TOL	$w[0]=\mathrm{AB} ; \mathrm{ABC}=0$	so that it becomes the senior 5 bits of $m[0]$ $m[1]$ is now zero
01000	00000000010	0	11:	I2S	$m[2]=\mathrm{rdch}()$	Put next ch in m [2]
11100	00000000010	0	12:	A2S	$\mathrm{A}+=m[2]$	Put ch in A
01100	00000000101	0	13:	S5S	$\mathrm{A}=\boldsymbol{m}$ [5]	A=ch-10
00011	00000010101	0	14:	E21S	if $\mathrm{A}>=0$ goto 21	Jump to 21, if ch>=10
00101	00000000011	0	15:	T3S	$m[3]=\mathrm{A} ; \mathrm{ABC}=0$	Clear A, m [3] is junk
11111	00000000001	0	16:	V1S	$\mathrm{AB}+=m[1] * \mathrm{R}$	$\mathrm{A}=m[1] *(10 \ll 11)$
11001	00000001000	0	17:	L8S	A<<=5	Shift 5 more places
11100	00000000010	0	18:	A2S	$\mathrm{A}+=m$ [2]	Add the new digit
00101	00000000001	0	19:	T1S	$m[1]=\mathrm{A} ; \mathrm{ABC}=0$	Store back in m [1]
00011	00000001011	0	20:	E11S	goto 11	Repeat from 11
00100	00000000100	0	21:	R4S	ABC>> $=4$	$\begin{aligned} & A=2, \text { if } c h=' S '^{\prime}(=12) \\ & A=15, \text { if } c h=' L \text { ' }(=25) \\ & \text { lenbit=0, if } c h=' S ' \\ & \text { lenbit }=1 \text {, if } c h=' L ' \end{aligned}$
11100	00000000001	0	22:	A1S	A $+=m$ [1]	Add in the address
11001	00000000000	1	23:	LOL	$\mathrm{ABC} \ll=1$	Shift to correct position
11100	00000000000	0	24:	AOS	A $+=m$ [0]	Add in the operation field
00101	00000011111	0	25:	T31S	$m[31]=A ; A B C=0$	Store the order in next location
11100	00000011001	0	26:	A25S	$\mathrm{A}+=m$ [25]	Increment the address field of m [25]
11100	00000000100	0	27:	A4S	$\mathrm{A}^{+}=m[4]$	$m[4]$ holds 2
00111	00000011001	0	28:	U25S	$m[25]=$ A	Update m [25]
01100 11011	$\begin{array}{ll}0 & 0000011111 \\ 0 & 000000110\end{array}$	0	$29:$	S31S	$A-=m[31]$	Jump to 6, if there are

The instruction at location 0 does nothing useful, but the instruction at 1 loads the multiplier register R with a 17 -bit pattern 00101000000000000 which is also 10 shifted left 11 places. The instruction instruction at 2 (TOS) assembles into xactly this bit pattern, so is used both as data and an instruction to clear m [0] The instruction at 3 skips to location 6 over the instructions at 4 and 5 that assemble as the 17 -bit constants 2 and 10 , respectively.
The main assembly loop starts at 6 , leaving locations $m[0]$ to $m[5]$ available as variables and constants in the program They are used as follows:
uses include holding the first character of an order,
used to hold the address field of the current order, used for characters other than the first of an order,
m [3] used as a junk register when the instruction at 15 clears ABC
m [4] the constant 2 used at 27 to add one to an address field,
$m[5]$ the constant 10 used to check for the end of address digits.

The order at 25 is of the form $\mathrm{T} n \mathrm{~S}$, initially T31S. It is used to store an order at location n. This instruction is modified by the code in locations 26 to 28 which adds one to its address field, so the next time it is executed it will update th next location. Location 31 is the first order to be loaded and must be of the form $\mathrm{T} n \mathrm{~S}$ where $n-1$ is the address of las in 25 . If loading is not yet complete execution jumps to 11 , otherwise it fall through to 31 . Note that the instruction at 31 will do no damage, since it just writes a value to the first location following the loaded program. The first real instruction of the program is in m [32].

M.V Wilkes and W.A. Renwick

The Squares Program

This program, written by Maurice Wilkes in June 1949, outputs the following table of squares and differences of the numbers 1 to 100 .

The following is an annotated listing of the program.

Order bit pattern			Loc	Order	Meaning	Comment
00101	00001111011	0	31:	T123S	$\mathrm{m}[123]=\mathrm{A} ; \mathrm{ABC}=0$	The required first word
00011	00001010100	0	32:	E84S	goto 84	Jump to start
00000	00000000000	0	33:	PS	data 0	For the next decimal digit
00000	00000000000	0	34:	PS	data 0	For the current power of ten
00100	11100010000	0	35:	P10000S	data $10000<1$	The table of 16 -bit
00000	01111101000	0	36:	P1000S	data $1000 \ll 1$	powers of ten
00000	00001100100	0	37:	P100S	data $100 \ll 1$	
00000	00000001010	0	38:	P10S	data $10 \ll 1$	
00000	00000000001	0	39:	P1S	data $1 \ll 1$	
00001	00000000000	0	40:	QS	data $1 \ll 12$	00001 in MS 5 bits, used to form digits
01011	00000000000	0	41:	\#S	data $11 \ll 12$	Figure shift character
11100	00000101000	0	42:	A40S		End limit for values placed in m [52]
10100	00000000000	0	43:	!S	data $20 \ll 12$	Space character
11000	00000000000	0	44:	\&S	data $24 \ll 12$	Line feed character
10010	00000000000	0	45:	@S	data $18 \ll 12$	Carriage return character
01001	00000101011	0	46:	0435	wr (m [43])	Write a space
01001	00000100001	0	47:	033 S	wr (m[33])	Write a digit
00000	00000000000	0	48:	PS	data 0	The number to print
11100	00000101110	0	49:	${ }^{\text {A } 46 S}$	A $+=\mathrm{m}$ [46]	Print subroutine entry point
00101	00001000001	0	50:	T65S	$m[65]=\mathrm{A} ; \mathrm{ABC}=0$	Put 043S in m [65]
00101	00010000001	0	51:	T129S	$m[129]=\mathrm{A}$; $\mathrm{ABC}=0$	Clear A
11100	00000100011	0	52:	A35S	A $+=m$ [35]	A is next power of ten. m [52] cycles through A35S, A36S, A37S, A38S and A39S
00101	00000100010	0	53:	T34S	$m[34]=\mathrm{A}$; $\mathrm{ABC}=0$	Store it in m [34]
00011	00000111101	0	54:	E61S	goto 61	
00101	00000110000	0	55:	T48S	$m[48]=A ; A B C=0$	Store value to be printed
11100	00000101111	0	56:	A47S	A $+=m$ [47]	Store instruction 033S
00101	00001000001	0	57:	T65S	$m[65]=\mathrm{A} ; \mathrm{ABC}=0$	in m [65]
11100	00000100001	0	58:	A33S	$\mathrm{A}+=m$ [33]	Increment the decimal digit
11100	00000101000	0	59:	A40S	$\mathrm{A}+=m$ [40]	held in the MS 5 bits
00101	00000100001	0	60:	T33S	$m[33]=\mathrm{A} ; \mathrm{ABC}=0$	of m [33]
11100	00000110000	0	61:	A48S	$\mathrm{A}+=m$ [48]; $\mathrm{ABC}=0$	Get value to print
11100	00000100010	0	62:	S34S	$\mathrm{A}==m[34]$	Subtract a power of 10
00011	00000110111	0	63:	E55S	if $\mathrm{A}>=0$ goto 55	Repeat, if positive
11100	00000100010	0	64:	A34S	$\mathrm{A}+=m$ [34]	Add back the power of 10
00000	00000000000	0	65:	PS	data 0	This is replaced by either 043S to write a space, or 033S to write a digit
00101	00000110000	0	66:	T48S	$m[48]=\mathrm{A} ; \mathrm{ABC}=0$	Set the value to print
00101	00000100001	0	67:	T33S	$m[33]=\mathrm{A} ; \mathrm{ABC}=0$	Set digit to 0
11100	00000110100	0	68:	A52S	$\mathrm{A}+=m$ [52]	Increment the address field
11100	00000000100	0	69:	A4S	$\mathrm{A}+=m$ [4]	of the instruction
00111	00000110100	0	70:	U52S	$m[52]=\mathrm{A}$	in m [52]
01100	00000101010	0	71:	S42S	$\mathrm{A}-=m$ [42]	Compare with A40S and
11011	00000110011	0	72:	G51S	if $\mathrm{A}<0$ goto 51	Repeat, if more digits
11100	00001110101	0	73:	A117S	$\mathrm{A}+=m$ [117]	Put A35S back
00101	00000110100	0	74:	T52S	$m[52]=\mathrm{A} ; \mathrm{ABC}=0$	in m [52]
00000	00000000000	0	75:	PS	data 0	To hold the return jump instruction which is E95S, E110S or E118S

00000	0	0000000000	0	76:	PS	data 0	Hold
00000	0	0000000000	0	77:	PS	data	Holds x^{2}
00000	0	0000000000	0	78:	PS	data	Holds previous x^{2}
00000	0	0000000000	0	79:	PS	data 0	Holds Δx^{2}
00011	0	0001101110	0	80:	E110S	goto 110	Order to place in m [52]
00011	0	0001110110	0	81:	E118S	goto 118	Order to place in m [52]
00000	0	0001100100	0	82:	P100S	data $100 \ll 1$	End limit for x
00011	0	0001011111	0	83:	E95S	goto 95	Order to place in m [52]
01001	0	0000101001	0	84:	041 S	wr (m [41])	Write figure shift
00101	0	0010000001	0	85:	T129S	$m[129]=\mathrm{A} ; \mathrm{ABC}=0$	Start of main loop
01001	0	0000101100	0	86:	044S	wr (m [44])	Write line feed
01001	0	0000101101	0	87:	045 S	$\mathrm{wr}(m$ [45$]$)	Write carriage return
11100	0	0001001100	0	88:	A76S	$\mathrm{A}+=m$ [76]; $\mathrm{ABC}=0$	Get x
11100	0	0000000100	0	89:	A4S	$\mathrm{A}+=m$ [4]	Increment it
00111	0	0001001100	0	90.	U76S	$m[76]=A$	and store it back in x
00101	0	0000110000	0	91:	T48S	$m[48]=\mathrm{A} ; \mathrm{ABC}=0$	Put it also in m [48] for printing
11100	0	0001010011	0	92:	${ }^{\text {A }} 83 \mathrm{~S}$	$\mathrm{A}+=m$ [83]	Put return jump E95S
00101		0001001011	0	93:	T75S	$m[75]=\mathrm{A} ; \mathrm{ABC}=0$	into m [75]
00011	0	0000110001	0	94:	E49S	goto 49	Enter the print subroutine
01001	0	0000101011	0	95:	0435	wr (m [43])	Write a space
01001	0	0000101011	0	96:	0435	wr (m [43])	Write a space
10101		0001001100	0	97:	H76S	$\mathrm{R}=m$ [76]	Multiply x by
11111		0001001100	0	98:	V76S	ABC+ $=m[76] * \mathrm{RS}$	itself and
11001	0	0001000000	0	99:	L64S	ABC<<8	re-position
11001	0	0000100000	0	100:	L32S	ABC<<7	the result
00111	0	0001001101	0	101:	U77S	$m[77]=\mathrm{A}$	Store in location for x^{2}
01100	0	0001001110	0	102:	S78S	$\mathrm{A}-=m$ [78]	Subtract the previous value
00101	0	0001001111	0	103:	T79S	$m[79]=\mathrm{A} ; \mathrm{ABC}=0$	and store the new Δx^{2}
11100	0	0001001101	0	104:	A77S	$\mathrm{A}+=m$ [77]	Update variable holding
00111	0	0001001110	0	105:	U78S	$m[78]=\mathrm{A}$	the previous x^{2}
00101	0	0000110000	0	106:	T48S	$m[48]=\mathrm{A} ; \mathrm{ABC}=0$	Put x^{2} in m [48] for printing
11100	0	0001010000	0	107:	${ }^{\text {A } 80 S}$	$\mathrm{A}+=m$ [80]	Put return jump E110S
00101	0	0001001011	0	108:	T75S	$m[75]=\mathrm{A} ; \mathrm{ABC}=0$	into m [75]
00011	0	0000110001	0	109:	E49S	goto 49	Enter the print subroutine
01001	0	0000101011	0	110:	0435	wr (m [43])	Write a space
01001	0	0000101011	0	111:	0435	$\mathrm{mr}(m[43])$	Write a space
11100	0	0001001111	0	112:	A79S	$\mathrm{A}+=m$ [79]	Get Δx^{2}
00101	0	0000110000	0	113:	T48S	$m[48]=\mathrm{A} ; \mathrm{ABC}=0$	Put it in m [48] for printing
11100	0	0001010001	0	114:	A81S	$\mathrm{A}+=m$ [81]	Put return jump E118S
00101	0	0001001011	0	115:	T75S	$m[75]=\mathrm{A} ; \mathrm{ABC}=0$	into m [75]
00011	0	0000110001	0	116:	E49S	goto 49	Enter the print subroutine
11100	0	0000100011	0	117:	A35S	$\mathrm{A}+=m$ [35]	Order to place in m [52]
11100	0	0001001100	0	118:	A76S	A $+=m$ [76]	Get x
01100	0	0001010010	0	119:	S82S	$\mathrm{A}-=m$ [82]	Subtract the end limit ($=100$)
11011	0	0001010101	0	120:	G85S	if A<0 goto 85	Repeat, if more to do
01001	0	0000101001	0	121:	0415	$\mathrm{wr}(m[41])$	Write figure shift
01101		0000000000	-	122:	ZS	Stop	Stop the machine

The Green Door

The green door on your left was the Corn Exchange Street entrance to the Mathematical Laboratory where EDSAC wa h. By conven brass plaqui this door holds the engraved names of those retired members of the Laborator who used the door in its original location.

Links

http://www.dcs.warwick.ac.uk/ edsac/
This links to Martin Campbell-Kelly's excellent EDSAC simulator and related documents.
ttp://www.c1.cam.ac.uk/UoccL/misc/edSAcson,
This links to pages relating to the celebration, held in Cambridge in April 1999, of the 50th anniversary of the EDSAC 1 Computer.
http://www.cl.cam.ac.uk/ \sim mr/Edsac.html
This links to a shell based EDSAC simulator that runs on Pentium based Linux systems. It was designed to be educational having a built-in interactive debugger allowing single step execution, the setting of breakpoints he programs described in this poster. This simulator also appears as a demonstration program in the Cintcode BCPL system (http://www.cl.cam.ac.uk/~mr/BCPL.html).
http://www.cl.cam.ac.uk/~mr/edsacposter.pdf
This is a PDF version of this poster on two A4 pages.

The corrected tape segments etched on the Tea Room glass panels

