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Algebra, algorithmics, analysis,
combinatorics, logic, ... In
programming language theory.
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Symbolic Expressions

S == a (atoms)

| S.S (pairs)

Binary Irees
Specification:

T == o (nil)
T, T (cons)

Semantics:
T =1+4+7T xT
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constant complexity

T =T.



Seven Trees in One

Claim I. There Is a bijective program of
constant complexity

T =T.

Claim Il. This program can be built from
programs for the basic bijections:

T=1T+TxT
IxA=A, (AxB)xC=Ax (BxC(C)
AXB=BXxA
(A+B)+C=A+(B+C), A+B=B+A

Ax(B+C)=(AxB)+(AxC)



An algebraic proof

1. T=14+T72
— T =T-1
— TTH—Z :Tn—H _Tn



An algebraic proof

1. T=1+T°
— T2 =T-—1
— TTH—Z — Tn—l—] _Tn

2. T = T°-T°
— T5_T4_T5
- T4
= —T+T*
= —T"+T+T°
= T



Soundness and Completeness
of the Algebraic Method

Theorem. Let p, q1, q2 € N[x] be such that

— p Is of degree > 2 with p(0) = 0, and
— d7, g, are of degree > 1.

If
x =p(x) = qi(x) = qa2(x)

In the theory of rings
then,

for the data type D = p(D) ,

there is a bijection of constant complexity
q1(D) = q2(D)

Corollary. The word problem in N[x] modulo
x = p(x) is decidable.



Two Problems

1. Investigate the decidability of the word
problem for the general case Nix;, ..., Xn]

modulo p; = q1,...,Pn = gn.

2. Is there a mathematical theory underlying
the following observation?

Note that
T=14T = T=15 =) ,T"=T
and that for
T=1+T°
there is a primitive recursive bijection

T=T
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» In the type theory of + and x, type
Isomorphism is axiomatised by the laws
of arithmetic (i.e. commutative semiring

structure).
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» In the type theory of + and x, type
Isomorphism is axiomatised by the laws
of arithmetic (i.e. commutative semiring
structure).

» In the type theory of x and =, type
Isomorphism is axiomatised by the
laws of arithmetic; i.e. the commutative
monoid laws of x and the laws of
exponentiation:

12

A = (B xC) (A= B) x (A= C]

12

AxB)=C = A=B=C



» In the type theory of +, x, and =, type
Isomorphism is not finitely axiomatisable.
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V= [(U=A)+ (U= B)]
xY=[(X=C)+ (X=D)]

12
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In connection with Tarski’'s High School

Algebra Problem in mathematical logic.




» In the type theory of +, x, and =, type
Isomorphism is not finitely axiomatisable.

The proof uses the lemma:

AxD=CxB UxV=XXxY

V= [(U=A)+ (U= B)]
xY=[(X=C)+ (X=D)]

12

Y= [(X=A)+ (X=B)]
x V= |(U=C)+ (U= D)

In connection with Tarski’'s High School

Algebra Problem in mathematical logic.

NB: The lemma provides a combinatorial
proof of a number-theoretic identity.
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Tree Navigation

The operations down and up:

down;(t.t’', ') =(t, (2,t")=T)
down,(t.t’, I')=(t", (1,t)=T)
up(t, (1,t")=r)=(t.t, )
up(t, (2,t")=l")=(tt', T)

and their types:

down:2 - T xC—=TxC
up: T xC—=TxC

where C = (2 x T)*



Mathematical Structure of
ADTs Navigation

D=p(D), with p(X) =3 XM
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D=p(D), with p(X) =3 X
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down™: A, o DxC—>DxC (keKk)
up: D xC—=D xC



Mathematical Structure of
ADTs Navigation

For
D=p(D), with p(X) =Y, X'
we have the operations
down™: A, 5 DxC—=DxC (keK)
up:D xC—=D xC
where
C=(p'(D))
with
p'(X) = 2 ek Ax x XA

the derivative of p.




» The type descriptions
down™: A, 5 DxC—-DxC (keK)

are adequate, but not precise.



Dependent Types

» The type descriptions
M. Ar=>DxC—=DxC (keK)
are adequate, but not precise.

down

» For precision:
down: (k:K) — A, 2D xC—=DxC

dependent types are needed.




Generalised ADIs

» Exponential lists.
Lexp «
= nil:Lexp «x

| cons: o x Lexp(a x «) = Lexp



Generalised ADIs

» Exponential lists.
Lexp «
= nil:Lexp «x

| cons: o x Lexp(a x «) = Lexp

Generates
],

a]

ap, (a,a3)]

[a1,(a2,a3),((a4,a5),(a6,a7))} !

l.e., lists of 2™ — 1 elements.

~o

Lexpox = 1 + o X Lexp(o X o)



Inductive Families

» Natural numbers.
Nat = zero: Nat | succ: Nat — Nat
Nat = 1 + Nat



Inductive Families

» Natural numbers.

Nat = zero: Nat | succ: Nat — Nat
Nat = 1 + Nat

» Finite sets.
Fin(n : Nat)
— z: Fin(succ n)

| s:Fin(n) — Fin(succ n)

)
Fin(zero) = 0

\ Fin(succn) = 1 4+ Fin(n)



» A-terms (modulo x-equivalence a la
de Bruijn).
Lam(n : Nat)
— var: Fin(n) — Lam(n)
| apl:Lam(n) x Lam(n) — Lam(n)

| abs:Lam(succ n) — Lam(n)

Lam(n)
= Fin(n) + Lam(n) x Lam(n)

+ Lam(succ n)
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Mathematical Structure
of GADITs & IFs

» Generalise from polynomial constructions:
X = Y T
keC LeAy

to multivariate power-series constructions:

<El(zrnull

keC; €Ay

» Differential calculus of partial derivatives.

The type of the navigation context for
D =P(D) , with P:Fam(I) — Fam(I)
IS
C € Fam(I)
given by
C =1+ Z)EI 61 X C(J)

where ° J Is the Jacobian of P.




Research Themes

Integration of programming languages and
logical systems.

Reasoning principles and computation by
Induction and coinduction.

Algebraic model theory and its applications.

Induction-recursion and universes in type
theory.

Programming with computational effects and
control operators.

Areas

Algebra — Categories — Compilers
Logic — Semantics — Languages — Types



