An Algebraic Combinatorial Approach to the Abstract Syntax of Opetopic Structures

Marcelo Fiore Computer Laboratory University of Cambridge

Abstract

The starting point of the talk will be the identification of structure common to tree-like combinatorial objects, exemplifying the situation with abstract syntax trees (as used in formal languages) and with opetopes (as used in higher-dimensional algebra). The emerging mathematical structure will be then formalized in a categorical setting, unifying the algebraic aspects of the theory of abstract syntax of [2, 3] and the theory of opetopes of [6]. This realization conceptually allows one to transport viewpoints between these, now bridged, mathematical theories and I will explore it here in the direction of higher-dimensional algebra, giving an algebraic combinatorial framework for a generalisation of the slice construction of [1] for generating opetopes. The technical work will involve setting up a microcosm principle for near-semirings [5] and subsequently exploiting it in the cartesian closed bicategory of generalised species of structures of [4]. Connections to Homotopy Type Theory, (cartesian and symmetric monoidal) equational theories, lambda calculus, and algebraic combinatorics will be mentioned in passing.

References

- [1] J. Baez and J. Dolan. Higher-Dimensional Algebra III. n-Categories and the Algebra of Opetopes. Advances in Mathematics 135(2):145–206, 1998.
- [2] M. Fiore, G. Plotkin and D. Turi. Abstract syntax and variable binding. In *Proceedings of the 14th Annual IEEE Symposium* on Logic in Computer Science (LICS'99), pages 193–202. IEEE, Computer Society Press, 1999.
- [3] M. Fiore. Second-order and dependently-sorted abstract syntax. In *Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer Science (LICS'08)*, pages 57–68. IEEE, Computer Society Press, 2008.
- [4] M. Fiore, N. Gambino, M. Hyland, and G. Winskel. The cartesian closed bicategory of generalised species of structures. J. London Math. Soc., 77:203-220, 2008.
- [5] M. Fiore and P. Saville. List objects with algebraic structure. In Proceedings of the 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017), No. 16, pages 1–18, 2017.
- [6] S. Szawiel and M. Zawadowski. The web monoid and opetopic sets. *Journal of Pure and Applied Algebra*, 217:11051140, 2013.

An Algebraic Combinatorial Approach to the Abstract Syntax of Opelopic Structures Marcelo Fiore Computer Laboratory University of Combridge

> HDRA 2017 8.1X

GENERAL TOPIC

connection between

type theory and higher-dimensional category theory

THIS TALK

GENERAL TOPIC

New connection between Ibstract syntactic structures in type theory and higher-dimensional category theory Two aspects of higher-dimensional category theory (1) Higher-dimensional shapes simplicial, cubical, globular, opètopic,... (2) Higher-dimensional structure sets, categories, algebras,....

THIS TALK Two aspects of higher-dimensional category theory (1) Higher-dimensional shapes c Algebraic Combinatorial Theory for Generalizations of Simplicial, cubical, globular, opetopic,.... (2) Higher-dimensional structure sets, categories, algebrais,....

Opetopes Higher-dimensional Multiprrows [Baerk Dolan, Hermida & Makkai & Power, Leinster, Chen, Zawadowski, Kock & Joyal & Batanin & Mascari, Stawiel & Zawadowski, ...]

NB: List structure on arrows.

trees

Tree/Graffing structure is List/Monoid structure

Tree/Graffing structure is List/Monoid structure E.g. the list object F*=MX. Id+FoX on a signature endofunctor F consists of • tree structures $F^*(A) \cong A + F(F^*A)$ t ::= a | f(--, t', ...)• with grafting (= substitution) free monord (= moned) structure.

Compatibility Law: replace replace graft

Compatibility Law: replace replace

Compatibility Law: replace replace

Analysis of horizontal and vertical compositions (1) composition is monoid structure

(2) horizontal and vertical structures are compatible

Analysis of horizontal and vertical compositions (1) composition is monoid structure (I_{\bullet}) -monoid $(C \land C \land C \land C \land C \land (J, \ast)$ -monoid. $I \land J$

(2) horizontal and vertical structures are compatible.
The horizontal and vertical tensor products are endowed with an interchange law
The horizontal and vertical compositions satisfy a compatibility law relative to the interchange law.

Examples: • Tensorial strength interchange. (1) Second-order Abstract Syntax with parameterised metavariables [F.2008] (2) Opetopic Structure [F. 2016] · Monordel interchange (3) Internal Strict Higher Category Structure [F.& Guiraud]

The new connection with type theory

Abstract: syntactic character of on inductive <u>iniversal construction</u> of opetopic structures akin to the structure of algebraic languages with parameterised metavariables

Second-Order Abstract Syntax [Hamana, F.]

$$t$$
 (terms)
 $::= x_i$ (variables)
 $M[t_1, ..., t_n]$ (parameterized metavariables)
 $f(\overline{t}_i, t_i, ..., \overline{t}_n, t_n)$ (binding operators)
 $\overline{f(\overline{t}_i, t_i, ..., \overline{t}_n, t_n)}$ (binding operators)
 $\overline{Examples}: C(\lambda x. M(x], NCI)$ $MENEI]$
 $\forall (x. P[x]) \land (P[y], \forall (x. P[x]))$

Two Substitution Operations • Capture-avoiding substitution $\pm \begin{bmatrix} t_1/x_1, \dots, t_n/x_n \end{bmatrix}$

(2-leveled 2-dimensional)

• Met a - substitution $t \in M_i := (\vec{z}_i) t_1, \dots, M_n := (\vec{x}_n) t_n \frac{1}{2}$

Two Substitution Operations · Capture-avsiding substitution $t[t_1/a_1, \ldots, t_n/a_n]$ Met 2- substitution $t \in M_1 := (\vec{z}_1) t_1, \dots, M_n := (\vec{z}_n) t_n$

(2-leveled 2-dimensional)

 $= t_{R} \begin{bmatrix} u_{1}/\alpha_{1}, \ldots, & u_{m_{R}}/\alpha_{m_{R}} \end{bmatrix}$ where $u'_j = u_j \{M_i := (\chi_i - \chi_{m_i}) t_i\}_i$

Compatibility Law: meta subst subst

 $\left(t \begin{bmatrix} ti \\ \lambda i \end{bmatrix}_{i} \right) \begin{cases} M_{j} := (y_{j}) M_{j} \\ y_{j} \end{cases}$

 $\left(t \sum_{j=1}^{N} M_{j} := (y_{j}) u_{j} y_{j} \right) \left[t_{i} \sum_{j=1}^{N} M_{j} y_{j} y_{j} \right]$

What is the algebrar structure that exiomitizes two compatible composition/substitution structures for a tensorial strength interchange? What is the algebrar structure that exiomatizes two compatible composition/substitution structures for a tensorial strength interchange?

substitution structure = monord structure

monord Structure

monoidel cotegory Two compatible monsed structures for a tensorial strength interchange

Def: A near-semiring category is a category 6 will two [skew] monord d'étructures $(\mathcal{B},\mathcal{I},\bullet)$, $(\mathcal{B},\mathcal{J},\star)$ equipped with tensorial strengths $J \to Z \to J \quad , \quad (X * Y) \to Z \to (X \to Z) * (Y \to Z)$ ► Formally: ((6,•), J, *) is a pseudo monorid in the 2-category of (6, I,•)-actegories, strong functors, and strong natural transformations Ezomple: Every cortesion category with I=J=1 and $\bullet=*=\times$

Def: A near-semiring object in a near-semiring category is an object S with monoid structures

 $I \rightarrow S \leftarrow S \circ S$, $J \rightarrow S \leftarrow S \ast S$ compatible in that $(S*S) \bullet S \rightarrow (S \bullet S) * (S \bullet S) \rightarrow S * S$ JoS ->J \checkmark $S \circ S \longrightarrow S$ $S \bullet S \longrightarrow S$

Connects to algebraic combinatorics discussed with J. Kock

Example: For every monoid object (M, 1, x)in a cartesian closed category, The endo-exponential $[M \Rightarrow M]$ is a near-semiring object. structure $id = \lambda x \cdot x$, $f \circ g = \lambda x \cdot f(g(x))$ $j = \lambda x.1$, $f \neq g = \lambda x. f(x) \times g(x)$ laws joh=j, (f*g)oh=(foh)*(goh)► connects to the algebraic theory of the 2-coloulus

hear-semiring categories the universe of discourse for o-monoids with o-strong *-monoidal algebraic theories

near-semiring objects
 -monoids with o-strong *-monoid structure

Monadic Theory [F. & Saville, FSCD 2017] Monoids with compatible T-algebraic structure for a strong monad T

$$\frac{\text{Cor.}}{\text{of The monadic theory}[F.K.Saville, FSCD 2017]}$$

For
a nsr-category with finite coproducts
and colimits of w-chains both of which
are preserved by -ox and -xx,
the *-lost object on the o-unit

$$L_{*}(I) = \mu X. J + I * X$$
IS on inshiel nsr-object

Algebraic Combinatorial Framework
(A,B) - species [F.K Gambino & Hyland & Winskel]
between small categories

$$T: !A \times B^{\circ} \rightarrow Set$$
 != free symmetric
monoidal completion
idea:
 $T(a_1...an;b) = \begin{cases} a_1 ... a_n \\ t & j \\ b & j \end{cases}$

Connects to synthetic HoTT [F. KHorlick]

The [F.K. Gambino & Hyland & Winskel] We have a cartesian closed bicategory of generalised species of structure Esp. Thm [F. K Gambins & Hyland & Winskel] We have a cartesian closed bicategory of generalised species of structure Esp. Structule levels GLOBAL products AMB = AUB exponentials [A=)B] = !A°×B Esp(A,B) = Set [A⇒B] LOCAL (Esp(A,A), Id, 0) monsidel

Example:

GLOBAL

monad in Esp Id Т

LOCAL monord in Esp (A, A)

Id ⇒ T = ToT

Example:

GLOBAL

monad in Esp TYAST

LOCAL monoral in Esp (A,A)

Id => T = ToT

► generalised symmetric operads idea. IOT formal actual actual compositions

Iterating monads in Esp Lan algebraic generalization of the slice construction of [Baer & Dolan]

Iterating monads in Esp Lan algebraic generalization of the stice construction of [Baez & Dolan]

(1) $T \in Esp(A, A)$ a monoid J $T^{+} \in Esp(ST, ST)$ a monoid

Iterating monads in Esp Lan algebraic generalization of the stice construction of [Baez & Dolan, stawiel & Zawadowski] (1) TEEsp(A,A) a monord. (2) Esp(A,A)/_ is a monoidal category Pol Id \downarrow

Iterating monads in Esp Lan algebraic generalization of the stice construction of [Baez & Dolan, Stawiel & Zawadowski] (1) TEEsp(A,A) a monord. (2) Esp(A,A)/T is a monoidal category $PSh(\Gamma) = PSh(\Gamma)/P = PSh(SP)$ ST has elements tET(a,,-,an; a) as objects

Iterating monads in Esp Lan algebraic generalization of the stice construction of [Baerk Dolan, stawiel & Zawadowski] (1) TEEsp(A,A) a monsid (2) Esp(A,A)/T is a monoidal category (3) $1 \longrightarrow Psh(ST) \leftarrow Psh(ST) \times Psh(ST)$ monoidal structure

(3) $1 \longrightarrow PSh(ST) \leftarrow PSh(ST) \times PSh(ST)$ monoidal structure internalization Z S analytic S externalization. $(4) \quad I \longrightarrow \mathcal{J} \mathcal{T} \longleftarrow \mathcal{J} \mathcal{T} \longrightarrow \mathcal{J} \mathcal{T}$ Thm [F.]: à pseudo-monord in Esp

(3) $1 \longrightarrow Psh(ST) \leftarrow Psh(ST) \times Psh(ST)$ monoidal structure internalization (S analytic S externalization $(4) \quad I \longrightarrow \mathcal{J}T \longleftarrow \mathcal{J}T \longrightarrow \mathcal{J}T$ Thm [F.]: à pseudo-monord in Esp (5) Thm [F. & Saville]: The endoexponential [IT=>IT] is a pseudo near-semiring object in Esp

(5) <u>Thm</u> [F. & Saville]: The endoexponential [JT⇒JT] is a pseudo near-semiring. object in Esp (6) Esp(ST,ST) is a near-semiring cotegory

(5) <u>Thm</u> [F. & Saville]: The endoexponential [∫T⇒∫T] is a pseudo near-semiring. object in Esp
 (6) Esp(ST, ST) is a near-semiring cotegory (7) The initial near-semiring object TteEsp(ST, ST) 15 à monsid (8) GOTO (1) with A:= ST and T:= Tt

(5) <u>Thm</u> [F. & Saville]: The endoexponential [∫T⇒∫T] is a pseudo near-semiring. obrect in Esp { externalization
 (6) Esp(ST, ST) is a near-semiring category (7) The initial nor-object $T^+ \in Esp(fT, fT)$ is a monord (8) GOTO (1) with A:= ST and T:= Tt Example: Opetapes arise from the identity monad on 1

Categorical opetopic structures (generalizing opetopic sets)

 $Nsr(X) = \mu Z L_{*}(I + X \cdot Z)$ $7 T_{i+1} \in Mon(A_{i+1})$ free Nor(Xi) $\int T_i \stackrel{X_i}{\leftarrow} \int T_i$ $T_i \in Mon(A_i)$

RESEARCH PANORAMA Second of der Abstract Syntax Higher dimensional structure Higher-dimensional

Constant Cons Type Theory Abstract syntax Trees L variables L leaves L parameterised métadoriables L no des L binding sperators ~~~~? Andering Llinesr Context L corteron

Levels Dimensionality L 2 Algebraic structure Algebraic Theories Legustional ~ ~ ~ ~ ~ ~ ~ monoids Rewriling Theory LCRSS [Kbp] ~~>? Algebrair Translations ~~>? and Geometry Francework L'Geneisliged species Cartes an Distributors [F.& Joy 2] C.T2015