
Mathematical Aspects
of

Data Structure

Marcelo Fiore

Computer Laboratory

University of Cambridge

Kiryu
9.IV.2012

/1

Mathematical Structures

in Computer Science

◮ Logic in circuit design.

◮ Graph theory in networking.

◮ Fourier analysis in image processing.

◮ Linear algebra in quantum computation.

◮ Mathematical analysis in algorithms.

◮ Automata theory in compilers.

◮ Markov models in bioinformatics.

◮ Cryptography in security.

◮ Game theory in economics.

◮ Foundations in formal methods.

/2

Mathematical Structures

in Computer Science

◮ Logic in circuit design.

◮ Graph theory in networking.

◮ Fourier analysis in image processing.

◮ Linear algebra in quantum computation.

◮ Mathematical analysis in algorithms.

◮ Automata theory in compilers.

◮ Markov models in bioinformatics.

◮ Cryptography in security.

◮ Game theory in economics.

◮ Foundations in formal methods.

◮ Algebra, algorithmics, analysis,
combinatorics, logic, . . . in
programming language theory.

/2-a

Data Structuring

in Programming Languages

1950s FORTRAN

1960s LISP

1960s Algol Simula

1970s Pascal Smalltalk

1980s ML

1990s Standard ML

2000s Java, Scala

2010s Haskell 2010

Coq, Agda

/3

Data Structuring

in Programming Languages

1950s FORTRAN

1960s LISP S-expressions
lists

1960s Algol Simula

1970s Pascal Smalltalk

1980s ML
ADTs

1990s Standard ML

2000s Java, Scala

2010s Haskell 2010 GADTs

IFsCoq, Agda

/3-a

Symbolic Expressions

S ::= a (atoms)

| S . S (pairs)

/4

Symbolic Expressions

S ::= a (atoms)

| S . S (pairs)

Binary Trees

Specification:

T ::= • (nil)

| T , T (cons)

Semantics:

T ∼= 1+ T × T

/4-a

Seven Trees in One

Claim I. There is a bijective program of
constant complexity

T 7 ∼= T .

/5

Seven Trees in One

Claim I. There is a bijective program of
constant complexity

T 7 ∼= T .

Claim II. This program can be built from
programs for the basic bijections:

T ∼= 1+ T × T

1×A ∼= A , (A× B)× C ∼= A× (B× C)

A× B ∼= B×A

(A+ B) + C ∼= A+ (B+ C) , A+ B ∼= B+A

A× (B+ C) ∼= (A× B) + (A× C)

/5-a

An algebraic proof

1. T = 1+ T 2

=⇒ T 2 = T − 1

=⇒ Tn+2 = Tn+1 − Tn

/6

An algebraic proof

1. T = 1+ T 2

=⇒ T 2 = T − 1

=⇒ Tn+2 = Tn+1 − Tn

2. T 7 = T 6 − T 5

= T 5 − T 4 − T 5

= −T 4

= −T 3 + T 2

= −T 2 + T + T 2

= T

/6-a

Soundness and Completeness

of the Algebraic Method

Theorem. Let p, q1, q2 ∈ N[x] be such that

− p is of degree ≥ 2 with p(0) 6= 0, and

− q1, q2 are of degree ≥ 1.

If
x = p(x) =⇒ q1(x) = q2(x)

in the theory of rings

then,

for the data type D ∼= p(D) ,

there is a bijection of constant complexity

q1(D) ∼= q2(D) .

Corollary. The word problem in N[x] modulo
x = p(x) is decidable.

/7

Two Problems

1. Investigate the decidability of the word
problem for the general case N[x1, . . . , xm]

modulo p1 = q1, . . . , pn = qn.

2. Is there a mathematical theory underlying
the following observation?

Note that

T = 1 + T 2 =⇒ T = 1
1−T

=
∑

n∈N T
n = T ∗

and that for

T ∼= 1+ T 2

there is a primitive recursive bijection

T ∼= T ∗ .

/8

The Arithmetic of Types

◮ In the type theory of + and ×, type
isomorphism is axiomatised by the laws
of arithmetic (i.e. commutative semiring
structure).

/9

The Arithmetic of Types

◮ In the type theory of + and ×, type
isomorphism is axiomatised by the laws
of arithmetic (i.e. commutative semiring
structure).

◮ In the type theory of × and ⇒, type
isomorphism is axiomatised by the
laws of arithmetic; i.e. the commutative
monoid laws of × and the laws of
exponentiation:

A ⇒ (B× C) ∼= (A ⇒ B)× (A ⇒ C)

(A× B) ⇒ C ∼= A ⇒ B ⇒ C

/9-a

◮ In the type theory of +, ×, and ⇒, type
isomorphism is not finitely axiomatisable.

/10

◮ In the type theory of +, ×, and ⇒, type
isomorphism is not finitely axiomatisable.

The proof uses the lemma:

A×D ∼= C× B U× V ∼= X× Y

V ⇒
[

(U ⇒ A) + (U ⇒ B)
]

× Y ⇒
[

(X ⇒ C) + (X ⇒ D)
]

∼=

Y ⇒
[

(X ⇒ A) + (X ⇒ B)
]

× V ⇒
[

(U ⇒ C) + (U ⇒ D)
]

in connection with Tarski’s High School

Algebra Problem in mathematical logic.

/10-a

◮ In the type theory of +, ×, and ⇒, type
isomorphism is not finitely axiomatisable.

The proof uses the lemma:

A×D ∼= C× B U× V ∼= X× Y

V ⇒
[

(U ⇒ A) + (U ⇒ B)
]

× Y ⇒
[

(X ⇒ C) + (X ⇒ D)
]

∼=

Y ⇒
[

(X ⇒ A) + (X ⇒ B)
]

× V ⇒
[

(U ⇒ C) + (U ⇒ D)
]

in connection with Tarski’s High School

Algebra Problem in mathematical logic.

NB: The lemma provides a combinatorial
proof of a number-theoretic identity.

/10-b

Tree Navigation

The operations down and up

/11

Tree Navigation

The operations down and up:

down1(t.t
′ , Γ) = (t , (2, t ′) ::Γ)

down2(t.t
′ , Γ) = (t ′ , (1, t) ::Γ)

/11-a

Tree Navigation

The operations down and up:

down1(t.t
′ , Γ) = (t , (2, t ′) ::Γ)

down2(t.t
′ , Γ) = (t ′ , (1, t) ::Γ)

up(t , (1, t ′) ::Γ) = (t ′.t , Γ)

up(t , (2, t ′) ::Γ) = (t.t ′ , Γ)

/11-b

Tree Navigation

The operations down and up:

down1(t.t
′ , Γ) = (t , (2, t ′) ::Γ)

down2(t.t
′ , Γ) = (t ′ , (1, t) ::Γ)

up(t , (1, t ′) ::Γ) = (t ′.t , Γ)

up(t , (2, t ′) ::Γ) = (t.t ′ , Γ)

and their types:

down : 2 → T × C → T × C

up : T × C → T × C

where C = (2× T)∗

/11-c

Mathematical Structure of

ADTs Navigation

D ∼= p(D) , with p(X) =
∑

k∈K XAk

/12

Mathematical Structure of

ADTs Navigation

For

D ∼= p(D) , with p(X) =
∑

k∈K XAk

we have the operations

down(k) : Ak → D× C → D× C (k ∈ K)

up : D× C → D× C

/12-a

Mathematical Structure of

ADTs Navigation

For

D ∼= p(D) , with p(X) =
∑

k∈K XAk

we have the operations

down(k) : Ak → D× C → D× C (k ∈ K)

up : D× C → D× C

where

C =
(

p ′(D)
)

∗

with

p ′(X) =
∑

k∈K Ak × XAk−1

the derivative of p.

/12-b

◮ The type descriptions

down(k) : Ak → D× C → D× C (k ∈ K)

are adequate, but not precise.

/13

Dependent Types

◮ The type descriptions

down(k) : Ak → D× C → D× C (k ∈ K)

are adequate, but not precise.

◮ For precision:

down : (k : K) → Ak → DAk × C → D× C

dependent types are needed.

/13-a

Generalised ADTs

◮ Exponential lists.

Lexp α

= nil : Lexp α

| cons : α× Lexp(α× α) → L exp α

/14

Generalised ADTs

◮ Exponential lists.

Lexp α

= nil : Lexp α

| cons : α× Lexp(α× α) → L exp α

Generates

[] ,

[a1] ,

[a1, (a2, a3)] ,
[

a1, (a2, a3),
(

(a4, a5), (a6, a7)
)]

,

. . .

i.e., lists of 2n − 1 elements.

Lexpα ∼= 1 + α× L exp(α× α)

/14-a

Inductive Families

◮ Natural numbers.

Nat = zero : Nat | succ : Nat → Nat

Nat ∼= 1 + Nat

/15

Inductive Families

◮ Natural numbers.

Nat = zero : Nat | succ : Nat → Nat

Nat ∼= 1 + Nat

◮ Finite sets.

Fin(n : Nat)

= z : Fin(succ n)

| s : Fin(n) → Fin(succ n)

Fin(zero) ∼= 0

Fin(succ n) ∼= 1 + Fin(n)

/15-a

◮ λ-terms (modulo α-equivalence a la
de Bruijn).

Lam(n : Nat)

= var : Fin(n) → Lam(n)

| apl : Lam(n)× Lam(n) → Lam(n)

| abs : Lam(succ n) → Lam(n)

Lam(n)

∼= Fin(n) + Lam(n)× Lam(n)

+ Lam(succ n)

/16

Mathematical Structure

of GADTs & IFs

◮ Generalise from polynomial constructions:

X 7→
∑

k∈C

∏

ℓ∈Ak

X

/17

Mathematical Structure

of GADTs & IFs

◮ Generalise from polynomial constructions:

X 7→
∑

k∈C

∏

ℓ∈Ak

X

to multivariate power-series constructions:

(

Xi

)

i∈I
7→

(

∑

k∈Ci

∏

ℓ∈Ak

Xα(k,ℓ)

)

i∈I

/17-a

Mathematical Structure

of GADTs & IFs

◮ Generalise from polynomial constructions:

X 7→
∑

k∈C

∏

ℓ∈Ak

X

to multivariate power-series constructions:

(

Xi

)

i∈I
7→

(

∑

k∈Ci

∏

ℓ∈Ak

Xα(k,ℓ)

)

i∈I

◮ Differential calculus of partial derivatives.

/17-c

Mathematical Structure

of GADTs & IFs

◮ Generalise from polynomial constructions:

X 7→
∑

k∈C

∏

ℓ∈Ak

X

to multivariate power-series constructions:

(

Xi

)

i∈I
7→

(

∑

k∈Ci

∏

ℓ∈Ak

Xα(k,ℓ)

)

i∈I

◮ Differential calculus of partial derivatives.

The type of the navigation context for

D ∼= P(D) , with P : Fam(I) → Fam(I)

is
C ∈ Fam(I)

given by

C(i) ∼= 1+
∑

j∈I

∂Pj
∂i
(D)× C(j)

where ∂Pj
∂i

is the Jacobian of P.

/17-d

Research Themes

◮ Integration of programming languages and
logical systems.

◮ Reasoning principles and computation by
induction and coinduction.

◮ Algebraic model theory and its applications.

◮ Induction-recursion and universes in type
theory.

◮ Programming with computational effects and
control operators.

Areas

Algebra – Categories – Compilers
Logic – Semantics – Languages – Types

/18

