# The Algebra of DAGs

#### Marcelo Fiore

COMPUTER LABORATORY
UNIVERSITY OF CAMBRIDGE

Samson@60 28.V.2013

Joint work with Marco Devesas Campos

# A Question of Robin Milner



## A Question of Robin Milner



On the generalization from tree structure ...



... to dag structure.

#### Axioms for DAG structure

[Gibbons]

#### **Problem:**

Give an algebraic characterisation of the symmetric monoidal category Dag with

objects: finite ordinals, and

morphisms: finite interfaced dags.





# **Composition:**



# The Landscape of Algebraic Structures



# The Mathematical Setting

[Lawvere, MacLane]

### **Symmetric Monoidal Equational Presentations**

# The Mathematical Setting

[Lawvere, MacLane]

#### **Symmetric Monoidal Equational Presentations**

#### **Examples:**

1. Commutative monoids

Operators

$$\eta:0\to 1$$
,  $\nabla:2\to 1$ 

Equations

$$\nabla(x_0, \eta) \equiv x_0 , \qquad x_0 \equiv \nabla(\eta, x_0)$$

$$\nabla(x_0, \nabla(x_1, x_2)) \equiv \nabla(\nabla(x_0, x_1), x_2) , \quad \nabla(x_0, x_1) \equiv \nabla(x_1, x_0)$$

#### 2. Commutative comonoids

**Operators** 

$$\epsilon: 1 \to 0$$
 ,  $\Delta: 1 \to 2$ 

Equations







#### **PROduct and Permutation categories**

**Definition:** A PROP is a symmetric strict monoidal category with underlying monoid structure on objects given by finite ordinals under addition.

#### **Examples:**

- 1. Dag
- 2. The free PROP  $P[\mathcal{E}]$  on a symmetric monoidal equational presentation  $\mathcal{E}$ .

P[E] may be constructed syntactically, with morphisms given by equivalence classes of expressions generated by

$$\begin{array}{c} \mathrm{id}_n: n \to n \\ & \overline{ \begin{array}{c} f: \ell \to m \;,\;\; g: m \to n \\ \hline f; g: \ell \to n \end{array} } \\ \\ \hline f_1: m_1 \to n_1 \;,\;\; f_2: m_2 \to n_2 \\ \hline f_1+ f_2: m_1+ m_2 \to n_1+ n_2 \end{array}} \quad \sigma_{m,n}: m+n \to n+m \\ \\ \underline{ \begin{array}{c} o: n \to m \;\; \text{an operator} \end{array} } \end{array}$$

 $0:n\rightarrow m$ 

under the congruence determined by the laws of symmetric strict monoidal categories together with the identities of the equational presentation  $\mathcal{E}$ .

# Algebraic Characterization of DAG Structure

**Theorem:** For  $\mathfrak{D}$  the symmetric monoidal equational presentation of a node together with that of degenerate commutative bialgebras,

 $P[D] \cong Dag$ .

#### Free PROPs

1. The free PROP P[0] on the empty equational presentation is the free symmetric strict monoidal category on an object, viz. the category Perm of *finite ordinals and permutations*.



2. The free PROP P[•] on the equational presentation of a node
•: 1 → 1 is the free symmetric strict monoidal category on the additive monoid of natural numbers

2. The free PROP  $\mathbf{P}[\bullet]$  on the <u>equational presentation of a node</u>  $\bullet: 1 \to 1$  is the free symmetric strict monoidal category on the additive monoid of natural numbers, viz. the category  $\mathbf{Perm}_{\mathbb{N}}$  of *finite ordinals and*  $\mathbb{N}$ -*labelled permutations*.



3. The free PROP P[ComMon] on the equational presentation of commutative monoids is the free cocartesian category on an object, i.e. the category Fun of *finite ordinals and functions*.

3. The free PROP P[ComMon] on the equational presentation of commutative monoids is the free cocartesian category on an object, i.e. the category Fun of *finite ordinals and functions*.



4. The free PROP P[•+ ComCoMon] on the equational presentation of a node together with that of commutative comonoids is the subcategory Forest of Dag consisting of forests.

[Moerdijk, Milner]

# a morphism



# a morphism



# its forest representation



# a forest

# a layered normal form



#### a forest



5. The free PROP P[ComBiAlg] on the equational presentation of commutative bialgebras is the free category with biproducts on an object, viz. the category Mat<sub>N</sub> of *finite ordinals and* N-valued matrices.

[MacLane, Pirashvili, Lack]

5. The free PROP  $\mathbf{P}[\mathcal{C}om\mathcal{B}i\mathcal{A}lg]$  on the equational presentation of commutative bialgebras is the free category with biproducts on an object, viz. the category  $\mathbf{Mat}_{\mathbb{N}}$  of *finite ordinals and*  $\mathbb{N}$ -valued matrices.

[MacLane, Pirashvili, Lack]

The equational presentation of commutative bialgebras is that of commutative monoids and commutative comonoids where the comonoid structure is a monoid homomorphism and the comonoid structure is a monoid homomorphism.

(a) The commutative bialgebra structure turns the symmetric monoidal structure into biproduct structure.

- (a) The commutative bialgebra structure turns the symmetric monoidal structure into biproduct structure.
- (b) Every morphism  $m \to n$  has a unique representation as an  $m \times n$  matrix with entries in the endo-hom on 1.

- (a) The commutative bialgebra structure turns the symmetric monoidal structure into biproduct structure.
- (b) Every morphism  $m \to n$  has a unique representation as an  $m \times n$  matrix with entries in the endo-hom on 1.
- (c) The endo-hom on 1 is the multiplicative monoid of natural numbers.



6. The free PROP P[DegComBiAlg] on the equational presentation of degenerate commutative bialgebras is the category Rel of *finite ordinals and relations*.

The degeneracy axiom:

$$0 \\ 2 = 0 \\ 0 \\ 0 = 0 \\ 0 = 1$$

7. The free PROP  $\mathbf{P}[\bullet + \mathcal{D}eg\mathfrak{C}om\mathcal{B}i\mathcal{A}lg]$  on the equational presentation of a node together with that of degenerate commutative bialgebras is  $\mathbf{Dag}$ .

7. The free PROP  $\mathbf{P}[\bullet + \mathcal{D}eg\mathcal{C}om\mathcal{B}i\mathcal{A}lg]$  on the equational presentation of a node together with that of degenerate commutative bialgebras is  $\mathbf{Dag}$ .

#### **Proof:**

(a) Define *universal topological interpretations*  $[D]_{\tau}$  of dags D according to topological sortings  $\tau$  of D.

7. The free PROP  $\mathbf{P}[\bullet + \mathcal{D}eg\mathcal{C}om\mathcal{B}i\mathcal{A}lg]$  on the equational presentation of a node together with that of degenerate commutative bialgebras is  $\mathbf{Dag}$ .

#### **Proof:**

- (a) Define *universal topological interpretations*  $[D]_{\tau}$  of dags D according to topological sortings  $\tau$  of D.
- (b) Prove the *invariance* of topological interpretations, viz. that  $[D]_{\tau} = [D]_{\tau'}$  for all topological sortings  $\tau$  and  $\tau'$  of D.

7. The free PROP  $P[ \bullet + \mathcal{D}eg\mathcal{C}om\mathcal{B}i\mathcal{A}lg]$  on the equational presentation of a node together with that of degenerate commutative bialgebras is Dag.

#### **Proof:**

- (a) Define *universal topological interpretations*  $[D]_{\tau}$  of dags D according to topological sortings  $\tau$  of D.
- (b) Prove the *invariance* of topological interpretations, viz. that  $[D]_{\tau} = [D]_{\tau'}$  for all topological sortings  $\tau$  and  $\tau'$  of D.
- (c) Establish the *compositionality* of the interpretation function to obtain an *initial-algebra semantics*.

# Example:

$$D = 1 \xrightarrow{2} \longrightarrow 0$$

$$2 \xrightarrow{3} \longrightarrow 1$$

Example:

$$D = 1 \xrightarrow{2} \longrightarrow 0$$

$$2 \xrightarrow{3} \longrightarrow 1$$

$$D = 1 \xrightarrow{7} 0$$

$$2 \xrightarrow{7} 1$$

$$\begin{bmatrix}
0 & -0 & -0 & -0 & -0 \\
1 & -1 & -1 & -1 & -1 \\
2 & -2 & -2 & -2 & -2 \\
3 & -3 & -3 & -3 & -4 \\
4 & -4 & -4
\end{bmatrix}$$







$$= \begin{array}{c} 0 - 0 - 0 - 0 - 0 - 0 \\ 1 - 1 - 1 - 1 - 1 - 1 \\ 2 + 2 - 2 - 2 - 2 \\ 3 + 3 - 3 - 3 - 1 \\ 4 + 4 - 4 - 4 \end{array}$$



$$D = 1 \xrightarrow{3} \rightarrow 0$$

$$2 \xrightarrow{3} \rightarrow 1$$

$$D' = 1 \xrightarrow{3} 1$$

$$D; D' = 1$$







