Lie Structure and Composition

Marcelo Fiore

COMPUTER LABORATORY UNIVERSITY OF CAMBRIDGE

Category Theory 2014 Cambridge 1.VII.2014

Topics

Algebraic structure

On generalised species of structures (*viz.* symmetric sequences and generalisations)

- Notions of composition
 - Multi-categorical (or operadic)

 $(A_1,\ldots,A_n)\to B$

• Poly-categorical (or dioperadic)

 $(A_1,\ldots,A_n) \to (B_1,\ldots,B_m)$

[Lambek; May]

[Szabo; Gan]

Topics

Characterisations of symmetric multi and poly composition by means of combinatorial interpretations of Lie structure

Algebraic structure

On generalised species of structures (*viz.* symmetric sequences and generalisations)

- Notions of composition
 - Multi-categorical (or operadic)

 $(A_1,\ldots,A_n)\to B$

• Poly-categorical (or dioperadic)

 $(A_1,\ldots,A_n)\to (B_1,\ldots,B_m)$

[Lambek; May]

[Szabo; Gan]

Multi-composition

Simultaneous

NB Equivalent in the presence of identities, but not necessarily otherwise.

Multi-composition

Simultaneous $f_i: (A_1^{(i)}, \ldots, A_{n_i}^{(i)}) \rightarrow B_i$ $a:(B_1,\ldots,B_m)\to C \quad (1\leq i\leq m)$ $q \circ (f_1, \ldots, f_m) : (A_1^{(1)}, \ldots, A_{n_1}^{(1)}, \cdots, A_{n_n}^{(m)}, \ldots, A_{n_m}^{(m)}) \to C$ Partial $\frac{f:(A_1,\ldots,A_n)\to B_{\mathfrak{i}}\qquad g:(B_1,\ldots,B_m)\to C}{(1\leq\mathfrak{i}\leq n)}$ $a \circ_i f: (B_1, \ldots, B_{i-1}, A_1, \cdots, A_n, B_{i+1}, \ldots, B_m) \rightarrow C$

NB Equivalent in the presence of identities, but not necessarily otherwise.
[Marki]

Example

- $\mathbb{B} = ($ the category of finite cardinals and bijections)
- **Set**^B = (the category of symmetric sequences)
- Substitution tensor product on symmetric sequences.^[Joyal]

$$\begin{split} & \big(P \bullet Q\big)(n) \\ &= \int^{k \in \mathbb{B}} P(k) \times \int^{n_1, \dots, n_k \in \mathbb{B}} \prod_{1 \le i \le k} Q(n_i) \times \mathbb{B} \big(n_1 + \dots + n_k, n\big) \end{split}$$

Example

- $\mathbb{B} = ($ the category of finite cardinals and bijections)
- *Set*^B = (the category of symmetric sequences)
- Substitution tensor product on symmetric sequences.[Joyal]
- •-semigroups (or associative •-algebras, or α -algebras) P • P \rightarrow P are non-unital symmetric operads. [Kelly

Example

- $\mathbb{B} = ($ the category of finite cardinals and bijections)
- **Set**^B = (the category of symmetric sequences)
- Substitution tensor product on symmetric sequences.^[Joyal]
- •-semigroups (or associative •-algebras, or α -algebras) P • P \rightarrow P are non-unital symmetric operads. [Kelly]

► NB

For non-unital *coloured* symmetric operads, one generalises to \mathbb{B}_{C} = (the free symmetric monoidal category on a set of colours C). [Fiore-Gambino-Hyland-Winskel]

What about partial multi-composition?

Remark

Non-unital symmetric operads with partial composition are symmetric sequences

$\mathsf{P} \in \boldsymbol{\mathcal{S}et}^{\mathbb{B}}$

equipped with single composition operations

 $\circ_{n,m}: P(n+1)\times P(m) \to P(n+m) \qquad \left(n,m\in \mathbb{B}\right)$ subject to

equivariance, associativity, exchange

laws.

The calculus of species

- ► For symmetric sequences P, Q:
 - Multiplication

 $\big(P \cdot Q \big)(n) = \int^{n_1, n_2 \in \mathbb{B}} P(n_1) \times Q(n_2) \times \mathbb{B}(n_1 + n_2, n)$ [Day]

Derivation

 $\partial P(n) = P(n+1)$ $\partial P = (y(1) - P)$

[Joyal]

The calculus of species

- For symmetric sequences P, Q:
 - Multiplication

 $(P \cdot Q)(n) = \int^{n_1, n_2 \in \mathbb{B}} P(n_1) \times Q(n_2) \times \mathbb{B}(n_1 + n_2, n)$ [Day

Derivation

 $\partial P(n) = P(n+1)$ $\partial P = (y(1) - P)$

Remark

Non-unital symmetric operads with partial composition are symmetric sequences

 $\mathsf{P} \in \boldsymbol{\mathcal{S}et}^{\mathbb{B}}$

equipped with a single composition operation

 $\circ: \mathfrak{d}(\mathsf{P}) \cdot \mathsf{P} \to \mathsf{P}$

subject to

associativity, exchange

laws.

The pre-Lie product

Definition

The *pre-Lie product* of symmetric sequences P, Q is defined as

 $\mathsf{P}\star Q=\mathfrak{d}(\mathsf{P})\cdot Q$

that is,

$$(P \star Q)(k) = \int^{n,m \in \mathbb{B}} P(n+1) \times Q(m) \times \mathbb{B}(n+m,k)$$

The pre-Lie product

Definition

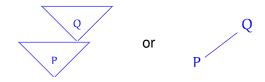
The *pre-Lie product* of symmetric sequences P, Q is defined as

 $\mathsf{P} \star \mathsf{Q} = \mathfrak{d}(\mathsf{P}) \cdot \mathsf{Q}$

that is,

$$(P \star Q)(k) = \int^{n,m\in\mathbb{B}} P(n+1) \times Q(m) \times \mathbb{B}(n+m,k)$$

structures of which may be graphically represented as



The pre-Lie product

Definition

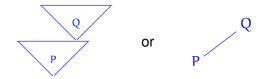
The *pre-Lie product* of symmetric sequences P, Q is defined as

 $\mathsf{P} \star \mathsf{Q} = \mathfrak{d}(\mathsf{P}) \cdot \mathsf{Q}$

that is,

$$(P \star Q)(k) = \int^{n,m \in \mathbb{B}} P(n+1) \times Q(m) \times \mathbb{B}(n+m,k)$$

structures of which may be graphically represented as



? How do $(P \star Q) \star R$ and $P \star (Q \star R)$ compare?

Combinatorial interpretation of the additive pre-Lie identity There is a canonical natural pre-Lie isomorphism

 $\pi_{P,Q,R}: (P \star Q) \star R + P \star (R \star Q) \cong P \star (Q \star R) + (P \star R) \star Q$

► Combinatorial interpretation of the additive pre-Lie identity There is a canonical natural *pre-Lie isomorphism* $\pi_{P,Q,R} : (P \star Q) \star R + P \star (R \star Q) \cong P \star (Q \star R) + (P \star R) \star Q$

Definition

A π -algebra is a symmetric sequence P equipped with a structure map $P \star P \to P$ compatible with the pre-Lie isomorphism.

► Combinatorial interpretation of the additive pre-Lie identity There is a canonical natural *pre-Lie isomorphism* $\pi_{P,Q,R} : (P \star Q) \star R + P \star (R \star Q) \cong P \star (Q \star R) + (P \star R) \star Q$

Definition

A π -algebra is a symmetric sequence P equipped with a structure map $P \star P \to P$ compatible with the pre-Lie isomorphism.

Theorem

The notions of non-unital symmetric operad with single composition and of π -algebra are equivalent.

Algebraic perspective

Definition

A pre-Lie algebra is a vector space V equipped with an operation ★ : V ⊗ V → V subject to

 $(x \star y) \star z - x \star (y \star z) = (x \star z) \star y - x \star (z \star y)$

Remark

The commutator associated to a pre-Lie product is a Lie bracket.

Algebraic perspective

Definition

A pre-Lie algebra is a vector space V equipped with an operation ★ : V ⊗ V → V subject to

 $(x \star y) \star z - x \star (y \star z) = (x \star z) \star y - x \star (z \star y)$ [Gerstenhab

• A Novikov algebra is a pre-Lie algebra that further satisfies

 $\mathbf{x} \star (\mathbf{y} \star \mathbf{z}) = \mathbf{y} \star (\mathbf{x} \star \mathbf{z})$

[Dzhumadil'daev-Lofwall]

• A CAD_1 algebra is a commutative associative algebra (V, \cdot) equipped with a derivation operation $\partial : V \to V$.

Remark

The commutator associated to a pre-Lie product is a Lie bracket.

Proposition

Every CAD_1 algebra (V, \cdot, ∂) induces two Novikov algebra structures on V by setting

$$\mathbf{x} \star \mathbf{y} = \partial(\mathbf{x}) \cdot \mathbf{y}$$

and

$$\mathbf{x} \otimes \mathbf{y} = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \star \mathbf{y} = (\mathbf{x} + \partial \mathbf{x}) \cdot \mathbf{y}$$

Theorem

For symmetric sequences, a ⊛-algebra is a non-unital symmetric operad equipped with a binary operation that is pre-commutative and associative.

Directions

- Axiomatisation of pre-Lie products.
 - ► Corollary

Every distributive symmetric-monoidal category with a strong endofunctor ${\sf D}$ such that the canonical map

 $\mathsf{D}(X)\otimes Y+X\otimes \mathsf{D}(Y) \ \longrightarrow \ \mathsf{D}(X\otimes Y)$

is an isomorphism has pre-Lie products

 $X \star Y = D(X) \otimes Y$

and

```
X \circledast Y \;=\; X \otimes Y + X \star Y
```

- Further examples.
- Generalisations.

(SDG?)

braided? monoidal actions?)

Poly-composition

Partial

[Gentzen; Szabo; Gan]

$$\frac{f: \vec{A} \rightarrow \vec{B}, \vec{O}, \vec{C} \qquad g: \vec{X}, \vec{O}, \vec{Y} \rightarrow \vec{Z}}{g_{j} \circ_{i} f: \vec{X}, \vec{A}, \vec{Y} \rightarrow \vec{B}, \vec{Z}, \vec{C}}$$

Simultaneous

Requires a combinatorial definition of *matching* codomains and domains of poly-maps. Characterised as associative algebra structure for a composition tensor product. ^[Koslowski; Garner]

Remark

A non-unital symmetric dioperad is a symmetric matrix $P \in Set^{\mathbb{B}^{\circ} \times \mathbb{B}}$ equipped with a single composition operation

 $\circ: \vartheta_1(P) \cdot \vartheta_2(P) \to P$

subject to

associativity, exchange

laws.

Remark

A non-unital symmetric dioperad is a symmetric matrix $P \in Set^{\mathbb{B}^{\circ} \times \mathbb{B}}$

equipped with a single composition operation

 $\circ: \partial_1(P) \cdot \partial_2(P) \to P$

subject to

associativity, exchange

laws.

▶ **NB** $P * Q = \partial_1(P) \cdot \partial_2(Q)$

(P * Q)(m, n)

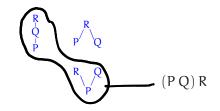
 $= \int_{-\infty}^{m_1,m_2 \in \mathbb{B}^\circ,n_1,n_2 \in \mathbb{B}} P(m_1+1,n_1) \times Q(m_2,n_2+1)$ $\times \mathbb{B}(\mathfrak{m},\mathfrak{m}_1+\mathfrak{m}_2) \times \mathbb{B}(\mathfrak{n}_1+\mathfrak{n}_2,\mathfrak{n})$

 m_2

n.2

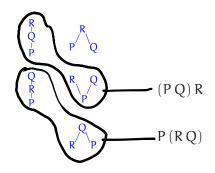
 m_1

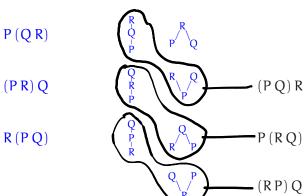
n₁

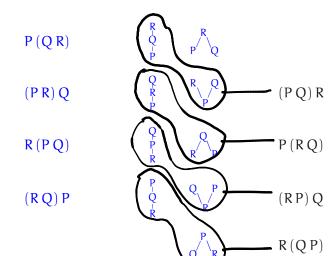


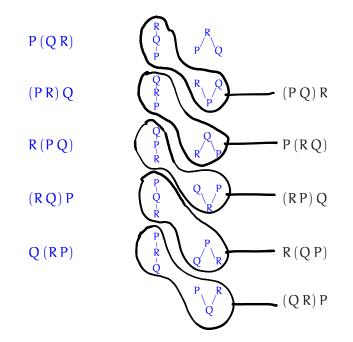
P(QR)

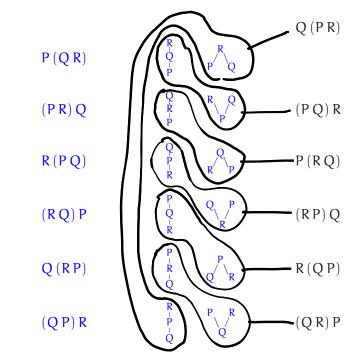
 $(P\,R)\,Q$











Combinatorial interpretation of the additive Lie-admissible identity

There is a canonical natural Lie-admissible isomorphism

 $\rho_{P,Q,R}:F(P,Q,R)\cong G(P,Q,R)$

for

$$F(P, Q, R) = P * (Q * R) + (P * R) * Q + R * (P * Q) + (R * Q) * P + Q * (R * P) + (Q * P) * R$$

and

$$G(P, Q, R) = (P * Q) * R + Q * (P * R) + (Q * R) * P$$

+ R * (Q * P) + (R * P) * Q + P * (R * Q)

heuristically generated by commuting and re-bracketing

Combinatorial interpretation of the additive Lie-admissible identity

There is a canonical natural Lie-admissible isomorphism

 $\rho_{P,Q,R}:F(P,Q,R)\cong G(P,Q,R)$

for

$$F(P, Q, R) = P * (Q * R) + (P * R) * Q + R * (P * Q) + (R * Q) * P + Q * (R * P) + (Q * P) * R$$

and

$$G(P, Q, R) = (P * Q) * R + Q * (P * R) + (Q * R) * P$$

+ R * (Q * P) + (R * P) * Q + P * (R * Q)

heuristically generated by commuting and re-bracketing

Theorem

The notions of non-unital symmetric dioperad with single composition and of ρ -algebra are equivalent.

Algebraic perspective

Definition

- A Lie-admissible algebra is a vector space V equipped with an operation $*: V \otimes V \rightarrow V$ whose commutator is a Lie bracket. [Albert]
- A CAD_2 algebra is a commutative associative algebra (V, \cdot) equipped with two commuting derivation operations $\partial_1, \partial_2 : V \to V$.

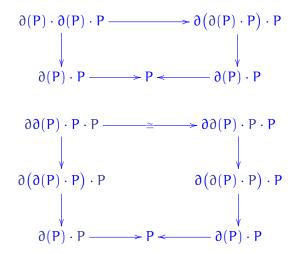
Proposition

Every CAD₂ algebra $(V, \cdot, \partial_1, \partial_2)$ induces a Lie-admissible algebra structure on V by setting

 $\mathbf{x} * \mathbf{y} = \partial_1(\mathbf{x}) \cdot \partial_2(\mathbf{y})$

Appendix

Associativity and exchange laws



single composition