Mathematical Aspects
of
Data Structure

Marcelo Fiore

COMPUTER LABORATORY
UNIVERSITY OF CAMBRIDGE

Kiryu
9.1IV.2012

Mathematical Structures
in Computer Science

Logic in circuit design.
Graph theory in networking.
Fourier analysis in image processing.
Linear algebra in quantum computation.
Mathematical analysis in algorithms.
Automata theory in compilers.
Markov models in bioinformatics.
Cryptography in security.
Game theory in economics.

Foundations in formal methods.

Mathematical Structures
in Computer Science

Logic in circuit design.
Graph theory in networking.
Fourier analysis in image processing.
Linear algebra in quantum computation.
Mathematical analysis in algorithms.
Automata theory in compilers.
Markov models in bioinformatics.
Cryptography in security.
Game theory in economics.
Foundations in formal methods.

Algebra, algorithmics, analysis,
combinatorics, logic, ... In
programming language theory.

Data Structuring
in Programming Languages

1950s FORTRAN

1960s LISP

1960s Algol Simula
1970s Pascal Smalltalk

1980s ML
1990s Standard ML

2000s Java, Scala
2010s Haskell 2010

Coqg, Agda

1950s

1960s

1960s
1970s

1980s
1990s
2000s

2010s

Data Structuring
in Programming Languages

FORTRAN

LISP

Algol Simula
Pascal Smalltalk
ML

Standard ML

Java, Scala

Haskell 2010

Coqg, Agda

S-expressions
lists

ADTs

GADTs
IFs

Symbolic Expressions

S == a (atoms)

| S.S (pairs)

Symbolic Expressions

S == a (atoms)

| S.S (pairs)

Binary Irees
Specification:

T == o (nil)
T, T (cons)

Semantics:
T =1+4+7T xT

Seven Trees in One

Claim I. There Is a bijective program of
constant complexity

T =T.

Seven Trees in One

Claim I. There Is a bijective program of
constant complexity

T =T.

Claim Il. This program can be built from
programs for the basic bijections:

T=1T+TxT
IxA=A, (AxB)xC=Ax (BxC(C)
AXB=BXxA
(A+B)+C=A+(B+C), A+B=B+A

Ax(B+C)=(AxB)+(AxC)

An algebraic proof

1. T=14+T72
— T =T-1
— TTH—Z :Tn—H _Tn

An algebraic proof

1. T=1+T°
— T2 =T-—1
— TTH—Z — Tn—l—] _Tn

2. T = T°-T°
— T5_T4_T5
- T4
= —T+T*
= —T"+T+T°
= T

Soundness and Completeness
of the Algebraic Method

Theorem. Let p, q1, q2 € N[x] be such that

— p Is of degree > 2 with p(0) = 0, and
— d7, g, are of degree > 1.

If
x =p(x) = qi(x) = qa2(x)

In the theory of rings
then,

for the data type D = p(D) ,

there is a bijection of constant complexity
q1(D) = q2(D)

Corollary. The word problem in N[x] modulo
x = p(x) is decidable.

Two Problems

1. Investigate the decidability of the word
problem for the general case Nix;, ..., Xn]

modulo p; = q1,...,Pn = gn.

2. Is there a mathematical theory underlying
the following observation?

Note that
T=14T = T=15 =) ,T"=T
and that for
T=1+T°
there is a primitive recursive bijection

T=T

The Arithmetic of Types

» In the type theory of + and x, type
Isomorphism is axiomatised by the laws
of arithmetic (i.e. commutative semiring

structure).

The Arithmetic of Types

» In the type theory of + and x, type
Isomorphism is axiomatised by the laws
of arithmetic (i.e. commutative semiring
structure).

» In the type theory of x and =, type
Isomorphism is axiomatised by the
laws of arithmetic; i.e. the commutative
monoid laws of x and the laws of
exponentiation:

12

A = (B xC) (A= B) x (A= C]

12

AxB)=C = A=B=C

» In the type theory of +, x, and =, type
Isomorphism is not finitely axiomatisable.

» In the type theory of +, x, and =, type
Isomorphism is not finitely axiomatisable.

The proof uses the lemma:

AxD=CxB UxV=XXxY

V= [(U=A)+ (U= B)]
xY=[(X=C)+ (X=D)]

12

Y= [(X=A)+ (X=B)]
x V= |(U=C)+ (U= D)

In connection with Tarski’'s High School

Algebra Problem in mathematical logic.

» In the type theory of +, x, and =, type
Isomorphism is not finitely axiomatisable.

The proof uses the lemma:

AxD=CxB UxV=XXxY

V= [(U=A)+ (U= B)]
xY=[(X=C)+ (X=D)]

12

Y= [(X=A)+ (X=B)]
x V= |(U=C)+ (U= D)

In connection with Tarski’'s High School

Algebra Problem in mathematical logic.

NB: The lemma provides a combinatorial
proof of a number-theoretic identity.

Tree Navigation

The operations down and up

Tree Navigation

The operations down and up:

(t, (2,t")=T)
(t", (1,t)=T")

down;(t.t’, I')
down,(t.t’, T')

Tree Navigation

The operations down and up:

down,(t.t’, T)=(t, (2,t'):T)
down,(t.t’, T)=(t, (1,t)=T)

up(t, (1,t")=r)=(t.t,)
up(t, (2,t")=l")=(tt', T)

Tree Navigation

The operations down and up:

down;(t.t’', ') =(t, (2,t")=T)
down,(t.t’, I')=(t", (1,t)=T)
up(t, (1,t")=r)=(t.t,)
up(t, (2,t")=l")=(tt', T)

and their types:

down:2 - T xC—=TxC
up: T xC—=TxC

where C = (2 x T)*

Mathematical Structure of
ADTs Navigation

D=p(D), with p(X) =3 XM

Mathematical Structure of
ADTs Navigation

For
D=p(D), with p(X) =3 X

we have the operations

down™: A, o DxC—>DxC (keKk)
up: D xC—=D xC

Mathematical Structure of
ADTs Navigation

For
D=p(D), with p(X) =Y, X'
we have the operations
down™: A, 5 DxC—=DxC (keK)
up:D xC—=D xC
where
C=(p'(D))
with
p'(X) = 2 ek Ax x XA

the derivative of p.

» The type descriptions
down™: A, 5 DxC—-DxC (keK)

are adequate, but not precise.

Dependent Types

» The type descriptions
M. Ar=>DxC—=DxC (keK)
are adequate, but not precise.

down

» For precision:
down: (k:K) — A, 2D xC—=DxC

dependent types are needed.

Generalised ADIs

» Exponential lists.
Lexp «
= nil:Lexp «x

| cons: o x Lexp(a x «) = Lexp

Generalised ADIs

» Exponential lists.
Lexp «
= nil:Lexp «x

| cons: o x Lexp(a x «) = Lexp

Generates
],

a]

ap, (a,a3)]

[a1,(a2,a3),((a4,a5),(a6,a7))} !

l.e., lists of 2™ — 1 elements.

~o

Lexpox = 1 + o X Lexp(o X o)

Inductive Families

» Natural numbers.
Nat = zero: Nat | succ: Nat — Nat
Nat = 1 + Nat

Inductive Families

» Natural numbers.

Nat = zero: Nat | succ: Nat — Nat
Nat = 1 + Nat

» Finite sets.
Fin(n : Nat)
— z: Fin(succ n)

| s:Fin(n) — Fin(succ n)

)
Fin(zero) = 0

\ Fin(succn) = 1 4+ Fin(n)

» A-terms (modulo x-equivalence a la
de Bruijn).
Lam(n : Nat)
— var: Fin(n) — Lam(n)
| apl:Lam(n) x Lam(n) — Lam(n)

| abs:Lam(succ n) — Lam(n)

Lam(n)
= Fin(n) + Lam(n) x Lam(n)

+ Lam(succ n)

Mathematical Structure
of GADITs & IFs

» Generalise from polynomial constructions:

X— Y J] X

keC LeAy

Mathematical Structure
of GADITs & IFs

» Generalise from polynomial constructions:
X = Y X
keC LeAy

to multivariate power-series constructions:

<El(zrnull

keC; €Ay

Mathematical Structure
of GADITs & IFs

» Generalise from polynomial constructions:
X = Y T
keC LeAy

to multivariate power-series constructions:

<El(zrnukl

keC; €Ay

» Differential calculus of partial derivatives.

Mathematical Structure
of GADITs & IFs

» Generalise from polynomial constructions:
X = Y T
keC LeAy

to multivariate power-series constructions:

<El(zrnull

keC; €Ay

» Differential calculus of partial derivatives.

The type of the navigation context for
D =P(D) , with P:Fam(I) — Fam(I)
IS
C € Fam(I)
given by
C =1+ Z)EI 61 X C(J)

where ° J Is the Jacobian of P.

Research Themes

Integration of programming languages and
logical systems.

Reasoning principles and computation by
Induction and coinduction.

Algebraic model theory and its applications.

Induction-recursion and universes in type
theory.

Programming with computational effects and
control operators.

Areas

Algebra — Categories — Compilers
Logic — Semantics — Languages — Types

