CamlO: declaring flexible and performant application I/O

Matthew P. Grosvenor

Malte Schwarzkopf

Steven Hand

University of Cambridge Computer Laboratory

1 Introduction

Discussion of input/output (I/O) performance in the sys-
tems research community has centred around the interfaces
between user and kernel space, and those between kernel-
space and hardware. Work in this area often focuses on
managing buffers to achieve zero-copy performance while
maintaining isolation [1, 3-5]. However, the question of
how to use existing I/O primitives inside applications while
maintaining flexibility to alternate between mechanisms has
received little attention. The mantra seems to be that “the
developer will figure out the right mechanism”. We are not
SO sure.

2 The Babylonian I/O primitive confusion

A large number of different I/O transport primitives are
available for developers to chose from today, and in the face
of increasingly fast communication hardware, new ones are
frequently appearing. While classic examples are UNIX file
I/O and BSD sockets have well-defined and understood se-
mantics, their design dates back to an era when I/O was
slow relative to computation. As a result, demand for high
performance has led to a huge variety of direct or near-
direct hardware access mechanisms, especially for network
I/O [2, 4, 5]. In addition to these, various shared memory
IPC mechanisms provide high-performance communication
inside a chassis.

Each of these transports make various (often implicit)
trade-offs with regards to performance, security, resource
usage and reliability. For example, the mandated data copy
in BSD sockets implies an assessment of the relative cost
of a memory copy operation to the network operation, and
the netmap [5] framework amortizes syscall cost to improve
throughput at the cost of latency.

For an application programmer, it is difficult to know at
design-time which of these is the right fit for the applica-
tion. For example, a given application may choose to use
either shared memory transport IPC on a single host, UDP
inside a LAN or TCP/SSL over a WAN. Indeed, in practice
developers often choose a lowest common denominator that
will always work—for example, TCP in data center appli-
cations. Unhelpfully, each transport mechanism also comes
packaged with its own non-portable interface. Even in the

simplest case, it is notoriously difficult to port an existing
application from using a UDP transport to a TCP transport.
Would it not be desirable to have a single programming in-
terface abstraction that permits late-binding to the underly-
ing transport, but imposes near-zero cost at run time? This
is what we are providing with CamIO.

3 CamlO

CamlO is a C-based I/O library that takes a declarative ap-
proach to constructing high performance stream transports.
A generic stream interface is bound to an underlying trans-
port at run-time using a URL-style specifier. These URIs
can be dynamically generated or passed around, making ap-
plications flexible and easy to work with. Streams can be
read from, written to and selected over using primitives sim-
ilar to the familiar POSIX interface. CamlO internally en-
sures that buffer copying is minimized to the least number
of copies required by the underlying transport.

CamlO is a work in progress, but already supports a wide
variety of transports, including shared memory rings, UDP
and TCP sockets, netmap direct network access and various
file-based streams. Performance of a CamlO-based cat ap-
plication is on par with the original, but offers vastly im-
proved flexibility. At APSys 2012, we plan to demonstrate
CamlO’s flexibility and performance using a CamlIO-based
key-value store implementation that can dynamically use ei-
ther shared-memory or networked transports to communi-
cated with clients, with no code changes or recompilation
required. The CamlO source code will shortly be available
under the permissive BSD 3-Clause license.

References

[1] DONNELLY, A. Resource control in network elements. Tech. rep.,
Univ. of Cambridge, 2002.

[2] HAN, S., ET AL. MegaPipe: a new programming interface for scalable
network I/O. In Proceedings of OSDI (2012).

[3] KHALIDI, Y. A., ET AL. An Efficient Zero-Copy I/O Framework for
UNIX. Tech. rep., Sun Microsystems, Inc., Mountain View, CA, USA,
1995.

[4] PAIL V.S.,ET AL. IO-Lite: a unified I/O buffering and caching system.
ACM Trans. Comput. Syst. (2000).

[5] Rizzo, L. Netmap: a novel framework for fast packet I/O. In Pro-
ceedings of USENIX ATC (2012).



