
Find Patterns in Text Files

Kiyoshi Akima
http://kiyoshiakima.tripod.com/funprogs

2006.07.27

i

Contents

1 Find 1
1.1 Patterns . 1
1.2 Escape sequences . 2
1.3 Metacharacters . 2
1.4 Character classes . 3
1.5 Rationale . 3

2 Literate Programs 4
2.1 The program . 5
2.2 The metacharacters . 5

3 The start procedure 6
3.1 Bailing out in case of trouble . 6
3.2 Processing the command line arguments 7

Ignoring case distinctions . 7
Numbering output lines . 7

3.3 Compiling the pattern . 8
3.4 Opening the input stream . 9
3.5 Searching for matching lines . 9
3.6 Closing the streams . 10

4 Input/Output 10
4.1 Input . 10
4.2 Output . 12

5 Pattern creation 12

6 Pattern matching 17

7 Error reporting 19

8 Debugging 20
8.1 The pattern buffer . 20
8.2 The input line . 21
8.3 Calling the debug procedures . 21

9 Change Log 21

A Index of Code Fragments 22

B Index of Identifiers 23

April 27, 2006 find.nw 1

1 Find

find FROM/A,TO/K,PAT/K,C/S,N/S
The find command copies the file given by the FROM argument to the file

given by the TO argument. In the process it scans the text for occurences of
a search pattern. Only lines containing or not containing the search pattern
are output; that is, find selects from a file just those lines containing a search
pattern or just those lines not containing it.

The search pattern is given by the PAT argument and is formed according to
the rules given below. If the pattern is prefixed by a tilde symbol (~), then lines
not containing the pattern are output, otherwise lines containing the pattern
are output.

If the C switch is given then case distinctions are ignored when matching.
If the N switch is given then the lines are numbered on output.

1.1 Patterns

The simplest form of a search pattern is a character string identical to the one
sought.

Preceding the pattern with a grave accent (‘) specifies that the string must
appear at the beginning of a line. The grave accent in any other position has
no special meaning.

Terminating a pattern with an apostrophe (’) specifies that the string must
occur at the end of a line. An apostrophe in any other position has no special
meaning.

The following patterns illustrate their use:
pattern meaning

‘abcd the string “abcd” at the beginning of a line
xyz’ the string “xyz” at the end of a line
‘xxx’ a line consisting only of “xxx”
ab’cd‘e the string “ab’cd‘e” occuring anywhere in a line
A question mark (?) in a pattern matches any character in that position of

a string. Thus the pattern f??t matches “foot”, “feet”, “f it”, and so on.
An asterisk (*) causes a match on zero or more occurences of the preceding

character. An asterisk at the beginning of a pattern has no special meaning.
The following patterns illustrate the use of the asterisk:

pattern matching strings

*abc “*abc”
a*bc “bc”, “abc”, “aabc”, “aaabc”, . . .
aa*bc “abc”, “aabc”, “aaabc”, “aaaabc”, . . .
s?*p “sp”, “sxp”, “sleep”, “s12 xp”, . . .

April 27, 2006 find.nw 2

1.2 Escape sequences

Sometimes it is necessary to enter nonprintable characters or characters that
ordinarily have special meaning. You can enter such characters from the key-
board by using the colon as an escape character. An escape character changes
the meaning of the character that follows it.

Together the escape character and the character following it are seen as a
single character by the command. The escape sequences are:

:b backspace
:n newline
:s space
:t tab
:<other character> the actual character given

Some special characters known as metacharacters have special meaning when
they appear in the pattern. You may use the <other character> escape se-
quence to force them to be seen as themselves in these contexts.

The colon, having a special use (escape character), must be escaped to be
accepted as itself; thus :: is taken for a single colon.

Provision is made for the space character, since if an actual space were
included in the pattern it would delimit the pattern.

Despite the provision of the newline character as an escape, this command
will not match patterns spanning multiple lines. Perhaps a future enhance-
ment. . .

1.3 Metacharacters

Certain characters assume special meanings when they appearn in the pattern.
As a group these characters are designated metacharacters (as opposed to or-
dinary characters). Since these metacharacters occasionally need to appear as
ordinary characters in a search pattern, they may, in such cases, be entered as
escape sequences. The metacharacters are given below:

symbol name use
: colon escape character
‘ grave accent matches the beginning of the line
’ apostrophe matches the end of the line
? question mark matches any character
* asterisk matches zero or more occurences of

the preceding character
[left bracket begins a character class definition
] right bracket ends a character class definition
- hyphen indicates a range of characters in a

character class definition
~ tilde complements a character class

definition
The metacharacters are defined in Section 2.2. You may change these

metacharacter assignments to suit your fancy by changing that section before
tangling and compiling.

April 27, 2006 find.nw 3

1.4 Character classes

Since the set of decimal digits, lowercase letters, and uppercase letters are used
frequently, and since they are such long lists, a shorthand method of specifying
[012\dots9], [abc\dots z], and [ABC\dots Z] exists. You may place a hy-
phen between the first and last characters. Thus, the pattern a[0-9] matches
“a0”, “a1”, and so on.

You need not specify the entire set of decimal digits, nor all of the letters
when the shorthand notation is used. You may give [5-7], [a-g], and so on.
The only restrictions are that the lower-valued character must be listed in front
of of the hyphen. You may use the shorthand notation in a list of characters
specifying a character class. Thus, [s12g5-7a-zA-Z$(] is a valid character
class.

The hyphen (-) has special meaning only when it falls between characters
in a character class definition. If it appears at either end of the definition or
outside such a definition, it has no special meaning.

If the first character inside the left bracket is a tilde ~, it causes a match on
any character except those listed.

It is important to think of the character class as a single character position.
If you need a literal [or] in a pattern, then escape it as :[or :], respec-

tively.

1.5 Rationale

Admittedly, this is a very limited program when compared to grep and its kin.
So why bother writing and presenting such a command when every programmer
already has the familiar and much more capable grep in his toolbox? While this
command certainly won’t replace grep and its kin in anyone’s toolbox, it does
have the advantage of working from within the BCPL interpreter cinterp. This
makes it convenient for answering those quick “How did I spell that variable?”
type of questions without having to leave the interpreter.

And, the program is big enough to be a nontrivial test of using literate
programming techniques (Section 2) with BCPL while being small enough to be
completed in a reasonable amount of time.

April 27, 2006 find.nw 4

2 Literate Programs

This document not only describes the implementation of find, it is the im-
plementation. The noweb system for “literate programming” generates both
the document and the code from a single source. This source consists of in-
terleaved prose and labelled code fragments. The fragments are written in the
order that best suits describing the program, namely the order you see in this
document, not the order dictated by the BCPL programming language. The
program noweave accepts the source and produces the document’s typescript,
which includes all of the code and all of the text. The program notangle extracts
all of the code, in the proper order for compilation.

Fragments contain source code and references to other fragments. Fragment
definitions are preceded by their labels in angle brackets. For example, the code

4a 〈a fragment label 4a〉≡ 4c .

sum := 0

FOR i = 1 TO 10 DO 〈increment sum 4b〉
4b 〈increment sum 4b〉≡ (4a)

sum := sum + x!i

sums the elements of x. Several fragments may have the same name; notangle
concatenates their definitions to produce a single fragment. noweave identifies
this concatenation by using + ≡ instead of ≡ in continued definitions:

4c 〈a fragment label 4a〉+≡ / 4a

writef("%i*n", sum)

Fragment definitions are like macro definitions; notangle extracts a program
by expanding one fragment. If its definition refers to other fragments, they
themselves are expanded, and so on.

Fragment definitions include aids to help readers navigate among them. Each
fragment name ends with the number of the page on which the fragment’s
definition begins and a letter giving its sequence within that page. If there is
only one fragment on a page then there is no letter. This is also shown in the
left margin. Each continued definition also shows the previous definition, and
the next continued definition, if there is one. / 7b is an example of a previous
definition that appears on page 7, and 11 . says the definition is continued on
page 11. These annotations form a double linked list of definitions; the left
arrow points to the previous definition in the list and the right arrow points to
the next one. The previous link on the first definition is omitted, and the next
link on the last definition is omitted. These lists are complete: If some of a
fragment’s definition appears on the same page with each other, the links refer
to the page on which they appear.

Fragments also show a list of pages on which the fragment is used, as illus-
trated by the (4a) to the right of the definition for 〈increment sum〉, above.

April 27, 2006 find.nw 5

2.1 The program

This program is translated from the Small-C program of the same name appear-
ing in the Small-Tools package by J. E. Hendrix.

Translated into BCPL the program has the usual structure. The fragment
name consisting of an asterisk indicates to noweb that this is the root fragment,
which is expanded to generate the program.

5a 〈* 5a〉≡
GET "libhdr"

〈manifests 5b〉

〈statics 6c〉

〈debug stuff 20a〉

〈procedure start 6a〉

2.2 The metacharacters

All of the metacharacters are defined here. You may change them to suit your
fancy before tangling and compiling. (And don’t forget to change the documen-
tation in Section 1.3.)

5b 〈manifests 5b〉≡ (5a) 10c .

MANIFEST {

Char = ’c’ // identifies a character

BoL = ’‘’ // beginning of line

EoL = ’*’’ // end of line

Any = ’?’ // any character

CCl = ’[’ // begin character class

NCCl = ’^’ // negation of chracter class

CClEnd = ’]’ // end of character class

Closure = ’**’ // zero or more occurences

Escape = ’:’ // escape character

NotC = ’^’ // negation character

}

April 27, 2006 find.nw 6

3 The start procedure

By convention execution of a BCPL program begins with a call to start. In
this program start processes its command line to get the pattern, compiles the
pattern into an internal format, opens the input stream, searches for matching
lines and prints them, and finally cleans up.

6a 〈procedure start 6a〉≡ (5a)

LET start() = VALOF {

〈error procedures 19b〉
〈i/o procedures 11a〉
〈case conversion 7e〉
〈pattern creation procedures 13a〉
〈pattern matching procedures 17a〉

〈procedure start’s variables 7a〉

〈prepare for bail out 6b〉
〈process command line 7b〉
〈compile pattern 8e〉
〈find input stream 9b〉
〈search for matching lines 9c〉

fin:

〈deallocate memory 8g〉
〈close streams 10b〉

RESULTIS 0

}

3.1 Bailing out in case of trouble

We hope we don’t have to, but just in case. . .
6b 〈prepare for bail out 6b〉≡ (6a)

fin_p, fin_l := level(), fin

6c 〈statics 6c〉≡ (5a) 7d .

STATIC {

fin_p; fin_l

}

Now we can get to the cleanup code from anywhere within the program.
6d 〈bail out 6d〉≡ (19b)

longjump(fin_p, fin_l)

April 27, 2006 find.nw 7

3.2 Processing the command line arguments

The first thing we have to do is to extract the arguments from the command
line. The input stream and the pattern are required arguments, while an output
stream is optional.

7a 〈procedure start’s variables 7a〉≡ (6a)

LET argv = VEC 10

We let rdargs process the command line for us.
7b 〈process command line 7b〉≡ (6a) 7c .

IF 0 = rdargs("〈rdargs argument 8a〉", argv, 10) DO 〈error: usage 8b〉

Ignoring case distinctions

We have to be a little careful in ignoring case distinctions. We can’t simply
map both the pattern and the input line to a single case, as then we wouldn’t
be able to print the original input line. Instead, we set a flag accordingly.

7c 〈process command line 7b〉+≡ (6a) / 7b 7f .

ignore_case := argv!3

And, of course, the flag needs to be defined before it can be used.
7d 〈statics 6c〉+≡ (5a) / 6c 7g .

STATIC {

ignore_case

}

If the user specified case distinctions to be ignored, we convert letters to lower
case for comparison purposes.

7e 〈case conversion 7e〉≡ (6a)

LET case(c) = ignore_case & (’A’<= c <= ’Z’) ->

c + ’a’ - ’A’,

c

Numbering output lines

We’re going to get a little tricky with the line counter. If line numbering is not
specified then we initialize the counter to −1. If line numbering is specified then
we initialize the counter to the number of lines read so far (which is zero). For
this we rely on the fact that BCPL defines TRUE as −1. From this point on, the
line count will get incremented upon newline only if the count is nonnegative.

7f 〈process command line 7b〉+≡ (6a) / 7c

lcount := -1 - argv!4

We need to define the line counter.
7g 〈statics 6c〉+≡ (5a) / 7d 8c .

STATIC {

lcount

}

April 27, 2006 find.nw 8

We define the rdargs argument as a separate fragment because it will be passed
on to error to tell the user what we expect on the command line. This way,
if new options are added in the future, the error message will also be updated
automatically.

8a 〈rdargs argument 8a〉≡ (7b 8b)

FROM/A,TO/K,PAT/A/K,C/S,N/S

Rather than merely telling the user his arguments are wrong, let’s tell him what
we expect.

8b 〈error: usage 8b〉≡ (7b)

error("Invalid args: FIND 〈rdargs argument 8a〉")

3.3 Compiling the pattern

The pattern must have been specified on the command line.
8c 〈statics 6c〉+≡ (5a) / 7g 8d .

STATIC {

pbuf = 0

}

The user may have specified lines not matching the pattern by putting a tilde
(~)as the first character of the pattern.

8d 〈statics 6c〉+≡ (5a) / 8c 9a .

STATIC {

invert = 0

}

Now it’s a matter of allocating the pattern buffer and compiling the pattern
from the string given us on the command line.

8e 〈compile pattern 8e〉≡ (6a)

pbuf := getvec(MaxPat)

UNLESS pbuf DO 〈error: no memory 8f〉
〈initialize pattern buffer 20b〉
IF ’~’ = argv!2%1 DO invert := -1

UNLESS makpat(argv!2) error("Pattern too long")

In the unlikely event we run out of memory we want to let the user know why
we terminated without doing any real work.

8f 〈error: no memory 8f〉≡ (8e 10a)

error("Insufficient memory")

The pattern needs to be deallocated when we’re done.
8g 〈deallocate memory 8g〉≡ (6a) 9g .

IF freevec DO freevec(pbuf)

April 27, 2006 find.nw 9

3.4 Opening the input stream

The input stream must have been specified on the command line.
9a 〈statics 6c〉+≡ (5a) / 8d 9d .

STATIC {

instream = 0

}

We attempt to find the file and if successful, select it for input.
9b 〈find input stream 9b〉≡ (6a)

instream := findinput(argv!0)

UNLESS instream DO error("Can’t open input")

selectinput(instream)

3.5 Searching for matching lines

We open an output stream if one was specified, then print matching lines from
the input stream.

9c 〈search for matching lines 9c〉≡ (6a)

〈open output stream 9e〉
〈print matching lines 10a〉

The user may have specified an output stream.
9d 〈statics 6c〉+≡ (5a) / 9a 9f .

STATIC {

outstream = 0

}

If the user had specified an output stream then we find it and select it for output.
9e 〈open output stream 9e〉≡ (9c)

IF argv!1 DO {

outstream := findoutput(argv!1)

UNLESS outstream DO error("Can’t open output")

selectoutput(outstream)

}

We need a buffer to hold the input line. This buffer will be allocated when the
command executes.

9f 〈statics 6c〉+≡ (5a) / 9d

STATIC {

lbuf = 0

}

And we must not forget to deallocate it when we’re done with it.
9g 〈deallocate memory 8g〉+≡ (6a) / 8g

IF lbuf DO freevec(lbuf)

April 27, 2006 find.nw 10

Now we allocate the line buffer then read each line of input and see whether it
matches.

10a 〈print matching lines 10a〉≡ (9c)

lbuf := getvec(MaxLine + 1)

UNLESS lbuf DO 〈error: no memory 8f〉
WHILE 0 <= readline() DO

IF match() NEQV invert DO writeline()

3.6 Closing the streams

We close both the input stream and the output stream before terminating.
10b 〈close streams 10b〉≡ (6a)

IF instream DO endread()

IF outstream DO endwrite()

4 Input/Output

This command would be rather useless if it couldn’t perform any input or out-
put.

This command works with individual lines. Even though patterns spanning
multiple lines could be given on the command line, such patterns will not work.

The input line is stored unpacked (one character per word) in the variable
lbuf. There is no length word; the line is terminated with a zero word. This
means that the standard library routines such as writes cannot be used to write
it out. It does mean that lines longer than 255 characters can be handled. . . as
long as they’re less than MaxLine characters.

4.1 Input

We will fold input lines longer than MaxLine characters. Note that this will
throw off the line numbering, as long lines get counted as multiple lines.

10c 〈manifests 5b〉+≡ (5a) / 5b 12b .

MANIFEST {

MaxLine = 1024

}

April 27, 2006 find.nw 11

Since we’re dealing with lines, we need a function to read a line from the input
stream. The characters are placed unpacked into lbuf. A line is terminated by a
newline or an end of stream, or if we reach MaxLine characters. Carriage returns
are ignored, thus making the command virtually worthless for Mac-formatted
files. But then, this is already rather worthless for true binary files.

This function returns the number of characters read, or −1 if end of stream.
11a 〈i/o procedures 11a〉≡ (6a) 12a .

LET readline() = VALOF {

LET i, ch = 0, ?

〈increment line number 11b〉
lbuf!2 := 0

WHILE i < MaxLine DO {

〈read and store character 11c〉
〈handle possible line termination 11d〉
}

〈store terminator 11e〉
RESULTIS i - 1

}

Remember that lcount serves double duty as both the line number and the
line-numbering flag. We increment the humberonly if it is ≥ 0.

Heaven help anyone who uses this command on a text file with more than
two billion lines.

11b 〈increment line number 11b〉≡ (11a)

UNLESS lcount < 0 DO lcount := lcount + 1

It would make life easier if we could map letters to a single case at this time to
avoid case distinctions, but then we wouldn’t be able to display the original line.
Thus we must leave the input line alone and complicate the matching process
somewhat instead.

11c 〈read and store character 11c〉≡ (11a)

i, ch, lbuf!i := i + 1, rdch(), ch

The character just read may terminate the line.
11d 〈handle possible line termination 11d〉≡ (11a)

SWITCHON ch INTO {

CASE endstreamch: IF 1 = i RESULTIS -1

CASE ’*n’: i := i - 1; BREAK

CASE ’*c’: i := i - 1

default: ENDCASE

}

We want to make sure the line buffer is terminated properly.
11e 〈store terminator 11e〉≡ (11a)

i, lbuf!i := i + 1, 0

April 27, 2006 find.nw 12

4.2 Output

Since we’re dealing with unpacked lines, we need a procedure to print one out.
This is a lot easier than reading one since the only interpretation we have to
apply to the line is searching for its end. And, since we stripped off the newline
when we read it in, we have to tack one on at the end after writing it out.

12a 〈i/o procedures 11a〉+≡ (6a) / 11a

AND writeline() BE {

IF 0 <= lcount DO writef("%i5: ", lcount)

FOR i = 1 TO MaxLine DO {

UNLESS lbuf!i BREAK

wrch(lbuf!i)

}

newline()

}

5 Pattern creation

We want to compile the pattern into an internal format to make the matching
easier. The compiled pattern is placed unpacked into the vector pbuf.

We have to put an upper limit on the size of the pattern.
12b 〈manifests 5b〉+≡ (5a) / 10c 12c .

MANIFEST {

MaxPat = 257

}

Some symbolic names will help make it easier to deal with patterns.
12c 〈manifests 5b〉+≡ (5a) / 12b

MANIFEST {

Count = 1; PrevCl; StartCl; CloSize

}

April 27, 2006 find.nw 13

Compile pattern specified by arg into pattern buffer pbuf.
13a 〈pattern creation procedures 13a〉≡ (6a)

LET makpat(arg) = VALOF {

〈add set 13d〉
〈map escape character 14a〉
〈get character class 14b〉
〈insert closure 15b〉

LET i, j, lastcl, lastj, lj, from = ?, 1, -1, 1, ?, ?

i, from := 1 - invert, i

WHILE i <= arg%0 DO {

lj := j

TEST Any = arg%i THEN addset(Any, @j)

ELSE TEST BoL = arg%i & i = from THEN addset(BoL, @j)

ELSE TEST EoL = arg%i & 0 = arg%(i+1) THEN addset(EoL, @j)

ELSE TEST CCl = arg%i THEN

UNLESS getccl(arg, @i, @j) BREAK

ELSE TEST Closure = arg%i & from < i THEN {

〈add closure 13c〉
} ELSE {

〈add literal character 13b〉
}

lastj, i := lj, i + 1

}

IF FALSE = addset(0, @j) | i < arg%0 RESULTIS FALSE

RESULTIS TRUE

}

A literal character is added to the pattern by flagging it as such and then adding
the character. Remember that the character could be an escaped character.

13b 〈add literal character 13b〉≡ (13a)

addset(Char, @j)

addset(case(esc(arg, @i)), @j)

A closure is zero or more occurrences of a character or class.
13c 〈add closure 13c〉≡ (13a)

lj := lastj

IF BoL = pbuf!lj | EoL = pbuf!lj | Closure = pbuf!lj BREAK

lastcl := stclos(@j, @lastj, lastcl)

This function puts character c into pattern buffer pbuf and increments index
!j. It returns FALSE if the pattern buffer is full, TRUE otherwise.

13d 〈add set 13d〉≡ (13a)

LET addset(c, j) = VALOF {

IF MaxPat <= !j RESULTIS FALSE

pbuf!!j, !j := c, !j + 1

RESULTIS TRUE

}

April 27, 2006 find.nw 14

This function maps array%i into escaped character if appropriate. If the char-
acter array%i isn’t Escape then it’s easy — it’s simply that character. If it is
Escape, then we have to look at the next character. If the Escape is the last
character in the pattern, then we simply have a literal asterisk. Otherwise, if the
next character is one of the special escape sequences then we do the appropriate
translation. Else it’s simply the character following the Escape.

14a 〈map escape character 14a〉≡ (13a)

AND esc(array, i) = VALOF {

TEST Escape ~= array%!i RESULTIS array%!i

ELSE TEST 0 = array%(!i+1) RESULTIS Escape

ELSE {

!i := !i + 1

SWITCHON array%!i INTO {

CASE ’t’: RESULTIS ’*t’

CASE ’b’: RESULTIS ’*b’

CASE ’s’: RESULTIS ’ ’

DEFAULT: RESULTIS array%!i

}

}

}

This routine puts the character class at arg%i into pbuf!j.
14b 〈get character class 14b〉≡ (13a)

AND getccl(arg, i, j) = VALOF {

〈expand hyphen 16a〉

LET jstart = ?

LET digit = "0123456789"

LET loalf = "abcdefghijklmnopqrstuvwxyz"

LET upalf = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

!i := !i + 1

TEST NotC = arg%!i THEN {

addset(NCCl, j)

!i := !i + 1

} ELSE addset(CCl, j)

〈expand class 15a〉
RESULTIS CClEnd = arg%!i

}

April 27, 2006 find.nw 15

Expand character class in arg into pbuf.
15a 〈expand class 15a〉≡ (14b)

jstart := !j

addset(0, j)

WHILE arg%!i & CClEnd ~= arg%!i DO {

TEST Escape = arg%!i THEN addset(esc(arg, i), j)

ELSE TEST ’-’ ~= arg%!i THEN addset(arg%!i, j)

ELSE TEST j <= 1 | 0 = arg%!i THEN addset(’-’, j)

ELSE TEST ’0’ <= pbuf!(!j-1) <= ’9’ THEN dodash(digit, arg, i, j)

ELSE TEST ’a’ <= pbuf!(!j-1) <= ’z’ THEN dodash(loalf, arg, i, j)

ELSE TEST ’A’ <= pbuf!(!j-1) <= ’Z’ THEN dodash(upalf, arg, i, j)

ELSE addset(’-’, j)

!i := !i + 1

}

pbuf!jstart := !j - jstart - 1

This function inserts a closure entry at pbuf!j.
15b 〈insert closure 15b〉≡ (13a)

AND stclos(j, lastj, lastcl) = VALOF {

LET jp, jt = ?, ?

jp := !j - 1

WHILE !lastj <= jp DO {

jt := jp + CloSize

addset(pbuf!jp, @jt)

jp := jp - 1

}

〈put closure 15c〉
RESULTIS jp

}

We have to ensure we leave appropriate space in the pattern buffer when we
place the closure there.

15c 〈put closure 15c〉≡ (15b)

!j, jp := !j + CloSize, !lastj

addset(Closure, lastj)

addset(0, lastj)

addset(lastcl, lastj)

addset(0, lastj)

April 27, 2006 find.nw 16

This routine is used to expand the character range arg%(i-1) - arg%(i+1)
into pbuf!j . . .

16a 〈expand hyphen 16a〉≡ (14b)

LET dodash(set, arg, i, j) BE {

〈find character 16d〉

LET lower, upper = ?, ?

〈determine range limits 16b〉
〈put range 16c〉

}

16b 〈determine range limits 16b〉≡ (16a)

!i, !j := !i + 1, !j - 1

upper, lower := index(set, esc(arg, i)), index(set, pbuf!!j)

16c 〈put range 16c〉≡ (16a)

WHILE lower <= upper DO {

addset(case(set%lower), j)

lower := lower + 1

}

This function attempts to find the character c in string s. It returns the index
if found, −1 otherwise.

16d 〈find character 16d〉≡ (16a)

LET index(s, c) = VALOF {

LET i = 1

WHILE s%i DO {

IF s%i = c RESULTIS i

i := i + 1

}

RESULTIS -1

}

April 27, 2006 find.nw 17

6 Pattern matching

These procedures try to match the compiled pattern in pbuf against the input
line in lbuf.

This function tries to match a pattern anywhere in lbuf.
17a 〈pattern matching procedures 17a〉≡ (6a)

LET match() = VALOF {

〈look for match 17b〉

LET i = 1

WHILE TRUE DO {

IF 0 <= amatch(i) RESULTIS TRUE

i := i + 1

UNLESS lbuf!i RESULTIS FALSE

}

}

This function looks for a match starting at lbuf!from.
17b 〈look for match 17b〉≡ (17a)

LET amatch(from) = VALOF {

〈match single pattern 18b〉

LET i, j, offset, stack = ?, 1, ?, -1

offset := from

WHILE pbuf!j DO {

TEST Closure = pbuf!j THEN {

〈match closure 17c〉
} ELSE UNLESS omatch(@offset, j) DO {

〈match non-closure 18a〉
}

〈increment by pattern size 19a〉
}

RESULTIS offset

}

Try to match a closure.
17c 〈match closure 17c〉≡ (17b)

stack := j

j := j + CloSize

i := offset

WHILE lbuf!i UNLESS omatch(@i, j) BREAK

pbuf!(stack+Count) := i - offset

pbuf!(stack+StartCl) := offset

offset := i

April 27, 2006 find.nw 18

Try to match something other than a closure.
18a 〈match non-closure 18a〉≡ (17b)

WHILE 0 <= stack DO {

IF 0 < pbuf!(stack+Count) BREAK

stack := pbuf!(stack+PrevCl)

}

IF stack < 0 RESULTIS -1

pbuf!(stack+Count) := pbuf!(stack+Count) - 1

j := stack + CloSize

offset := pbuf!(stack+StartCl) + pbuf!(stack+Count)

This function attempts to match a single pattern at pbuf!j. If we’ve been toldto
ignore case distinctions then we map any upper case input input characters to
lowercase before attempting a match.

18b 〈match single pattern 18b〉≡ (17b)

LET omatch(i, j) = VALOF {

〈locate character in class 18c〉

LET bump, c = -1, case(lbuf!!i)

TEST BoL = pbuf!j IF 1 = !i bump := 0

ELSE TEST EoL = pbuf!j UNLESS lbuf!!i bump := 0

ELSE TEST 0 = lbuf!!i RESULTIS FALSE

ELSE TEST Char = pbuf!j IF case(lbuf!!i) = pbuf!(j+1)

bump := 1

ELSE TEST Any = pbuf!j bump := 1

ELSE TEST CCl = pbuf!j IF locate(case(lbuf!!i), j + 1)

bump := 1

ELSE TEST NCCl = pbuf!j UNLESS locate(case(lbuf!!i), j + 1)

bump := 1

ELSE error("In omatch: can’t happen")

IF 0 <= bump THEN {

!i := !i + bump

RESULTIS TRUE

}

RESULTIS FALSE

}

This function tries to locate the character c in the character class beginning at
offset

18c 〈locate character in class 18c〉≡ (18b)

LET locate(c, offset) = VALOF {

LET i = offset + pbuf!offset

WHILE offset < i DO {

IF c = pbuf!i RESULTIS TRUE

i := i - 1

}

RESULTIS FALSE

}

April 27, 2006 find.nw 19

Determine the size of the entry at pbuf!j and increment j accordingly.
19a 〈increment by pattern size 19a〉≡ (17b)

TEST Char = pbuf!j THEN j := j + 2

ELSE TEST BoL = pbuf!j | EoL = pbuf!j | Any = pbuf!j

THEN j := j + 1

ELSE TEST CCl = pbuf!j | NCCl = pbuf!j

THEN j := j + 2 + pbuf!(j+1)

ELSE TEST Closure = pbuf!j THEN j := j + CloSize

ELSE error("In amatch: can’t happen")

7 Error reporting

Before we can print the error message we have to ensure that we’re writing to
the console where it can be seen by the user. Then we can print the message
and tack on a newline. Rather than terminating the program here, we bail out
to the cleanup code at the end of start.

19b 〈error procedures 19b〉≡ (6a)

LET error(msg) BE {

IF outstream DO {

endwrite()

outstream := 0

}

selectoutput(findoutput("**"))

writes(msg)

newline()

〈bail out 6d〉
}

April 27, 2006 find.nw 20

8 Debugging

The program is functional enough for the author’s purposes. However some
debugging code is still left in the program. Once written, this code looked too
good to just throw away. Conditional compilation keeps the code from being
compiled into the final command but still available if needed in the future. To
activate, remove the two slashes at the beginning of the first line of this code
fragment.

20a 〈debug stuff 20a〉≡ (5a)

//$$Debug

$<Debug

〈debug procedures 20c〉
$>Debug

8.1 The pattern buffer

When debugging it’s useful to have the pattern buffer initialized to a known
state. In this case the known state is all zeros, which is also the terminator.

20b 〈initialize pattern buffer 20b〉≡ (8e)

$<Debug

FOR c = 0 TO MaxPat DO pbuf!c := 0

$>Debug

This function dumps out the entire pattern buffer in hexadecimal. The buffer
shouldn’t come close to being filled up in normal use, and it should be properly
terminated (we initialized it to be filled with zeros). However if some errant
code should inadvertently plant a zero into it we want to be able to see it.

20c 〈debug procedures 20c〉≡ (20a) 21a .

LET DbgDumpPattBuf() BE {

FOR i = 1 TO MaxPat DO {

writef(" %x3", pbuf!i)

UNLESS i REM 16 DO newline()

}

newline()

}

April 27, 2006 find.nw 21

8.2 The input line

Just in case you ever suspect the weirdness is happening in the input, this
procedure dumps out the input buffer in hexadecimal. This one does terminate
on hitting a zero.

21a 〈debug procedures 20c〉+≡ (20a) / 20c

LET DbgDumpLineBuf() BE {

LET i = 0

{

i := i + 1

writef(" %x3", lbuf!i)

UNLESS i REM 16 DO newline()

} REPEATWHILE lbuf!i

newline()

}

8.3 Calling the debug procedures

And we’ll provide conditional calls to these dump procedures. These fragments
may be sprinkled in wherever needed.

21b 〈dump pattern buffer 21b〉≡
$<Debug

DbgDumpPattBuf()

$>Debug

21c 〈dump line buffer 21c〉≡
$<Debug

DbgDumpLineBuf()

$>Debug

9 Change Log

2004.06.28 Began work
Translation into BCPL from the original C by J. E. Hendrix
Conversion into the literate programming system noweb

2004.07.13 Initial semi-public release (to M. Richards)
2004.08.25 Added C switch to ignore case
2005.06.27 Cosmetic documentation changes

April 27, 2006 find.nw 22

A Index of Code Fragments

Underlined entries are to the definition of the Code Fragment. In many cases,
the definition of a fragment can be continued from one piece to another.

〈* 5a〉 5a
〈a fragment label 4a〉 4a, 4c
〈add closure 13c〉 13a, 13c
〈add literal character 13b〉 13a, 13b
〈add set 13d〉 13a, 13d
〈bail out 6d〉 6d, 19b
〈case conversion 7e〉 6a, 7e
〈close streams 10b〉 6a, 10b
〈compile pattern 8e〉 6a, 8e
〈deallocate memory 8g〉 6a, 8g, 9g
〈debug procedures 20c〉 20a, 20c, 21a
〈debug stuff 20a〉 5a, 20a
〈determine range limits 16b〉 16a, 16b
〈dump line buffer 21c〉 21c
〈dump pattern buffer 21b〉 21b
〈error procedures 19b〉 6a, 19b
〈error: no memory 8f〉 8e, 8f, 10a
〈error: usage 8b〉 7b, 8b
〈expand class 15a〉 14b, 15a
〈expand hyphen 16a〉 14b, 16a
〈find character 16d〉 16a, 16d
〈find input stream 9b〉 6a, 9b
〈get character class 14b〉 13a, 14b
〈handle possible line termina-

tion 11d〉 11a, 11d
〈i/o procedures 11a〉 6a, 11a, 12a
〈increment by pattern size 19a〉 17b,

19a
〈increment line number 11b〉 11a, 11b
〈increment sum 4b〉 4a, 4b

〈initialize pattern buffer 20b〉 8e, 20b
〈insert closure 15b〉 13a, 15b
〈locate character in class 18c〉 18b, 18c
〈look for match 17b〉 17a, 17b
〈manifests 5b〉 5a, 5b, 10c, 12b, 12c
〈map escape character 14a〉 13a, 14a
〈match closure 17c〉 17b, 17c
〈match non-closure 18a〉 17b, 18a
〈match single pattern 18b〉 17b, 18b
〈open output stream 9e〉 9c, 9e
〈pattern creation procedures 13a〉 6a,

13a
〈pattern matching procedures 17a〉 6a,

17a
〈prepare for bail out 6b〉 6a, 6b
〈print matching lines 10a〉 9c, 10a
〈procedure start 6a〉 5a, 6a
〈procedure start’s variables 7a〉 6a,

7a
〈process command line 7b〉 6a, 7b, 7c,

7f
〈put closure 15c〉 15b, 15c
〈put range 16c〉 16a, 16c
〈rdargs argument 8a〉 7b, 8a, 8b
〈read and store character 11c〉 11a, 11c
〈search for matching lines 9c〉 6a, 9c
〈statics 6c〉 5a, 6c, 7d, 7g, 8c, 8d, 9a,

9d, 9f
〈store terminator 11e〉 11a, 11e

April 27, 2006 find.nw 23

B Index of Identifiers

Underlined entries are their definitions. Standard library definitions are not
listed here. Nor are FOR control variables and most other variables local to a
procedure.

addset: 13a, 13b, 13d, 14b, 15a, 15b,
15c, 16c

amatch: 17a, 17b, 19a
Any: 5b, 13a, 18b, 19a
argv: 7a, 7b, 7c, 7f, 8e, 9b, 9e
BoL: 5b, 13a, 13c, 18b, 19a
case: 7e, 13b, 16c, 18b
CCl: 5b, 13a, 14b, 18b, 19a
CClEnd: 5b, 14b, 15a
Char: 5b, 13b, 18b, 19a
CloSize: 12c, 15b, 15c, 17c, 18a, 19a
Closure: 5b, 13a, 13c, 15c, 17b, 19a
Count: 12c, 17c, 18a
DbgDumpLineBuf: 21a, 21c
DbgDumpPattBuf: 20c, 21b
dodash: 15a, 16a
EoL: 5b, 13a, 13c, 18b, 19a
error: 8b, 8e, 8f, 9b, 9e, 18b, 19a,

19b
esc: 13b, 14a, 15a, 16b
Escape: 5b, 14a, 15a
fin: 6a, 6b
fin l: 6b, 6c, 6d
fin p: 6b, 6c, 6d
getccl: 13a, 14b

ignore case: 7c, 7d, 7e
index: 16b, 16d
instream: 9a, 9b, 10b
invert: 8d, 8e, 10a, 13a
lbuf: 9f, 9g, 10a, 11a, 11c, 11e, 12a,

17a, 17c, 18b, 21a
lcount: 7f, 7g, 11b, 12a
locate: 18b, 18c
makpat: 8e, 13a
match: 10a, 17a
MaxLine: 10a, 10c, 11a, 12a
MaxPat: 8e, 12b, 13d, 20b, 20c
NCCl: 5b, 14b, 18b, 19a
NotC: 5b, 14b
omatch: 17b, 17c, 18b
outstream: 9d, 9e, 10b, 19b
pbuf: 8c, 8e, 8g, 13c, 13d, 15a, 15b,

16b, 17b, 17c, 18a, 18b, 18c, 19a,
20b, 20c

PrevCl: 12c, 18a
readline: 10a, 11a
start: 6a
StartCl: 12c, 17c, 18a
stclos: 13c, 15b
writeline: 10a, 12a

