
uvNIC: Rapid Prototyping Network Interface Controller
Device Drivers
Matthew P. Grosvenor

University of Cambridge Computer Laboratory
matthew.grosvenor@cl.cam.ac.uk

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management –
Network communication

General Terms
Design, Experimentation, Verification.

Keywords
Hardware, Device Driver, Emulation, Userspace, Virtualisation

1. INTRODUCTION
Traditional approaches to NIC driver design focus on

commodity network hardware, which exhibit slow moving
feature sets and long product life cycles. The introduction
of FPGA based network adapters such as [1][2] alter the
status-quo considerably. Whereas traditional ASIC based
NICs may undergo minor driver interface revisions over a
timespan of years, FPGA based NIC interfaces can be
totally reimplemented in months or even weeks. To the
driver developer this presents a considerable challenge:
Driver development cannot seriously begin without
hardware support, but is now expected to take place
simultaneously with hardware development.

To solve this problem, I present the userspace, virtual
NIC framework (uvNIC). uvNIC implements a custom
virtual NIC as a standard userspace application. To the
driver developer, it presents a functional equivalent to a
physical device. Only minor modifications are required to
switch a uvNIC enabled driver over to operating on real
hardware. To the hardware designer, uvNIC presents a rapid
prototyping environment for initial specifications and a
fully functional model against which HDL code can later be
verified.

2. Design and Implementation
Typical NIC device drivers implement two interfaces; a

device facing PCI interface and kernel facing network stack
interface. Ordinarily, a device driver would send/receive
packets by interacting with real hardware over the PCI
interface. Instead of (or addition to) regular PCI operations,
uvNIC forwards interactions with hardware to the uvNIC
virtual NIC application. This application implements a
software emulation of the hardware NIC and responds
appropriately by sending and receiving packets over a
commodity device operated in raw socket mode.

Implementing the uvNIC PCI virtualisation layer is not
trivial. OS kernels are designed with strict one way

dependencies. That is, userspace applications are dependent
on the kernel, the kernel is dependent on the hardware.
Importantly, the kernel is not designed for, nor does it easily
facilitate dependence on userspace applications. For the
uvNIC framework, this is problematic. The virtual NIC
should appear to the driver as a hardware device, but to the
kernel it appears as a userspace application.

Figure 1. illustrates the uvNIC implementation in detail.
At the core is a message transport layer (uvBus) that
connects the kernel and the virtual device. uvBus uses file
I/O operations (open(), ioctl(), mmap()) to establish
shared memory regions between the kernel and userspace.
Messages are exchanged by enqueuing and dequeueing
fixed size packets into lockless circular buffers. Message
delivery order is strictly maintained. uvBus also includes an
out of band, bi-directional signalling mechanism for
alerting message consumers about incoming data.
Userspace applications signal the kernel by calling write()
with a 64 bit signal value, likewise, the kernel signals
userspace by providing a 64 bit response to poll()/
read()system calls.

A lightweight PCIe like protocol (uvPCI) is
implemented on top of uvBus. uvPCI implements posted
(non-blocking) write and non-posted (blocking) read
operations in both kernel and userspace. In kernel space,
non-posted reads are implemented by spinning and kept
safe with timeouts and appropriate calls to yield(). An
important aspect of uvPCI is that it maintains read and write
message ordering in a manner that is consistent with
hardware PCIe implementations.

In addition to basic PCI read and write operations,
uvPCI implements x86 specific PCIe restrictions such as 64
bit register reads/writes, message signalled interrupt
generation and 128B, 32bit aligned DMA operations. DMA
operations appear to the driver as they would in reality. That
is, data appears in DMA mapped buffers asynchronously
without the driver’s direct involvement.

Test Application

Network Stack

Development Driver uvPCI

PCIe Stack

uvPCI

User Space Virtual NIC

Network Stack

Commodity Driver

PCIe Stack

Raw Socket I/O

Commodity NICDevelopment NIC

Socket I/O
uvBus

uvBus

uvMAC

uvPHY

File I/O

Figure 1: The uvNIC framework design.

Copyright is held by the author/owner(s).
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
ACM 978-1-4503-1419-0/12/08.

307

mailto:mpg39@cam.ac.uk
mailto:mpg39@cam.ac.uk
http://dl.acm.org/ccs.cfm?part=author&coll=DL&dl=ACM&row=D.4.4&idx=4&CFID=82010306&CFTOKEN=61791345
http://dl.acm.org/ccs.cfm?part=author&coll=DL&dl=ACM&row=D.4.4&idx=4&CFID=82010306&CFTOKEN=61791345

In practice, uvPCI implements a functionally equivalent,
parallel implementation of the PCI stack. Driver writers
perform little more than a search/replace and a recompile to
switch over to using the real PCI stack.

3. Related Work
Userspace networking has a long history [3][4] and

continues to be employed widely, especially in high
performance situations [5][6]. Whilst uvNIC shares the
basic concept of implementing a part of the network stack
in userspace, it is distinct from previous attempts because it
implements the network hardware in userspace software
rather than parts of network driver or IP stack as is
commonly the case. It is crucial to note that network
performance is not the primary goal of uvNIC, rather, the
primary goal is rapid prototyping at the software/hardware
interface.

The structure and function of uvNIC is highly similar to
the virtual NICs found in hypervisors and virtual machines
(VMs). Both VMware [6] and Xen [7] expose virtualised
hardware devices to their guest OSes and hence the guest
OS drivers. It is possible that custom hardware could be
designed and written in a VM context instead of uvNIC.
However, the approach has the distinct disadvantage that
development and integration of a new virtual device into a
VM is a complex and time consuming task. This is in direct
opposition to the stated goal, which is which is to aid rapid
prototyping of the NIC and device driver.

uvNIC is also similar to File System in User Space
(FUSE) [9] systems. Like uvNIC, FUSE requires that
kernel become dependent on userspace applications. In
contrast, however, FUSE systems are simpler than uvNIC
because no direct emulation of hardware timing, ordering
and consistency parameters are required.

4. Preliminary Results
A uvNIC virtual network device has been implemented

on a Linux 2.6 host. The virtual device was tested with
simple linux tools such as ping and traceroute and found
to be functional. This test confirmed that the uvNIC
framework is suitable for writing simple, but functional
network devices and device drivers. Since performance was
not a consideration, iperf tests were not performed.

Additionally, a uvNIC driver has been written for and
tested against a NetFGPA 10G card [2] which was running
a simple register and MSI interface firmware module. This
test confirmed that the uvNIC framework is capable of
writing simple device drivers that are portable to real
hardware platforms.

Efforts are currently underway to port the feature rich
Intel IXGBE 10G driver to a uvNIC virtual device using an
Intel e1000 1G as a physical device. This comprehensive
test will demonstrate uvNIC’s ability to augment simple
physical hardware with additional virtual functionality.

5. Conclusions and Next Steps
uvNIC is a simple but unique approach to a real

problem. Work so far has indicated that the approach is
valid and functional. Future steps may include migrating
the virtualised hardware model to a cycle accurate

simulation of hardware RTL code or using the framework
as a measurement and debugging tool for real device
drivers. uvNIC affords designers a unique opportunity to
rapidly explore the NIC software/hardware interface at low
cost. It is hoped that this ability will lead to faster and more
stable NIC designs.

More information on the uvNIC project can be found at
http://www.cl.cam.ac.uk/research/srg/netos/mrc/projects/
uvNIC

6. Acknowledgements
This work was jointly supported by the EPSRC
INTERNET Project EP/H040536/1 and the Defense
Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract
FA8750-11-C-0249. The views, opinions, and/or findings
contained in this article/presentation are those of the author/
presenter and should not be interpreted as representing the
official views or policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the
Department of Defense.

7. REFERENCES
[1] John W. Lockwood, Nick McKeown, Greg Watson, Glen

Gibb, Paul Hartke, Jad Naous, Ramanan Raghuraman, and
Jianying Luo. 2007. NetFPGA--An Open Platform for
Gigabit-Rate Network Switching and Routing. In
Proceedings of the 2007 IEEE International Conference on
Microelectronic Systems Education (MSE '07). IEEE
Computer Society, Washington, DC, USA, 160-161.

[2] NetFPGA 10G Project, NetFPGA website, http://
www.netfpga.org

[3] T. von Eicken, A. Basu, V. Buch, and W. Vogels. 1995. U-
Net: a user-level network interface for parallel and distributed
computing. SIGOPS Oper. Syst. Rev. 29, 5 (December 1995),
40-53.

[4] Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan
E. Kulawik, Charles L. Seitz, Jakov N. Seizovic, and Wen-
King Su. 1995. Myrinet: A Gigabit-per-Second Local Area
Network. IEEE Micro15, 1 (February 1995), 29-36.

[5] Ian Pratt, Keir Fraser. 2001. Arsenic: A user-accessible
gigabit ethernet interface. Proceedings of the Twentieth
Annual Joint Conference of the IEEE Computer and
Communications Societies, INFOCOM01.

[6] David. Riddoch, Steven. Pope. 2008. OpenOnload, A user-
level network stack. Google Tech Talk, http://
www.openonload.org/openonload-google-talk.pdf

[7] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong
Lim. 2001. Virtualizing I/O Devices on VMware
Workstation's Hosted Virtual Machine Monitor. In
Proceedings of the General Track: 2002 USENIX Annual
Technical Conference, Yoonho Park (Ed.). USENIX
Association, Berkeley, CA, USA, 1-14.

[8] Aravind Menon, Alan L. Cox, and Willy Zwaenepoel. 2006.
Optimizing network virtualization in Xen. In Proceedings of
the annual conference on USENIX '06 Annual Technical
Conference (ATEC '06). USENIX Association, Berkeley, CA,
USA, 2-2.

[9] Miklos Szeredi. 2012, File System in User Space. http://
fuse.sourceforge.net

308

http://www.netfpga.org
http://www.netfpga.org
http://fuse.sourceforge.net
http://fuse.sourceforge.net
http://fuse.sourceforge.net
http://fuse.sourceforge.net

