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Topics

I Algebraic structure

On generalised species of structures (viz. symmetric
sequences and generalisations)

I Notions of composition

• Multi-categorical (or operadic) [Lambek; May]

(A1, . . . , An) → B

• Poly-categorical (or dioperadic) [Szabo; Gan]

(A1, . . . , An) → (B1, . . . , Bm)
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Topics

Characterisations of symmetric multi and poly composition
by means of combinatorial interpretations of Lie structure

I Algebraic structure

On generalised species of structures (viz. symmetric
sequences and generalisations)

I Notions of composition

• Multi-categorical (or operadic) [Lambek; May]

(A1, . . . , An) → B

• Poly-categorical (or dioperadic) [Szabo; Gan]

(A1, . . . , An) → (B1, . . . , Bm)

2



Multi-composition

I Simultaneous

I Partial

I NB Equivalent in the presence of identities, but not necessarily
otherwise. [Markl]
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Multi-composition

I Simultaneous

fi :
(
A

(i)
1 , . . . , A

(i)
ni

) → Bi

g : (B1, . . . , Bm) → C (1 ≤ i ≤ m)

g ◦ (f1, . . . , fm) :
(
A

(1)
1 , . . . , A

(1)
n1
, · · · , A(m)

n1
, . . . , A

(m)
nm

) → C

I Partial

f : (A1, . . . , An) → Bi g : (B1, . . . , Bm) → C

g ◦i f : (B1, . . . , Bi−1, A1, · · · , An, Bi+1, . . . , Bm) → C
(1 ≤ i ≤ n)

I NB Equivalent in the presence of identities, but not necessarily
otherwise. [Markl]
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Simultaneous multi-composition is semigroup structure

I Example

• B = (the category of finite cardinals and bijections)

• SetB = (the category of symmetric sequences)

• Substitution tensor product • on symmetric sequences.[Joyal]
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Simultaneous multi-composition is semigroup structure

I Example

• B = (the category of finite cardinals and bijections)

• SetB = (the category of symmetric sequences)

• Substitution tensor product • on symmetric sequences.[Joyal](
P •Q

)
(n)

=

∫k∈B
P(k)×

∫n1,...,nk∈B ∏
1≤i≤k

Q(ni)× B
(
n1 + · · ·+ nk, n

)
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Simultaneous multi-composition is semigroup structure

I Example

• B = (the category of finite cardinals and bijections)

• SetB = (the category of symmetric sequences)

• Substitution tensor product • on symmetric sequences.[Joyal]

• •-semigroups (or associative •-algebras, or α-algebras)
P • P → P are non-unital symmetric operads. [Kelly]

(P • P) • P

��

∼=
αP,P,P // P • (P • P)

��
P • P // P P • Poo
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Simultaneous multi-composition is semigroup structure

I Example

• B = (the category of finite cardinals and bijections)

• SetB = (the category of symmetric sequences)

• Substitution tensor product • on symmetric sequences.[Joyal]

• •-semigroups (or associative •-algebras, or α-algebras)
P • P → P are non-unital symmetric operads. [Kelly]

I NB
For non-unital coloured symmetric operads, one generalises
to BC = (the free symmetric monoidal category on a set of
colours C). [Fiore-Gambino-Hyland-Winskel]
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What about partial multi-composition ?

I Remark
Non-unital symmetric operads with partial composition are
symmetric sequences

P ∈ SetB

equipped with single composition operations

◦n,m : P(n+ 1)× P(m) → P(n+m)
(
n,m ∈ B

)
subject to

equivariance , associativity , exchange
laws.
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The calculus of species
[Joyal]

I For symmetric sequences P,Q:

• Multiplication(
P ·Q

)
(n) =

∫n1,n2∈B P(n1)×Q(n2)× B(n1 + n2, n) [Day]

• Derivation
∂P(n) = P(n+ 1) ∂P =

(
y(1)(P

)

I Remark
Non-unital symmetric operads with partial composition are
symmetric sequences

P ∈ SetB

equipped with a single composition operation

◦ : ∂(P) · P → P

subject to
associativity , exchange the laws

laws.
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The pre-Lie product

I Definition
The pre-Lie product of symmetric sequences P,Q is defined
as

P ?Q = ∂(P) ·Q
that is,(

P ?Q
)
(k) =

∫n,m∈B
P(n+ 1)×Q(m)× B(n+m,k)

structures of which may be graphically represented as

Q

P

or
Q

P

? How do (P ?Q) ? R and P ? (Q ? R) compare?
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I Combinatorial interpretation of the additive pre-Lie identity
There is a canonical natural pre-Lie isomorphism
πP,Q,R : (P ?Q) ? R+ P ? (R ?Q) ∼= P ? (Q ? R) + (P ? R) ?Q

I Definition
A π-algebra is a symmetric sequence P equipped with a
structure map P ? P → P compatible with the pre-Lie
isomorphism.

(P ? P) ? P + P ? (P ? P)

��

∼=
πP,P,P // P ? (P ? P) + (P ? P) ? P

��
P ? P // P P ? Poo

I Theorem
The notions of non-unital symmetric operad with single
composition and of π-algebra are equivalent.
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Algebraic perspective

I Definition
• A pre-Lie algebra is a vector space V equipped with an

operation ? : V ⊗ V → V subject to
(x ? y) ? z− x ? (y ? z) = (x ? z) ? y− x ? (z ? y)

[Gerstenhaber]

I Remark
The commutator associated to a pre-Lie product is a Lie
bracket.
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Algebraic perspective

I Definition
• A pre-Lie algebra is a vector space V equipped with an

operation ? : V ⊗ V → V subject to
(x ? y) ? z− x ? (y ? z) = (x ? z) ? y− x ? (z ? y)

[Gerstenhaber]

• A Novikov algebra is a pre-Lie algebra that further satisfies
x ? (y ? z) = y ? (x ? z)

[Dzhumadil’daev-Lofwall]

• A CAD1 algebra is a commutative associative algebra (V, ·)
equipped with a derivation operation ∂ : V → V.

I Remark
The commutator associated to a pre-Lie product is a Lie
bracket.
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I Proposition
Every CAD1 algebra (V, ·, ∂) induces two Novikov algebra
structures on V by setting

x ? y = ∂(x) · y
and

x ?©y = x · y+ x ? y = (x+ ∂x) · y

I Theorem
For symmetric sequences, a ?©-algebra is a non-unital
symmetric operad equipped with a binary operation that
is pre-commutative and associative.
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Directions

• Axiomatisation of pre-Lie products.
I Corollary

Every distributive symmetric-monoidal category with a strong
endofunctor D such that the canonical map

D(X)⊗ Y + X⊗D(Y) −→ D(X⊗ Y)
is an isomorphism has pre-Lie products

X ? Y = D(X)⊗ Y
and

X ?© Y = X⊗ Y + X ? Y

• Further examples. (SDG?)

• Generalisations.
(

braided?
monoidal actions?

)
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Poly-composition

I Partial [Gentzen; Szabo; Gan]

f : ~A→ j

~B,O, ~C g :

i

~X,O, ~Y → ~Z

g j◦i f : ~X, ~A, ~Y → ~B, ~Z, ~C

I Simultaneous

Requires a combinatorial definition of matching codomains
and domains of poly-maps. Characterised as associative alge-
bra structure for a composition tensor product. [Koslowski; Garner]
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I Remark
A non-unital symmetric dioperad is a symmetric matrix

P ∈ SetB◦×B

equipped with a single composition operation
◦ : ∂1(P) · ∂2(P) → P

subject to
associativity , exchange

laws.

I NB P ∗Q = ∂1(P) · ∂2(Q)(
P ∗Q

)
(m,n)

=

∫m1,m2∈B◦,n1,n2∈B
P(m1+1, n1)×Q(m2, n2+1)

× B(m,m1+m2)× B(n1+n2, n)

dem2

Q
m1de | bcn2

P
bcn1
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I Combinatorial interpretation of the additive Lie-admissible
identity
There is a canonical natural Lie-admissible isomorphism

ρP,Q,R : F(P,Q, R) ∼= G(P,Q, R)

for
F(P,Q, R) = P ∗ (Q ∗ R) + (P ∗ R) ∗Q+ R ∗ (P ∗Q)

+ (R ∗Q) ∗ P +Q ∗ (R ∗ P) + (Q ∗ P) ∗ R
and
G(P,Q, R) = (P ∗Q) ∗ R+Q ∗ (P ∗ R) + (Q ∗ R) ∗ P

+ R ∗ (Q ∗ P) + (R ∗ P) ∗Q+ P ∗ (R ∗Q)

heuristically generated by commuting and re-bracketing

I Theorem
The notions of non-unital symmetric dioperad with single
composition and of ρ-algebra are equivalent.
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Algebraic perspective

I Definition

• A Lie-admissible algebra is a vector space V equipped
with an operation ∗ : V ⊗ V → V whose commutator is
a Lie bracket. [Albert]

• A CAD2 algebra is a commutative associative algebra
(V, ·) equipped with two commuting derivation operations
∂1, ∂2 : V → V.

I Proposition
Every CAD2 algebra (V, ·, ∂1, ∂2) induces a Lie-admissible
algebra structure on V by setting

x ∗ y = ∂1(x) · ∂2(y)
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Appendix
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Associativity and exchange laws

∂(P) · ∂(P) · P

��

// ∂
(
∂(P) · P

)
· P

��
∂(P) · P // P ∂(P) · Poo

∂∂(P) · P · P

��

∼= // ∂∂(P) · P · P

��
∂
(
∂(P) · P

)
· P

��

∂
(
∂(P) · P

)
· P

��
∂(P) · P // P ∂(P) · Poo

single composition
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