Second-Order Algebra and Generalised Polynomial Functors

Marcelo Fiore

COMPUTER LABORATORY
UNIVERSITY OF CAMBRIDGE

LI 2012
Algebra and Computation
27.II.2012

I

Second-Order Algebra

The algebraic theory of languages with variable binding

Second-Order Equational Presentations — Examples —

1. Indefinite summation

Sorts

Expressions

E : *

Operators

Addition

+ : ε , $\varepsilon \to \varepsilon$

Summation

 $\sum : (\varepsilon)\varepsilon \to \varepsilon$

Second-Order Equational Presentations

~ Examples ~

1. Indefinite summation

Sorts

Expressions

£ : *

Operators

Addition

 $+ : \varepsilon, \varepsilon \to \varepsilon$

Summation

 $\sum : (\varepsilon)\varepsilon \to \varepsilon$

$$\sum (i. \sum (j. E[i, j])) \equiv \sum (j. \sum (i. E[i, j]))$$

$$\sum (i. E[i]) + \sum (j. F[j])$$

$$\equiv \sum (k. E[k] + F[k])$$

Second-Order Equational Presentations

~ Examples ~

1. Indefinite summation

Sorts

Expressions ε : *

Operators

Addition $+ : \varepsilon, \varepsilon \to \varepsilon$

Summation $\sum : (\varepsilon)\varepsilon \to \varepsilon$

$$\begin{aligned} & \boldsymbol{\mathsf{E}} : [\boldsymbol{\varepsilon}, \boldsymbol{\varepsilon}] \boldsymbol{\varepsilon} \\ & \boldsymbol{\mathsf{\vdash}} \sum \left(\mathbf{i}. \sum (\mathbf{j}. \, \mathbf{E}[\mathbf{i}, \mathbf{j}]) \right) \equiv \sum \left(\mathbf{j}. \, \sum (\mathbf{i}. \, \mathbf{E}[\mathbf{i}, \mathbf{j}]) \right) : \boldsymbol{\varepsilon} \\ & \boldsymbol{\mathsf{E}} : [\boldsymbol{\varepsilon}] \boldsymbol{\varepsilon}, \boldsymbol{\mathsf{F}} : [\boldsymbol{\varepsilon}] \boldsymbol{\varepsilon} \\ & \boldsymbol{\mathsf{\vdash}} \sum (\mathbf{i}. \, \mathbf{E}[\mathbf{i}]) + \sum (\mathbf{j}. \, \mathbf{F}[\mathbf{j}]) \\ & \equiv \sum \left(\mathbf{k}. \, \mathbf{E}[\mathbf{k}] + \mathbf{F}[\mathbf{k}] \right) : \boldsymbol{\varepsilon} \end{aligned}$$

2. Definite summation

Sorts

Expressions ε : *

Operators

One 1 : ε

Addition $+ : \varepsilon, \varepsilon \rightarrow \varepsilon$

Summation $\sum : \varepsilon, \varepsilon, (\varepsilon)\varepsilon \to \varepsilon$

A, B:
$$\varepsilon$$
, E: $[\varepsilon]\varepsilon$

$$\vdash \sum (A, B+1, i. E[i])$$

$$\equiv \sum (A, B, i. E[i]) + E[B+1] : \varepsilon$$

3. Classical first-order logic

Sorts

Individuals ι : *

Formulas ϕ : *

Operators

Connectives \bot, \top : ϕ

 \vee, \wedge : $\phi, \phi \rightarrow \phi$

 \neg : $\phi \rightarrow \phi$

Functions $f_i^{(m)}: \underline{\iota, \ldots, \iota} \to \iota$

Predicates $P_j^{(n)}: \underbrace{\iota, \ldots, \iota}_n \to \varphi$

Quantifiers \forall : $(\iota)\phi \to \phi$

 \exists : $(\iota)\phi \rightarrow \phi$

Axioms

Boolean algebra axioms for $(\bot, \lor, \top, \land, \neg)$

$$P : [\iota] \phi , X : \iota$$

$$\vdash \forall (x. P[x]) \equiv \forall (x. P[x]) \land P[X] : \phi$$

$$\begin{split} \mathsf{P} : [\iota] \phi \,, \; \mathsf{Q} : \phi \\ \vdash \; \forall \big(\, x. \, \mathsf{P}[x] \lor \mathsf{Q} \, \big) \equiv \; \forall \big(\, x. \, \mathsf{P}[x] \, \big) \lor \mathsf{Q} \, : \phi \end{split}$$

$$P : [\iota] \varphi$$

$$\vdash \neg (\exists (x. P[x])) \equiv \forall (x. \neg (P[x])) : \varphi$$

Theory axioms $\vdash \varphi_k \equiv \top : \varphi$

4. Untyped lambda calculus

Sorts

Lambda terms Λ :

Operators

Abstraction $\lambda : (\Lambda)\Lambda \to \Lambda$

Axioms

 $(\beta) \ \mathsf{M} : [\Lambda] \Lambda \,, \mathsf{N} : \Lambda$ $\vdash \lambda \big(\mathsf{x} . \, \mathsf{M}[\mathsf{x}] \big) @ \mathsf{N} \equiv \ \mathsf{M}[\mathsf{N}] : \Lambda$

$$(\eta) F: \Lambda$$

$$\vdash \lambda(x. F @ x) \equiv F: \Lambda$$

5. Simply-typed lambda calculus

Sorts

Basic types β : *

Arrow types \Rightarrow : $*,* \rightarrow *$

Operators

Application $@^{S,T} : S \Rightarrow T, S \rightarrow T$

Abstraction $\lambda^{S,T}$: $(S)T \rightarrow S \Rightarrow T$

$$\begin{split} (\beta^{S,T}) & \; \mathsf{M} : [S]\mathsf{T} \,, \mathsf{N} : S \\ & \; \vdash \lambda^{S,T} \big(x. \, \mathsf{M}[x] \big) \, @^{S,T} \, \mathsf{N} \equiv \, \mathsf{M}[\mathsf{N}] : \mathsf{T} \\ (\eta^{S,T}) & \; \mathsf{F} : S \Rightarrow \mathsf{T} \\ & \; \vdash \lambda^{S,T} \big(x. \, \mathsf{F} \, @^{S,T} \, x \big) \equiv \mathsf{F} : S \Rightarrow \mathsf{T} \end{split}$$

Second-Order Algebraic Syntax

Operators

$$o: (\vec{\sigma_1})\tau_1, \ldots, (\vec{\sigma_n})\tau_n \to \tau$$

o is an operator of sort τ taking n arguments each of which binds, for $\vec{\sigma_i} = \sigma_{i,1}, \ldots, \sigma_{i,n_i}$, n_i variables of sorts $\sigma_{i,1}, \ldots, \sigma_{i,n_i}$ in a term of sort τ_i .

Typing contexts

$$\mathsf{M}_1: [\vec{\sigma_1}]\tau_1, \ldots, \mathsf{M}_k: [\vec{\sigma_k}]\tau_k \rhd \chi_1: \sigma_1', \ldots, \chi_\ell: \sigma_\ell'$$

Typing contexts

$$\mathsf{M}_1: [\vec{\sigma_1}]\tau_1, \ldots, \mathsf{M}_k: [\vec{\sigma_k}]\tau_k \rhd \chi_1: \sigma_1', \ldots, \chi_\ell: \sigma_\ell'$$

Terms

(Variables)

For $(x : \tau) \in \Gamma$,

 $\Theta \rhd \Gamma \vdash x : \tau$

Typing contexts

$$\mathsf{M}_1: [\vec{\sigma_1}]\tau_1, \ldots, \mathsf{M}_k: [\vec{\sigma_k}]\tau_k \rhd \chi_1: \sigma_1', \ldots, \chi_\ell: \sigma_\ell'$$

Terms

(Variables)

For $(x : \tau) \in \Gamma$,

 $\Theta \rhd \Gamma \vdash \chi : \tau$

(Parameterised metavariables)

For $(M : [\tau_1, \ldots, \tau_n]\tau) \in \Theta$,

$$\Theta \rhd \Gamma \vdash t_i : \tau_i \ (1 \le i \le n)$$

$$\Theta \rhd \Gamma \vdash M[t_1,\ldots,t_n] : \tau$$

(Operators)

For
$$o: (\vec{\sigma_1})\tau_1, \ldots, (\vec{\sigma_n})\tau_n \to \tau$$
,

$$\Theta \rhd \Gamma, \vec{x_i} : \vec{\sigma_i} \vdash t_i : \tau_i \ (1 \le i \le n)$$

$$\Theta \rhd \Gamma \vdash o(\vec{x_1}.t_1,\ldots,\vec{x_n}.t_n):\tau$$

where $\vec{x} : \vec{\sigma}$ stands for $x_1 : \sigma_1, \dots, x_k : \sigma_k$.

An *equational presentation* is a set of axioms each of which is a pair of terms in context.

(Operators)

For
$$o: (\vec{\sigma_1})\tau_1, \ldots, (\vec{\sigma_n})\tau_n \to \tau$$
,

$$\Theta \rhd \Gamma, \vec{x_i} : \vec{\sigma_i} \vdash t_i : \tau_i \ (1 \le i \le n)$$

$$\Theta \rhd \Gamma \vdash o(\vec{x_1}.t_1,\ldots,\vec{x_n}.t_n) : \tau$$

where $\vec{x} : \vec{\sigma}$ stands for $x_1 : \sigma_1, \dots, x_k : \sigma_k$.

Equational presentations

$$\mathcal{E} = \{ \Theta_i \rhd_i \Gamma_i \vdash s_i \equiv t_i : \tau_i \}_{i \in I}$$

An *equational presentation* is a set of axioms each of which is a pair of terms in context.

Second-Order Algebraic Models

Algebras over abstract clones

Second-Order Algebraic Models

Algebras over abstract clones

Signature models

Equational-presentation models

Second-Order Algebraic Models

Algebras over abstract clones

- Signature models are abstract clones together with compatible operator interpretations.
- Equational-presentation models are signature models that satisfy the axioms.

S-sorted Abstract Clones

Monoids

$$V \rightarrow A \leftarrow A \bullet A \text{ in } (Set^{\mathbf{F} \downarrow S})^{S}$$

for **F** a skeleton of finite sets with respect to the substitution monoidal structure

$$ightharpoonup V_{ au} = oldsymbol{y}(au)$$

$$\qquad \qquad (X \bullet Y)_{\tau} = \int^{\vec{\sigma} \in \mathbf{F} \downarrow S} X_{\tau}(\vec{\sigma}) \times \prod_{\sigma_i \in \vec{\sigma}} Y_{\sigma_i}$$

NB. The unit and multiplication operations of abstract clones respectively provide interpretations for variables and metavariables.

Signature Algebras

Algebras

$$\Sigma A o A$$
 in $\left({f Set}^{{f F}\downarrow S}
ight)^S$

for

$$\Sigma(X)_{\tau} = \coprod_{o: (\vec{\sigma_1}) \tau_1, \dots, (\vec{\sigma_n}) \tau_n \to \tau} \prod_{1 \leq i \leq n} X^{\boldsymbol{y}(\vec{\sigma_i})}$$

Signature Models

Monoid structure:

$$V \xrightarrow{e} A \xleftarrow{m} A \bullet A$$

Algebra structure:

$$\Sigma A \xrightarrow{\xi} A$$

subject to the compatibility condition:

$$\Sigma(A) \bullet A \longrightarrow \Sigma(A \bullet A) \xrightarrow{\Sigma m} \Sigma A$$

$$\xi \bullet A \qquad \qquad \qquad \downarrow \xi$$

$$A \bullet A \xrightarrow{m} A$$

Monadic Signature Models

$$egin{array}{c} \operatorname{Mod}(\mathbf{\Sigma}) \ & \downarrow \ & \downarrow \ & \left(\mathbf{Set}^{\mathbf{F}\downarrow\mathsf{S}}\right)^\mathsf{S} \ & \smile_{\mathsf{M}_{\mathbf{\Sigma}}} \ \end{array}$$

1.
$$\mathcal{M}_{\Sigma}(X) \cong V + X \bullet \mathcal{M}_{\Sigma}(X) + \Sigma(\mathcal{M}_{\Sigma}X)$$

Free constructions describe syntax with variable binding and parameterised metavariables.

Terms of sort τ in context

$$M_1: [\vec{\sigma_1}]\tau_1, \ldots, M_k: [\vec{\sigma_k}]\tau_k \triangleright x_1: \sigma_1', \ldots, x_\ell: \sigma_\ell'$$
 are in bijective correspondence with Kleisli maps

$$y(\sigma'_1, \ldots, \sigma'_\ell)_{@\tau} \to \mathcal{M}_{\Sigma}(\coprod_{1 \le i \le k} y(\vec{\sigma_i})_{@\tau_i})$$

3. The monoid multiplication

$$\mathcal{M}_{\Sigma}(X) \bullet \mathcal{M}_{\Sigma}(X) \to \mathcal{M}_{\Sigma}(X)$$

provides a definition of capture-avoiding simultaneous substitution by structural recursion.

4. \mathcal{M}_{Σ} is a strong monad.

The strength

$$\mathcal{M}_{\Sigma}(X) imes \prod_{\sigma \in S} Y_{\sigma}^{X_{\sigma}} o \mathcal{M}_{\Sigma}(Y)$$

provides a definition of metavariable substitution by structural recursion.

Equational-Presentation Models

The interpretation

$$\llbracket \Theta \rhd \Gamma \vdash \mathsf{t} : \tau \rrbracket_A$$

of a term

$$\Theta \rhd \Gamma \vdash \mathsf{t} : \mathsf{\tau}$$

in a signature model A, where

$$\Theta = M_1 : [\vec{\sigma_1}]\tau_1, \dots, M_k : [\vec{\sigma_k}]\tau_k$$

and

$$\Gamma = \mathbf{x}_1 : \sigma'_1, \ldots, \sigma'_{\ell}$$
,

is a map

$$\prod_{1\leq i\leq k} A_{ au_i}{}^{m{y}(ec{\sigma_i})} o A_{ au}{}^{m{y}(ec{\sigma'})}$$
 in $m{Set}^{\mathbf{F}\downarrow S}$.

 $ightharpoonup \operatorname{Mod}(\Sigma, \mathcal{E})$ is the full subcategory of $\operatorname{Mod}(\Sigma)$ consisting of all those signature models *A* for which

 $\llbracket \Theta \rhd \Gamma \vdash s : \tau \rrbracket_A = \llbracket \Theta \rhd \Gamma \vdash t : \tau \rrbracket_A$ for all axioms $\Theta \rhd \Gamma \vdash s \equiv t : \tau$ in \mathcal{E} .

► Mod(Σ, ε) is the full subcategory of Mod(Σ) consisting of all those signature models A for which

$$\llbracket \Theta \rhd \Gamma \vdash s : \tau \rrbracket_A = \llbracket \Theta \rhd \Gamma \vdash t : \tau \rrbracket_A$$
 for all axioms $\Theta \rhd \Gamma \vdash s \equiv t : \tau$ in \mathcal{E} .

- ► $\operatorname{Mod}(\Sigma, \mathcal{E})$ is monadic over $(\operatorname{Set}^{\mathbf{F} \downarrow \mathsf{S}})^{\mathsf{S}}$ with inductively constructed free models. The induced monad is finitary and preserves epimorphisms.
- $ightharpoonup \operatorname{Mod}(\Sigma, \mathcal{E})$ is complete and cocomplete.

Second-Order Equational Logic

The second-order nature of the syntax requires a *two-level* substitution calculus.

Second-Order Equational Logic

The second-order nature of the syntax requires a *two-level* substitution calculus.

Substitution calculus

Capture-avoiding simultaneous substitution of terms for variables.

Maps

$$\Theta \triangleright \chi_1 : \sigma_1, \ldots, \chi_n : \sigma_n \vdash t : \tau$$

and

$$\Theta \rhd \Gamma \vdash t_i : \sigma_i \ (1 \le i \le n)$$

to

$$\Theta \rhd \Gamma \vdash t[t_i/x_i]_{1 \le i \le n} : \tau$$

Metasubstitution of abstracted terms for metavariables.

Maps

$$M_1: [\vec{\sigma_1}]\tau_1, \ldots, M_k: [\vec{\sigma_k}]\tau_k \rhd \Gamma \vdash t: \tau$$

and

$$\Theta \rhd \Gamma, \vec{x_i} : \vec{\sigma_i} \vdash t_i : \tau_i \ (1 \le i \le k)$$

to

$$\Theta \rhd \Gamma \vdash t\{\mathsf{M}_{\mathsf{i}} := (\vec{\mathsf{x}_{\mathsf{i}}})\mathsf{t}_{\mathsf{i}}\}_{1 < \mathsf{i} < \mathsf{k}} : \tau$$

Metasubstitution of abstracted terms for metavariables.

Maps

$$M_1: [\vec{\sigma_1}]\tau_1, \ldots, M_k: [\vec{\sigma_k}]\tau_k \rhd \Gamma \vdash t:\tau$$

and

$$\Theta \rhd \Gamma, \vec{x_i} : \vec{\sigma_i} \vdash t_i : \tau_i \ (1 \le i \le k)$$

to

$$\Theta \rhd \Gamma \vdash t\{M_i := (\vec{x_i})t_i\}_{1 < i < k} : \tau$$

Definition:

- $x\{M_i := (\vec{x_i})t_i\}_{1 \le i \le k} = x$
- $(M_{\ell}[s_1, \dots, s_m])\{M_i := (\vec{x_i})t_i\}_{1 \le i \le k}$ = $t_{\ell}[s'_j/x_{i,j}]_{1 \le j \le m}$

where
$$s'_j = s_j \{ M_i := (\vec{x_i}) t_i \}_{1 \le i \le k}$$

•
$$(o(...,(\vec{x})s,...))\{M_i := (\vec{x_i})t_i\}_{1 \le i \le k}$$

= $o(...,(\vec{x})s\{M_i := (\vec{x_i})t_i\}_{1 \le i \le k},...)$

Deductive system

(Extended metasubstitution)

$$\mathsf{M}_1: [\vec{\sigma_1}]\tau_1, \ldots, \mathsf{M}_k: [\vec{\sigma_k}]\tau_k \rhd \Gamma \vdash s \equiv t:\tau$$

$$\Theta \rhd \Delta, \vec{x_i} : \vec{\sigma_i} \vdash s_i \equiv t_i : \tau_i \quad (1 \leq i \leq k)$$

$$\Theta \rhd \Gamma, \Delta$$

$$\vdash s\{M_i := (\vec{x_i})s_i\}_{1 \le i \le k} \equiv t\{M_i := (\vec{x_i})t_i\}_{1 \le i \le k} : \tau$$

Deductive system

(Extended metasubstitution)

$$\begin{aligned} \mathsf{M}_1 : [\vec{\sigma_1}]\tau_1, \dots, \mathsf{M}_k : [\vec{\sigma_k}]\tau_k \rhd \Gamma \vdash s \equiv \mathsf{t} : \tau \\ \Theta \rhd \Delta, \vec{x_i} : \vec{\sigma_i} \vdash s_i \equiv \mathsf{t}_i : \tau_i \quad (1 \leq i \leq k) \end{aligned}$$

$$\begin{split} \Theta \rhd \Gamma \!\!\!\!/, \Delta \\ \vdash s \!\!\!\!/ \left\{ \mathsf{M}_i := (\vec{x_i}) s_i \right\}_{1 < i < k} \equiv t \!\!\!/ \left\{ \mathsf{M}_i := (\vec{x_i}) t_i \right\}_{1 < i < k} \colon \tau \end{split}$$

We have:

- Conservativity over equational logic.
- Semantic completeness of second-order derivability.
- Derivability completeness of (bidirectional) second-order term rewriting.

Second-Order Theory of Equality

Mono-sorted terms

$$\mathsf{M}_1:[\mathsf{m}_1],\ldots,\mathsf{M}_k:[\mathsf{m}_k]\rhd x_1,\ldots,x_n\vdash s$$
 where

$$s ::= x_j \qquad (1 \le j \le n)$$

$$\mid M_i[s_1, \dots, s_{m_i}] \qquad (1 \le i \le k)$$

under the metasubstitution mechanism.

Second-Order Theory of Equality

Mono-sorted terms

$$M_1 : [m_1], \dots, M_k : [m_k] \rhd x_1, \dots, x_n \vdash s$$
 where

$$s ::= x_j$$
 $(1 \le j \le n)$
 $| M_i[s_1, ..., s_{m_i}]$ $(1 \le i \le k)$

under the metasubstitution mechanism.

The category M has set of <u>objects</u> N* and morphisms

$$(m_1,\ldots,m_k)\to (n_1,\ldots,n_\ell)$$

given by tuples

$$\left\langle \text{ M}_1:[m_1],\ldots,\text{M}_k:[m_k]\rhd x_1,\ldots,x_{n_i}\vdash s_i \right. \right\rangle_{1\leq i\leq \ell}$$

that compose by *metasubstitution*.

The Structure of Second-Order Equality

Universal property of M.

The Structure of Second-Order Equality

Universal property of M.

The category M is universally characterised as the free (strict) cartesian category on an exponentiable object, *viz.* (0).

The Structure of Second-Order Equality

Universal property of M.

The category M is universally characterised as the free (strict) cartesian category on an exponentiable object, *viz.* (0).

Products:

$$(m_1,\ldots,m_k)=(m_1)\times\cdots\times(m_k)$$

Exponentiability:

$$(m) = (0)^m \Rightarrow (0)$$

Second-Order Algebraic Theories

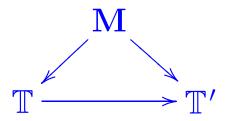
A (mono-sorted) second-order algebraic theory consists of a small cartesian category T and a strict cartesian identity-on-objects functor M → T that preserves the exponentiable object (0).

Second-Order Algebraic Theories

- A (mono-sorted) second-order algebraic theory consists of a small cartesian category T and a strict cartesian identity-on-objects functor M → T that preserves the exponentiable object (0).
- The category $\mathcal{M}od(T)$ of (set-theoretic) $\underline{functorial\ models}$ of a second-order algebraic theory T is the category of cartesian functors $\mathbb{T} \to \underline{Set}$ and natural transformations between them.

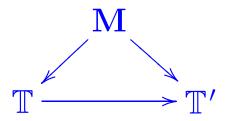
Algebraic Translations

For second-order algebraic theories $\mathbf{M} \to \mathbb{T}$ and $\mathbf{M} \to \mathbb{T}'$, a second-order <u>algebraic translation</u> is a functor $\mathbb{T} \to \mathbb{T}'$ such that



Algebraic Translations

For second-order algebraic theories $\mathbf{M} \to \mathbb{T}$ and $\mathbf{M} \to \mathbb{T}'$, a second-order <u>algebraic translation</u> is a functor $\mathbb{T} \to \mathbb{T}'$ such that



Algebraic Functors

Every second-order algebraic translation $F: \mathbb{T} \to \mathbb{T}'$ contravariantly induces an algebraic functor $F^*: \mathcal{M}od(\mathbb{T}') \to \mathcal{M}od(\mathbb{T})$.

Algebraic functors have left adjoints.

Theories vs. Presentations

Classifying categories

— the theory of a presentation

For every second-order equational presentation \mathcal{E} , we construct a second-order algebraic theory $\mathbf{M}(\mathcal{E})$.

Internal languages

— the presentation of a theory

For every second-order algebraic theory T, we construct a second-order equational presentation $\mathscr{E}(T)$.

► Theory/presentation correspondence.

Every second-order algebraic theory T is isomorphic to the second-order algebraic theory of its associated equational presentation $\mathbf{M}(\mathscr{E}(T))$.

Presentation/theory correspondence.

Every second-order equational presentation \mathcal{E} is isomorphic, with respect to a notion of *syntactic translation*, to the second-order equational presentation of its associated algebraic theory $\mathcal{E}(\mathbf{M}(\mathcal{E}))$.

The above two correspondences yield an equivalence of categories. Universal-algebra/categorical-algebra correspondence.

For every second-order equational presentation \mathcal{E} , the category of algebraic models $\operatorname{Mod}(\mathcal{E})$ and the category of functorial models $\operatorname{Mod}(\mathbf{M}(\mathcal{E}))$ are equivalent.

Categorical-algebra/universal-algebra correspondence.

For every second-order algebraic theory T, the category of functorial models $\mathcal{M}od(T)$ and the category of algebraic models $\mathcal{M}od(\mathscr{E}(T))$ are equivalent.

II

Generalised Polynomial Functors

Kan Extensions

Every

$$f: \mathbb{X} \to \mathbb{Y}$$

induces

$$\begin{array}{c}
\xrightarrow{f_*} \\
\uparrow \\
\uparrow \\
\uparrow \\
\hline
f_!
\end{array}$$

where

$$\mathbb{PC} =^{\operatorname{def}} \mathcal{S}et^{\mathbb{C}}$$

and

$$f_* Py = \operatorname{Ran}_f Py = \int_{x \in \mathbb{X}} [\mathbb{Y}(y, fx) \Rightarrow Px]$$
 $f^* Qx = Q(fx)$
 $f_! Py = \operatorname{Lan}_f Py = \int^{x \in \mathbb{X}} \mathbb{Y}(fx, y) \times Px$

Generalised Polynomial Functors

The class of

generalised polynomial functors

is the closure under natural isomorphism of the functors

$$\mathcal{P}\mathbb{A} \to \mathcal{P}\mathbb{B}$$

arising as composites

$$\mathbb{PA} \xrightarrow{s^*} \mathbb{PI} \xrightarrow{f_*} \mathbb{PJ} \xrightarrow{t_!} \mathbb{PB}$$

from diagrams

$$\mathbb{A} \stackrel{\mathsf{s}}{\longleftarrow} \mathbb{I} \stackrel{\mathsf{f}}{\longrightarrow} \mathbb{J} \stackrel{\mathsf{t}}{\longrightarrow} \mathbb{B}$$

in Cat.

$$t_! f_* s^* A \, b = \int^{j \in \mathbb{J}} \mathbb{B}(tj, b) \times \int_{i \in \mathbb{I}} \left[\, \mathbb{J}(j, fi) \Rightarrow A(si) \, \right]$$

Examples:

- For every presheaf P, the product endofunctor (−) × P and the exponential endofunctor (−)^P are generalised polynomial.
- Modulo the equivalence P(C)/P ≃ P(∮P), for ∮P the category of elements of P ∈ PC, polynomial functors

$$\mathcal{P}(\mathbb{C})/A \xrightarrow{s^*} \mathcal{P}(\mathbb{C})/I \xrightarrow{\Pi_f} \mathcal{P}(\mathbb{C})/J \xrightarrow{\Sigma_t} \mathcal{P}(\mathbb{C})/B$$
 for

$$A \stackrel{s}{\longleftarrow} I \stackrel{f}{\longrightarrow} J \stackrel{t}{\longrightarrow} B \text{ in } \mathcal{P}(\mathbb{C})$$

are subsumed by generalised polynomial functors $\mathcal{P}(\oint A) \to \mathcal{P}(\oint B)$.

- Constant functors between presheaf categories are generalised polynomial.
- Every cocontinuous functor between presheaf categories is generalised polynomial.

Discrete Generalised Polynomial Functors

The class of <u>discrete</u> generalised polynomial functors is represented by diagrams of the form

$$\mathbb{A} \longleftarrow \coprod_{k \in K} \mathbb{I}_k \cdot \mathbb{J}_k \xrightarrow{\coprod_{k \in K} \nabla_{\mathbb{I}_k}} \coprod_{k \in K} \mathbb{J}_k \longrightarrow \mathbb{B}$$

where L_k is finite for all $k \in K$.

Discrete generalised polynomial functors are finitary and preserve epimorphisms.

Examples:

- Convolution monoidal closed structure
 - Day's convolution tensor product is [isomorphic to] a discrete generalised polynomial functor.
 - 2. Exponentiation to a representable with respect to the closed structure associated to the convolution monoidal structure is a discrete generalised polynomial functor.
- ► The substitution tensor product for planar operads is [isomorphic to] a discrete generalised polynomial functor.

Simply-typed lambda calculus syntax

Let S be the set of simple types.

1. The rule

$$\Gamma \vdash t : \tau_1 \Rightarrow \tau_2 \qquad \Gamma \vdash t' : \tau_1$$

$$\Gamma \vdash t @ t' : \tau_2$$

has associated the discrete generalised polynomial endofunctor represented by

2. The rule

$$\frac{\Gamma, x : \tau_1 \vdash t : \tau_2}{\Gamma \vdash \lambda x. \, t : \tau_1 \Rightarrow \tau_2}$$

has associated the discrete generalised polynomial endofunctor represented by

$$(\mathbf{F} \downarrow S) \times S \times S \xrightarrow{\mathrm{id}} (\mathbf{F} \downarrow S) \times S \times S$$

$$+ \times \mathrm{id} \downarrow \qquad \qquad \downarrow_{\mathrm{id} \times} \Rightarrow$$

$$(\mathbf{F} \downarrow S) \times S \qquad \qquad (\mathbf{F} \downarrow S) \times S$$

- ► The class of discrete generalised polynomial functors is closed under
 - constants,
 - projections,
 - sums,
 - finite products,
 - composition, and
 - differentiation.

Differentiation

The differential of

$$\mathbb{A} \overset{s}{\longleftarrow} L \cdot \mathbb{J} \xrightarrow{\nabla_L} \mathbb{J} \xrightarrow{t} \mathbb{B}$$

is the discrete polynomial

$$\coprod_{\substack{(L_0,\ell_0)\in L'\\ s' \downarrow \\ \mathbb{A}}} L_0 \cdot \widetilde{\mathbb{J}} \xrightarrow{\coprod_{\substack{(L_0,\ell_0)\in L'\\ \nabla_{L_0}\\ \downarrow t'}}} L' \cdot \widetilde{\mathbb{J}}$$

$$\downarrow^{t'}$$

where

$$\begin{split} \mathsf{L}' &= \big\{ (\mathsf{L}_0, \ell_0) \in \mathscr{P}(\mathsf{L}) \times \mathsf{L} \mid \mathsf{L}_0 \cap \{\ell_0\} = \emptyset, \mathsf{L}_0 \cup \{\ell_0\} = \mathsf{L} \big\}; \\ \widetilde{\mathbb{J}} &= \oint \hom_{\mathbb{J}} \text{ (the twisted arrow category of } \mathbb{J}); \\ s' &= [s \circ (\iota_0 \cdot \pi_2)]_{(\mathsf{L}_0, \ell_0) \in \mathsf{L}'} \text{ for } \iota_0 : \mathsf{L}_0 \hookrightarrow \mathsf{L}; \text{ and} \\ t' &= \big[\langle (s \, \iota_{\ell_0})^\circ \, \pi_1, t \, \pi_2 \rangle \big]_{(\mathsf{L}_0, \ell_0) \in \mathsf{L}'} \end{split}$$