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Substitution

Examples:
» Logic/algebra/rewriting.
t [ " e ]
» Type theory.
T[]

» Formal languages.
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» Proof theory.
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» Structural combinatorics.
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Substitution

Aspects
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syntactic vs. semantic models
homogeneous vs. heterogeneous
typed vs. untyped

variables vs. occurrences

single vs. simultaneous

binding

higher order

algorithms



Substitution
Aspects
» syntactic vs. semantic models
» homogeneous vs. heterogeneous
» typed vs. untyped
» variables vs. occurrences
» single vs. simultaneous
» binding
» higher order

» algorithms

Plan

ANALYSE substitution from a foundational

standpoint in a variety of scenarios and
SYNTHESISE a mathematical theory.




Algebraic theories

Clone of operations {Cnx(Cm)™ = Cnl -}
Lawvere theories
Finitary monads

Monoids for the substitution tensor product




Algebraic theories

Clone of operations {CnXx(Cm)™ = Cml- )

Lawvere theories

Finitary monads

Monoids for the substitution tensor product

Substitution tensor product
on Setf

finite sets and functions

1
Endoﬁn (Set) ~ SetF

Id,o < V, e

| (XeY)(n) = [*T X(k) x (Yn)*



Cartesian mono-sorted

substitution

monoid structure for the substitution
tensor product on Set"

Examples:
» Finitary algebraic syntax.
> = signature of operators with arities
in N
>* =free monad on £(X) =[] s X"

SUBSTITUTION STRUCTURE:

e N — X*(n)
e 2*n) X (Zm)™ — X*(m)
NB: Arises from the universal property

of L* by structural recursion (~» correct

substitution algorithm).
see e.g. [31]



» Lambda-calculus syntax.
A(n) = { A-terms with free variables in n }

with functorial action given by
(capture-avoiding) variable renaming

XxXen t;,t, € A(n)
x € A(n) t1(t2) € A(n)

t e /\(TLHJ{X})
Ax.t € A(n)

\

(t) SUBTLETY: x-equivalence



» Lambda-calculus syntax.
A(n) = { A-terms with free variables in n }

with functorial action given by
(capture-avoiding) variable renaming

Xen t1,t, € A(n)
x € A(n) t1(t2) € A(n)

t e /\(TLHJ{X})
Ax.t € A(n)

\

(t) SUBTLETY: x-equivalence

SUBSTITUTION STRUCTURE:

e n— A(n)
e A(m) x (Am)™ — A(m)
t, (1 ti)ien — t[%ilien

L> (capture-avoiding)
simultaneous
substitution



» Clone of maps.

The clone of maps (C, C) on an object C
In a cartesian category Is given by

(C,C)(n) =I[C™ C]

SUBSTITUTION STRUCTURE:

e n——[C"(Cl:i—m

o [C",C] x[C™C]"
N

\ o}

cm™ CMY




The substitution tensor product ...

free cartesian category
on one generator

1 C FO C SetF

...18 closed



Algebraic theories in Setf
syntax with variable binding

Example: X, ={app:2,abs:V} NB: V=y(1)



Algebraic theories in Setf
syntax with variable binding

Example: X, ={app:2,abs:V} NB: V=y(1)
Then,

F Y5 (X) =X2 XY
Set Q

(Z\)V = p X, VEXZHXY = A
see [16, 31]

and



Algebraic theories in Setf
syntax with variable binding

Example: X, ={app:2,abs:V} NB: V=y(1)
Then,

F Y5 (X) =X2 XY
Set Q

(Z\)V = p X, VEXZHXY = A

and

see [16, 31]
NB:
X=X = {(Xn)* > Xn|--}
XY= X = {X(n+1) = Xn|;-}
> oc—eiquivalence
Fo ¢ Set’

()+1l (—)xvl#T()V—((m)*
Fo ¢ Set’




/A Is (universally characterised as) the free
2 -algebraon V | and its substitution structure
IS derived by parameterised structural recursion

as follows:

SA(A) e A — = Ia(A e A) L5 (A

| |

AeA N//\
T - —

VeA

~» correct (capture-avoiding) simultaneous

substitution algorithm
see [16, 31]



/A Is (universally characterised as) the free
> y-algebra on V'), and its substitution structure
IS derived by parameterised structural recursion

as follows:

Z)\(/\) o\ (—i)> Z)\(/\ ® /\) Z7\—(S)> Z)\(/\)

| |

Ae A N//\
[

VeA

~» correct (capture-avoiding) simultaneous

substitution algorithm
see [16, 31]

) yields an induction principle see [19, 31]

) SUBTLETY: pointed strength

(

capture avoidance




General theory

SETTING:
I/¢

N

a monoidal closed category

an endofunctor with a U-strength:

X)) oY—2Y _s(X@Y)




General theory

SETTING:
I/¢

N

a monoidal closed category

an endofunctor with a U-strength:

SX) @Y —"Y L 5(X®Y)
MODELS: (X, o)-monoids.
XX
gl an algebra
XQX—>=X=—"1 a monoid

such that

SX) @ X —2 L (X @ X) —I™ - yX

o !

X® X




The

free X-algebra and free monoid

constructions
Y-alg(¢) 7 ¢ T Mon(%)

uX.C+ 2X ' C uX. I+ C® X

unify to
(2, 0)-Mon(%)
4
3
W)
S
where

S(C) =puX. I+ C® X+ XX

NB: The initial (X, o)-monoid has underlying
object S0 = uX. I 4+ X = X*I.

see [26, 30]



Initial-algebra semantics
with substitution

The unique (X, o)-monoid homomorphism
from the initial (X, o)-monoid provides an
initial-algebra semantics that is both

compositional and respects substitution.

see [16, 24]



Example: Lambda calculus.

For D <« DP in a cartesian closed category,
the clone of maps (D, D) has a canonical
2 y-algebra structure

(D, D) x (D, D) (D, D)

| |

(D, D) x (D,DP) —== (D, D x DP)

(D, D)"

N

(D, DP)

making it into a X,-monoid for the canonical
pointed strength.

The induced initial-algebra semantics amounts
to the standard interpretation of the A-calculus.
see [16, 19]



Single-variable and
simultaneous substitution

The theory of monoids in Set" for the
substitution tensor product is enriched
algebraic for the cartesian closed
structure.

Mony .(Set") is (equivalent to) the category of
algebras X with operations

XVt 5 X and 1 - XY
subject to

. 4 axioms ...
see [16]



Second-order syntax
with variable binding
and substitution

Example:
¥,-Mon(Set")
B
- F
- Seb
Set!
For M € Set",

e

SA(M) = V+ M e8(M) + Z(SxM)

see [22]



—~——

Sx(M) can be syntactically presented as follows:

Xen

~——

var(x) € Sx(M)(n)

4, € 87\(/]\\/{)(“)

~——

app(ti, t2) € Sx(M)(n)

N~

te Sa(M)(nw{x})
—— (up to -equivalence)

abs((x)t) € 8x(M)(n)

N~

t,..., I € SA(M/\)/(T'L) (T - M(k))
Tlty,..., il € SA(M)(n)

and the monoid multiplication structure

~— —~— —~—

SA(M) @ 8x(M) — 8x(M)

amounts to (capture-avoiding) simultaneous
substitution. see [31]



MOREOVER, the action of S, enriches over Set"
with respect to its cartesian closed structure,
and we obtain a further substitution structure

—~— ~

SA(M) x (SANIM — 8A(N)

that amounts to SECOND-ORDER SUBSTITUTION
for metavariables.

As usual, this arises by universal properties and
IS given by parameterised structural recursion;
yielding a correct substitution algorithm.

see [31]



Many-sorted contexts

For S a set of sorts, let F[S] be the free
cocartesian category on S.

The substitution tensor product on (Set™)” is
given as follows:

S¢ F[S]° ¢
Y
That is,
(X eY)q(I')

see [19, 23, 24, 26]



Simply typed lambda calculus,
algebraically

Let T be a set of base types, and let T be its
closure under 1, *, =.

Consider

() (SetFTT

induced by
(1) app'®™: (o=>1,0) = T
(1) abs'®?: ((0)1) — o=>7
proj1'>™ : (g,1) —» o, proj2®?: (o,1) = 7
pair'®™ : (o,7) — o*T

ter: () — 1

(1) Xoor X Xo — Xq
(1) X' = Xoor

see [19, 23]



Furthermore, let CC be the following equational
theory for X-monoids:

(B) F:lolt,T:[lo
= app(abs((x: o)Flvar(x)]), T[])

FITL]] : 7

(m) F:[](o=>71)
= abs((x: o)app(Fl],var(x)))

F[] : o=>7



Furthermore, let CC be the following equational
theory for X-monoids:

(B) F:lolt, T:[lo
= app(abs((x: o)Flvar(x)]), T[])

FIT[]] : 7
iInformally:

(Ax.F)T =F[ /]

(m) F:ll(o=>1)
- abs((x : o)app(F[],var(x)))

F[] : o=>7
Ax.Fx =F
(x & FV(F))



(proj) M :l]Jo,N:[]t
= projI(M[],N[]) =M[] : 0o

= proj2(M[],N[]) =N[] :7

(pair)  T:[](o*T)
~  pair(proj1(T(]), proj2(T(]))

T[] : oxT

(ter) T:[]11 F T[]l=ter: 1



Then

2-Moncc L Z-Mon\(ﬂ
eq
\

(SetF[ﬂ)T

and the Lawvere theory associated to the initial
> -Mon,cc is the free cartesian closed category
on T.

(1) induced by CC

[INB: This generalises to free cartesian closed
categories on small categories.]



(T)Example: The parallel pair induced by (B).

For NIX] =], X™ let M € (SetN N
defined from the context of (3) a
M. (o) ={F} , Ma() ={T)

and empty otherwise.

The terms of (3) correspond to global elements
] — S(M)
that induce functors

X-Mon ~ §-alg — (—)m—alg

over (SetF[ﬂ)T as follows

XM
|
o
X $(X)]
|
X

see [30]



Dependent sorts
For a small category C, let FC ~ (Set" )¢, be
the free finite colimit completion of C.

The substitution tensor product on (Set” )<’
IS given as follows:

Co C (9—‘@)0 C




PROGRAMME

The various developments of the previous
slides carry over to this more general setting.

Following Makkai!'®!, after Lawvere ®! and
Otto '], the syntactic theory is considered

for simple categories (= skeletal and one-way,
with finite fan-out).

This amounts to extending the theory to
Incorporate DEPENDENT SORTS.

NB: The limit in the substitution tensor product
accounts for the heavy dependency required in
the substitution operation.

see [26]



General theory: Idea

For T a 2-monad on CAT, consider

TC

equipped with a T-algebra structure

Examples:
» T = identity
» [ = free cartesian completion

» T = free finite limit completion



> T

> |

free monoidal completion

free symmetric monoidal
completion



> T free monoidal completion

» T = free symmetric monoidal
completion )

the T-algebra structure on TC
is given by Day’s tensor product [? 7]

planar
(I, e)-monoids = > operads
symmetric )

see e.g. [3, 15, 20]

QUESTION: Are there applications of the
previous theory to the theory of operads!?



More generally :
From substitution to composition

For (T,n, 1) a 2-monad on CAT, consider

with respect to T-algebra structures

TC - T(f@) — 1{@
such that N
yc : (TC, uc) — (TC, 1¢)
and
Lany, (h) : (TC,t¢) — (TD, tp)

forallh: (TC, uc) — (TD, 1p)

NB: The above can be axiomatised further.
[Hyland, Gambino, Fiore]

(see also [24])



Kleisli bicategory

TC —+— B TB —— A
TC —+— A

» T = identity
~» profunctors

» T = free symmetric monoidal completion

~»> JOYAL SPECIES OF STRUCTURES!®: 8] grise
as the endomorphisms of 1

~> GENERALISED SPECIES OF STRUCTURES
see [23, 25]

Coherence (idea):
Lan, ((Lan, H#) G)™
= Lany((Lan, H#) G#)
= (Lan, H#¥) (Lan, G¥)



Kleisli bicategory

TC —+— B TB —— A
TC —+— A

» T = identity
~» profunctors

» T = free symmetric monoidal completion

~> JOYAL SPECIES OF STRUCTURESI® 8! arise
as the endomorphisms of 1

~ GENERALISED SPECIES OF STRUCTURES(T)
see [23, 25]

Coherence (idea):

Lan, ((Lan, H#)G)™
= Lany((Lan, H#) G#)
= (Lany H¥) (Lan, G#)

(1) The coherence isomorphisms can also be given formally (compare [3)
in a theory of Lawvere’s generalized logic 4!, providing a logical view of
coherence. The coherence laws can be then established elementwise.

PROGRAMME: Extend generalized logic to a type theory within which
the coherence laws may be also established formally.



Linear models

Substitution operations on
linear speciesl®

finite linear orders and monotone bijections

n
For X,Y € Set" with Y(0)) = :

1. (XeY)(L) = ) X( ) x [y

PeLinPart(L LeP

~~» composition of ordinary generating series [Joyal]
see [6]

2. (X Z X(P)x | [y

PcPart(L LeP

~~> composition of exponential generating series [Foata]
see [1, 14]



Substitution tensor products
on linear species

For X,Y € Set":

1. (X e Y)(0)

PcL lp (PEP)
_ J X(P) ><J ][ Y) x Li®pep by, 0)
peP

arises from the general theory for T the
free monoidal completion, noting that L is

(equivalent to) the free monoidal category
on one object.



Substitution tensor products
on linear species

For X,Y € Set":

1. (XeY)({)

PcL lp (PEP)
_ J X(P) ><J ][ Y) x Li®pep by, 0)
peP

arises from the general theory for T the
free monoidal completion, noting that L is

(equivalent to) the free monoidal category
on one object.

2. (XeY)({)

PeL tp (pEP)
:J X(P) x J HY(Qp) X Monbij( \/ Qp,g)

peP peP

where \/ _, £, has underlying set [ p

ordered by (p,x) < (p’,x’) iff either p = p’
and x < x’, orp <p’and x = min({,) and
x" = min({,).

~> GENERALISED LINEAR SPECIES OF STRUCTURES



Mixed models

Example: DILL = Dual Intuitionistic Linear Logic

see [12]
AFt:T
intuitionistic </ x linear
(cartesian) (symmetric monoidal)
context context
CUT RULE:
X71:07,. . Xm0 m Y1 :T1,...,Un :TnHt:x

HM=Fu;:o; (1 <i<m)
F'A-I—vj:’tj (1§]§Tl)
AL A |_t[ulxl )/y)]1<1<m1<)<n-(x

—_— =" =)=

» NEW FEATURE absent in mathematical examples



MATHEMATICAL MODEL

The category of (mono-sorted) mixed contexts M
IS the free symmetric monoidal category over the
following symmetric monoidal theory:

a commutative

“monoid
/ .
L | [ 1
linear variables can % weakening
become intuitionistic contraction
type theoretically:
M x,AFt

Lx; AFEt



CONTEXT INDEXING

1

/!

M<—F FxF in Cat

iInduces

M° —— Cat

- PpLe- Pl ——  ..oxMx...xFx...



CONTEXT INDEXING

In fact
/1
M > F FxF inCat/
\\ﬂ:> J/+ M
M<—F
Induces
M © M Catﬂ
M
- PpLe- Pl ——  ..oxMx...xFx...

< —



Mixed substitution tensor product

For X,Y € Set™:
(XeY)(D)

CeM AEM(C
:J X(C)XJ HY ) x M(@®c(A),D)

ie|C]

NEW FEATURE

» Monoids = Mixed operads

generalise and combine Lawvere
theories and (symmetric) operads

» A combinatorial model of DILL
. and more



A unifying framework

contexts shapes

C > Cat®
D
/ e =
c(—)

Cat \
/(C —> Cat
er Dr . er — CSF
zri
C

» Substitution tensor product ?
For X,Y € Set"
(XeY)(C)

1eSA

['eC A€eCr
:J X(T) XJ (1im ¥(DrA),) x [£rA, C



Further generalisations

D-sorted
ST

Cat °
o %
A lD)
C > Cat’

Cat/C, dor} Cat
C )
Cr
zr¢
C/

» Substitution tensor product ?

For X,Y ¢ (Set@O)D:

(X eY)(C)

reC

AECr
:J X(T") % J (ileilgrlAY%(i)(DrAh) X |XrA, C]



PROGRAMME

Obtain a substitution tensor product from
(cartesian (compare [5, 100y monad structure on

NB: S(1)= C
iInduced by structure on C.



Developments

» Mathematical theory of substitution

¢

¢

¢

¢

¢

¢

typed vs. untyped
homogeneous vs. heterogeneous®*® '®!

single variable vs. simultaneous
substitution

cartesian, linear, mixed, etc. substitution
specification and algorithms

syntax and semantics

» Reduction of type theory to algebra

¢

¢

admissibility of cut

second-order theories

¢+ dependent sorts



» Equational and inequational theories
¢+ free constructions
¢ modularity

¢ rewriting

» Structural combinatorics
¢+ Generalised species

.
— cartesian closed

— differential®®® 1*°! )

¢+ Groupoids and generalised analytic
functorssee [27]

> structure

» Profunctors

+ Groupoids and strong (= ) compact
closure®e® 28]

¢+ Annihilation/creation operators
see [28, 32] (and also [17, 29])



Programme

Categories of contexts as free monoidal
theories

Comparison with/extension to Kelly’s
clubs!> 17

Generalized logic type-theoretically and
coherence

Extraction of syntactic theory from model
theory

Applications
¢ Theory of operads

+ Combinatorics

+ Domain Theoryse® [2/]
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