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Second-Order Algebra

The algebraic theory of languages

with variable binding
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Equational Presentations
— Examples —

1. Indefinite summation

Sorts

Expressions £ 1
Operators

Addition + . e,e €

Summation > o (ele—e
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Second-Order
Equational Presentations
— Examples —

1. Indefinite summation

Sorts
Expressions £ 1
Operators
Addition + . e,e €
Summation > o (ele—e
Axioms
E: e, ele
=Y (LY G-el,iD) =X (. X (1l i) :
E:lele,F:lele

- 2 (el + 2 (- Fj])
= > (k.EKl+F[K]):e



2. Definite summation

Sorts
Expressions £ 1 x
Operators
One 1 = ¢
Addition + g, —>¢€
Summation > oe,e,(e)e — e
Axioms

AB:e,E:|ele
- Y (A,B+1,1i.E[)
= Z(A,B,i.E[i])—I—E[B—I—ﬂ L€



3. Classical first-order logic

Sorts
Individuals !
Formulas @
Operators
Connectives 1, T
VvV, A
Functions fim
Predicates P§“)
Quantifiers \Y
=

@, — 0
©—= @

(Ve — @
(Ve — @



Axioms
Boolean algebra axioms for (L, v, T, A, —)

P:ldp, X:t
- V(x.P[x]) = V(x.Plx]) AP[X] : @

P:llp,Q:9
- V(x.PXIvQ)=V(x.P[x]) vQ : ¢

P: [t
- —(3(x.Pl])) = V(x.~(PX])) : @

Theory axioms F ¢ =T : @



4. Untyped lambda calculus

Sorts

Lambda terms A %
Operators

Application @ : ANA—=A

Abstraction A (ANA—= A
Axioms

(B) M:[AJA N: A
I—?\(x.l\/l[x])@N = M|[N]: A
(M) F: A
I—A(X.F@x) =F: A



5. Simply-typed lambda calculus

Sorts

Basic types B DX
Arrow types > Dok ok —) ok
Operators

Application @>T : ST ST
Abstraction AST o (ST — S=>T

Axioms
(BST) M:[SIT,N:S
FA>T (x.M[x])@>'N=M[N]: T
M>T) F:S=>T

= ?\S’T(x. F@S’Tx) =F:S=>T1



Second-Order Algebraic Syntax

Operators

—

0:(01)Ty,...,(0n)Th — T

0 Is an operator of sort T taking n arguments
each of which binds, for o; = 0y1,...,0in,,
n; variables of sorts 0;1,..., 01, IN @term

of sort ;.




Typing contexts

|\/|1I[Oﬁ]"fh...,l\/lkl[oﬁk]"kaX]ZO"{,...,XQZ



Typing contexts

|\/|]Z[OT)]]T1,...,|\/|kZ[OT)k]TkDX1ZO‘%,...,XQZ

Terms

(Variables)
For (x : 1) eT,

O TFx:T



Typing contexts

|\/|1I[Oﬁ]T],...,MkI[O?k]TkDX1ZO"{,...

Terms

(Variables)
For (x : 1) eT,

O TFx:T

(Parameterised metavariables)
For (M: [Tq,...,T4lT) € O,

O>THFt:1 (1<1i<n)

O>TFEMty,...,th]:T



(Operators)
Foro: (o7)Ty,...,(00)Th — T,

@Dnﬁiot)il_tii’fi(‘l SISTI)

O > Fl—o(xﬁ.th...,x}.tn) . T

where x : o stands for x; : 01,..., Xk : Ox.

An equational presentation is a set of axioms
each of which is a pair of terms in context.



(Operators)
Foro: (o7)Tq,...,(0h)Th — T,

@Dnﬁiot)il_tii’fi(‘l §1§n)

O > Fl—o(xﬁ.th...,x}.tn) . T

where x : o stands for x; : 01,..., Xk : Ox.

Equational presentations
E=10i>i i si =1 Tihier

An equational presentation is a set of axioms
each of which is a pair of terms in context.
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Second-Order Algebraic Models

Algebras over abstract clones

» Signature models are abstract clones
together with compatible operator
Interpretations.

» Equational-presentation models are
signature models that satisfy the
axioms.




S-sorted Abstract Clones

Monoids
V 3A— AeA in (SetFlS)S

for F a skeleton of finite sets with respect to the
substitution monoidal structure

» Vi=y(1)

> (XoY)e= [T X () x [Ty.e5 Yo

NB. The unit and multiplication operations of
abstract clones respectively provide
Interpretations for variables and metavariables.



Signature Algebras

Algebras

YA = A in (SetfS)

y(oi)

(on)Th—T H1§i§nx

.....



Signature Models

» Monoid structure:
V S A< AeA

» Algebra structure:

SA —52 A

subject to the compatibility condition:

S(A)e A >~Y(AeA) TN 5A

con la

AeA - A




Monadic Signature Models

Mod(X)

4
(SetFlS) >

N
Ms

2. Free constructions describe syntax with

variable binding and parameterised
metavariables.

Terms of sort T In context

M1 [o7]Tr, ..o My [oxdT > X1 1 0, X 2 Oy
are in bijective correspondence with Kleisli
maps

y(o1,...,0p)ar — MZ( H1gi§k y((ﬁ)@ﬂ)



3. The monoid multiplication
Mz (X) @ Mg (X) — Mx(X)

provides a definition of capture-avoiding
simultaneous substitution by structural
recursion.

4. My Is a strong monad.
The strength
Ms(X) % HGES YGXG — Ms(Y)

provides a definition of metavariable
substitution by structural recursion.



Equational-Presentation Models

» The interpretation
[©@>TFt: T]]A

of a term
O>TFHt:T
In a signature model A, where
© = M;:|o7lTy,..., Mk : [O%]TK
and
=x;:07,...,07 ,
IS a map

H]<i<kATiy(O:;L)HATy(O-/) in Setf!s



» Mod(X, &) is the full subcategory of Mod(X)
consisting of all those signature models A
for which

II@DF"SIT]]AIII@DFFtIT]]A

forallaxioms®>T'Fs=t:71In¢.



» Mod(X, &) is the full subcategory of Mod(X)
consisting of all those signature models A
for which

II@DF"SIT]]AIII@DFFtIT]]A
forallaxioms®>T'Fs=t:71In¢.

» Mod(Z, &) is monadic over (Sei&FlS)S with
Inductively constructed free models. The
Induced monad is finitary and preserves
epimorphisms.

» Mod(Z, &) is complete and cocomplete.



Second-Order Equational Logic

The second-order nature of the syntax

requires a two-level substitution calculus.




Second-Order Equational Logic

The second-order nature of the syntax

requires a two-level substitution calculus.

Substitution calculus

» Capture-avoiding simultaneous
substitution of terms for variables.

Maps

O>x%x1:01,...,Xn:0nt:7T
and

O>ThHt:0; (1 <i<n)
to

O> Tk t[ti/xihgign : T



» Metasubstitution of abstracted terms for
metavariables.

Maps
Mi:loq]Ty,... M okt D> T HET: T
and
O Ixi:oFtiT (1 <1<k
to
O>TIFtM = (xi)tih<ick: T



» Metasubstitution of abstracted terms for
metavariables.

Maps
Mi:loq]Ty,... M okt D> T HET: T
and
O Ixi:oFti:T (1 <i<k)

to
O ' t{M; = (xi)tij1<ick: T

Definition:

o x{Mi = (Xi)tih<i<k =X

o (I\/IQ[S],.. Sl ) IMi = (X)) tih<ick
[ J/X1)]1<)<m
j

where s! = s;{M; := (Xi)tih1<i<k

e (0f..., D) M= () tihi<icx
_ (%

O (X)s{M; == (xi)tif1<i<k, - - - )

(X)s,
(



Deductive system

(Extended metasubstitution)

Mi:loglTy,...,Mx: ot > TEs=t:T

@DA,)&ZO:)iI_SiEtiZTi (1§1§k)

O 1A

= s{M; == (Xi)sij1<ick = HMi = (Xi)tih<i<k i T



Deductive system

(Extended metasubstitution)

Mi:loglTy,...,Mx: ot > TEs=t:T

@DA,X_%Io?il_SiEtiiTi (1§1§k)

O 1A

= s{M; == (Xi)sij1<ick = HMi = (Xi)tih<i<k i T

We have:

» Conservativity over equational logic.

» Semantic completeness of second-order
derivability.

» Derivability completeness of (bidirectional)
second-order term rewriting.



Second-Order
Theory of Equality

» Mono-sorted terms

Mi:lmal, ... M [mud > xq,...,Xn S
where

S = Xj (1 <j <n)

| Milst,smd (1<i<K)

under the metasubstitution mechanism.



Second-Order
Theory of Equality

» Mono-sorted terms

Mi:lmal, ... M [mud > xq,...,Xn S
where

S = Xj (1 <j <n)

| Milst.smd (1<i<K)

under the metasubstitution mechanism.

» The category M has set of objects N* and
morphisms

(m1>°'° )mk) — (Tl],... )nﬁ)
given by tuples

< My : [m]],...,Mk: [mk] I>X1)"')Xni - Si >1§i§€

that compose by metasubstitution.




The Structure of
Second-Order Equality

Universal property of M.



The Structure of
Second-Order Equality

Universal property of M.

The category M is universally characterised
as the free (strict) cartesian category on an
exponentiable object, viz. (0).




The Structure of
Second-Order Equality

Universal property of M.

The category M is universally characterised
as the free (strict) cartesian category on an
exponentiable object, viz. (0).

» Products:

(M, .y my) = (M) X--e X (my)
» Exponentiability:

(m) = (0)™ = (0)



Second-Order
Algebraic Theories

» A (mono-sorted) second-order algebraic
theory consists of a small cartesian
category T and a strict cartesian
identity-on-objects functor M — T that
preserves the exponentiable object (0).




Second-Order
Algebraic Theories

» A (mono-sorted) second-order algebraic
theory consists of a small cartesian
category T and a strict cartesian
identity-on-objects functor M — T that
preserves the exponentiable object (0).

» The category Mod(T) of (set-theoretic)
functorial models of a second-order
algebraic theory T is the category of
cartesian functors T — Set and natural
transformations between them.




Algebraic Translations

For second-order algebraic theories M — T and
M — T’, a second-order algebraic translation is
a functor T — T’ such that

M
/ \
T T’




Algebraic Translations

For second-order algebraic theories M — T and
M — T’, a second-order algebraic translation is
a functor T — T’ such that

M
/ \
T T’

Algebraic Functors

Every second-order algebraic translation
F: T — T’ contravariantly induces an
algebraic functor F* : Mod (T’) — Mod(T).

» Algebraic functors have left adjoints.



Theories vs. Presentations

Classifying categories

— the theory of a presentation

For every second-order equational
presentation &, we construct a
second-order algebraic theory M(¢).

Internal languages

— the presentation of a theory

For every second-order algebraic
theory T, we construct a second-order
equational presentation &(T).



» Theory/presentation correspondence.

Every second-order algebraic theory T Is
Isomorphic to the second-order algebraic
theory of its associated equational
presentation M (& (T)).

» Presentation/theory correspondence.

Every second-order equational presentation
€ Is iIsomorphic, with respect to a notion of
syntactic translation, to the second-order
equational presentation of its associated
algebraic theory &(M(€&)).

» The above two correspondences yield an
equivalence of categories.



» Universal-algebra/categorical-algebra
correspondence.

For every second-order equational
presentation &, the category of algebraic
models Mod(&) and the category of
functorial models Mod (M |(€)) are
equivalent.

» Categorical-algebra/universal-algebra
correspondence.

For every second-order algebraic theory T,
the category of functorial models Mod (T)
and the category of algebraic models
Mod(&'(T)) are equivalent.



I1

Generalised
Polynomial Functors



Kan Extensions

Every
f:X—>2Y
Induces
L
.
PX <f— PY
T
T
where
PC =% Set®
and

f.Py = RanPy = fxeX[Y(y,fx)éPx]

f*Qx = Q(fx)
fiPy = LanPy = fXEX Y(fx,y) x Px



Generalised
Polynomial Functors

The class of
generalised polynomial functors

IS the closure under natural isomorphism of the
functors

PA — PB

arising as composites

PA = pr e Pyt R

from diagrams

In Cat.

tf.s"Ab =" B(tj,b) x [, [J(§,fi) = A(si)]



Examples:

» For every presheaf P, the product
endofunctor (—) x P and the exponential
endofunctor (—)" are generalised
polynomial.

» Modulo the equivalence P(C)/P ~ P(¢ P),
for § P the category of elements of P € PC,

polynomial functors
P(C)/A = P(C)/1 -5 P(C)/] = P(C)/B
for
S f t :
A—I—]—B in P(C)
are subsumed by generalised polynomial
functors P($ A) — P($ B).




» Constant functors between presheatf
categories are generalised polynomial.

» Every cocontinuous functor between
presheaf categories is generalised
polynomial.



Discrete Generalised
Polynomial Functors

The class of discrete generalised polynomial
functors is represented by diagrams of the form

IlkEK Ly

A<—erKLk°Jk ]_[keK k—B

where Ly Is finite for all k € K.

» Discrete generalised polynomial functors
are finitary and preserve epimorphisms.



Examples:

» Convolution monoidal closed structure

1. Day’s convolution tensor product
IS [iIsomorphic to] a discrete
generalised polynomial functor.

2. Exponentiation to a representable
with respect to the closed structure
associated to the convolution
monoidal structure is a discrete
generalised polynomial functor.

» The substitution tensor product for planar
operads is [iIsomorphic to] a discrete
generalised polynomial functor.



» Simply-typed lambda calculus syntax
Let S be the set of simple types.
1. The rule

Nt:t1 =21 N=t':7

rl_t@tll"fz

has associated the discrete generalised
polynomial endofunctor represented by

2-((FLS) ><S><S) — (F|S) xS xS
[id><=>,id><7r1]l lidmrz

(FLS) xS (F|S) xS



2. The rule

RXIT]"JEZTZ

N'EAx.t:tT1 =21

has associated the discrete generalised
polynomial endofunctor represented by

(FIS)xSxS—9~(F|S)xSxS
+><idl lidx$>

(F|S) xS (F]S) xS



» The class of discrete generalised polynomial
functors is closed under

¢ constants,

¢ projections,

¢ sums,

¢+ finite products,

¢ composition, and

+ differentiation.



Differentiation
The differential of
A L] —% J B

IS the discrete polynomial

-~ H(LO,Eo)EL/VLO ~

H(LO,KO)EL’ Lo-J L"-J
s’i lt’
A A° X B
where

L' = {(Lo, &) € (L) x L| LoN{lo} =0, Lo U{lo} =L};
J= ¢ homy (the twisted arrow category of J);
s'=1|[so (10 : 7'[2)](]_0 £y)EL! fori,: Lo — L; and

t’ — [<(S LQO)OT[],JCT[2>:| (Lo Lo )EL’"



