The Algebra of DAGs

Marcelo Fiore

Computer Laboratory
University of Cambridge

Samson@60
28.V.2013

Joint work with Marco Devesas Campos
A Question of Robin Milner

a contextual bigraph $H: (3, \{x, x'\}) \rightarrow (2, \emptyset)$

its place graph

its link graph
A Question of Robin Milner

On the generalization from tree structure . . .

. . . to dag structure.
Axioms for DAG structure

Problem:

Give an algebraic characterisation of the symmetric monoidal category \(\text{Dag} \) with

- **objects**: finite ordinals, and
- **morphisms**: finite interfaced dags.
Composition:
The Landscape of Algebraic Structures
The Mathematical Setting

Symmetric Monoidal Equational Presentations

[Lawvere, MacLane]
The Mathematical Setting

Symmetric Monoidal Equational Presentations

Examples:

1. Commutative monoids

 Operators

 \[\eta : 0 \to 1 , \quad \nabla : 2 \to 1 \]

 Equations

 \[
 \nabla(x_0, \eta) \equiv x_0 , \quad x_0 \equiv \nabla(\eta, x_0) \\
 \nabla(x_0, \nabla(x_1, x_2)) \equiv \nabla(\nabla(x_0, x_1), x_2) , \quad \nabla(x_0, x_1) \equiv \nabla(x_1, x_0)
 \]
2. Commutative comonoids

Operators

\[\epsilon : 1 \rightarrow 0 \quad \delta : 1 \rightarrow 2 \]

Equations
PROduct and Permutation categories

Definition: A PROP is a symmetric strict monoidal category with underlying monoid structure on objects given by finite ordinals under addition.

Examples:

1. Dag

2. The free PROP $P[E]$ on a symmetric monoidal equational presentation E.
$\mathbf{P}[\mathcal{E}]$ may be constructed syntactically, with morphisms given by equivalence classes of expressions generated by

\[
\begin{align*}
\text{id}_n &: n \to n \\
\frac{f : \ell \to m \ , \ g : m \to n}{f ; g : \ell \to n} \\
\frac{f_1 : m_1 \to n_1 \ , \ f_2 : m_2 \to n_2}{f_1 + f_2 : m_1 + m_2 \to n_1 + n_2} \\
\sigma_{m,n} &: m + n \to n + m \\
o &: n \to m \ 	ext{an operator}
\end{align*}
\]

under the congruence determined by the laws of symmetric strict monoidal categories together with the identities of the equational presentation \mathcal{E}.
Algebraic Characterization of DAG Structure

Theorem: For \mathcal{D} the symmetric monoidal equational presentation of a node together with that of degenerate commutative bialgebras,

$$P[\mathcal{D}] \cong \text{Dag}.$$
1. The free PROP $P^{[\emptyset]}$ on the empty equational presentation is the free symmetric strict monoidal category on an object, viz. the category Perm of \textit{finite ordinals and permutations}.
2. The free PROP $\mathbb{P}[\bullet]$ on the equational presentation of a node $
abla: 1 \to 1$ is the free symmetric strict monoidal category on the additive monoid of natural numbers.
2. The free PROP $\mathbf{P}[\bullet]$ on the equational presentation of a node $\bullet : 1 \to 1$ is the free symmetric strict monoidal category on the additive monoid of natural numbers, viz. the category $\mathbf{Perm}_\mathbb{N}$ of finite ordinals and \mathbb{N}-labelled permutations.
3. The free PROP \(P[ComMon] \) on the equational presentation of commutative monoids is the free cocartesian category on an object, i.e. the category \(\text{Fun} \) of finite ordinals and functions.
3. The free PROP $P[\text{ComMon}]$ on the equational presentation of commutative monoids is the free cocartesian category on an object, i.e. the category Fun of finite ordinals and functions.
4. The free PROP $\mathbf{P}[\bullet + \text{ComCoMon}]$ on the equational presentation of a node together with that of commutative comonoids is the subcategory Forest of Dag consisting of forests.

[Moerdijk, Milner]
a morphism
a morphism

its forest representation

\[
\begin{align*}
4 & \rightarrow & 3 & \rightarrow & 3 & \rightarrow & 3 & \rightarrow & 2 & \rightarrow & 0 \\
3 & \rightarrow & 0 & \rightarrow & 1 & \rightarrow & 2 & \rightarrow & 3 \\
3 & \rightarrow & 0 & \rightarrow & 1 & \rightarrow & 2 \\
3 & \rightarrow & 0 & \rightarrow & 1 \\
2 & \rightarrow & 0 & \rightarrow & 1 \\
2 & \rightarrow & 0 & \rightarrow & 1
\end{align*}
\]
a forest
a layered normal form

```
4 0 1 2 3
3 0 1 2 3
2 0 1 2 3
2 0 1
```

a forest

```
0 1 2 3
0
1 2 3
0 1
```
5. The free PROP $P[\text{ComBiAlg}]$ on the equational presentation of commutative bialgebras is the free category with biproducts on an object, viz. the category $\text{Mat}_\mathbb{N}$ of finite ordinals and \mathbb{N}-valued matrices.

[MacLane, Pirashvili, Lack]
5. The free PROP $\mathbf{P}[\text{ComBiAlg}]$ on the equational presentation of commutative bialgebras is the free category with biproducts on an object, viz. the category $\mathbf{Mat}_\mathbb{N}$ of finite ordinals and \mathbb{N}-valued matrices.

[MacLane, Pirashvili, Lack]

The equational presentation of commutative bialgebras is that of commutative monoids and commutative comonoids where the comonoid structure is a monoid homomorphism and the comonoid structure is a monoid homomorphism.
(a) The commutative bialgebra structure turns the symmetric monoidal structure into biproduct structure.
(a) The commutative bialgebra structure turns the symmetric monoidal structure into biproduct structure.

(b) Every morphism $m \rightarrow n$ has a unique representation as an $m \times n$ matrix with entries in the endo-hom on 1.
(a) The commutative bialgebra structure turns the symmetric monoidal structure into biproduct structure.

(b) Every morphism \(m \rightarrow n \) has a unique representation as an \(m \times n \) matrix with entries in the endo-hom on 1.

(c) The endo-hom on 1 is the multiplicative monoid of natural numbers.
6. The free PROP $\mathbf{P}[\text{DegCombAlg}]$ on the equational presentation of degenerate commutative bialgebras is the category Rel of finite ordinals and relations.

The degeneracy axiom:

\[
\begin{align*}
2 & = 0 \begin{array}{c}
\Downarrow\\Downarrow
\end{array} 0 = 0 - 0 = 1
\end{align*}
\]
7. The free PROP $\mathbf{P}[\bullet + \text{DegComBiAlg}]$ on the equational presentation of a node together with that of degenerate commutative bialgebras is Dag.
7. The free PROP \(P[\bullet + \text{DegComBiAlg}] \) on the equational presentation of a node together with that of degenerate commutative bialgebras is \(\text{Dag} \).

Proof:

(a) Define *universal topological interpretations* \([D]_\tau\) of dags \(D \) according to topological sortings \(\tau \) of \(D \).
7. The free PROP \(P[\bullet + \text{DegComBiAlg}] \) on the equational presentation of a node together with that of degenerate commutative bialgebras is \(\text{Dag} \).

Proof:

(a) Define *universal topological interpretations* \([D]_\tau\) of dags \(D \) according to topological sortings \(\tau \) of \(D \).

(b) Prove the *invariance* of topological interpretations, viz. that \([D]_\tau = [D]_{\tau'}\) for all topological sortings \(\tau \) and \(\tau' \) of \(D \).
7. The free PROP $\mathbb{P}[ullet + \text{DegComBiAlg}]$ on the equational presentation of a node together with that of degenerate commutative bialgebras is Dag.

Proof:

(a) Define *universal topological interpretations* $[\mathcal{D}]_\tau$ of dags \mathcal{D} according to topological sortings τ of \mathcal{D}.

(b) Prove the *invariance* of topological interpretations, viz. that $[\mathcal{D}]_\tau = [\mathcal{D}]_{\tau'}$ for all topological sortings τ and τ' of \mathcal{D}.

(c) Establish the *compositionality* of the interpretation function to obtain an *initial-algebra semantics*.
Example:

\[D = \]

\[
\begin{align*}
0 & \rightarrow \rightarrow 0 \\
1 & \rightarrow \rightarrow 0 \\
2 & \rightarrow \rightarrow 1
\end{align*}
\]
Example:

$$D = \begin{array}{c}
\xrightarrow{0} & \xrightarrow{1} & \xrightarrow{2} \\
\xrightarrow{1} & \xrightarrow{0} & \xrightarrow{1} \\
\xrightarrow{2} & \xrightarrow{1} & \xrightarrow{0} \\
\end{array}$$

$$[D]_{(0,3)} = \begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 \\
\end{array}$$
Example:

$D = \begin{array}{c}
0 \\
1 \\
2 \\
0 \\
1 \\
1 \\
2 \\
3 \\
3 \\
4 \\
\end{array}$

$\llbracket D \rrbracket_{(0,0)} = \begin{array}{c}
0 - 0 - 0 - 0 - 0 - 0 \\
1 - 1 - 1 - 1 - 1 - 1 \\
2 - 2 - 2 - 2 - 2 - 2 \\
3 - 3 - 3 - 3 - 3 - 3 \\
4 - 4 - 4 - 4 - 4 - 4 \\
\end{array}$

$\llbracket D \rrbracket_{(0,0)} = \begin{array}{c}
0 - 0 - 0 - 0 - 0 - 0 \\
1 - 1 - 1 - 1 - 1 - 1 \\
2 - 2 - 2 - 2 - 2 - 2 \\
3 - 3 - 3 - 3 - 3 - 3 \\
4 - 4 - 4 - 4 - 4 - 4 \\
\end{array}$
\[D = \begin{array}{c}
0 \\
1 \\
2 \\
\end{array} \rightarrow \begin{array}{c}
0 \\
1 \\
\end{array} \]

\[D' = \begin{array}{c}
0 \\
1 \\
\end{array} \rightarrow \begin{array}{c}
0 \\
1 \\
\end{array} \]

\[D; D' = \begin{array}{c}
0 \\
1 \\
2 \\
\end{array} \rightarrow \begin{array}{c}
0 \\
1 \\
\end{array} \]

\[[D; D']((\cdot < \cdot < \cdot)) = [D]((\cdot < \cdot)) ; [D']((\cdot)) \]