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Abstract. We extend universal algebra and its equational logic from
first to second order as follows.

1. We consider second-order equational presentations as specified by
identities between second-order terms, with both variables and pa-
rameterised metavariables over signatures of variable-binding oper-
ators.

2. We develop an algebraic model theory for second-order equational
presentations, generalising the semantics of (first-order) algebraic
theories and of (untyped and simply-typed) lambda calculi.

3. We introduce a deductive system, Second-Order Equational Logic, for
reasoning about the equality of second-order terms. Our development
is novel in that this equational logic is synthesised from the model
theory. Hence it is necessarily sound.

4. Second-Order Equational Logic is shown to be a conservative exten-
sion of Birkhoff’s (First-Order) Equational Logic.

5. Two completeness results are established: the semantic complete-
ness of equational derivability, and the derivability completeness of
(bidirectional) Second-Order Term Rewriting.

1 Introduction

The notion of algebraic structure has solid mathematical foundations. In the tra-
ditional, first order, case our understanding of the subject is complete; allowing
us to look at it from three different perspectives: universal algebra, equational
logic, and categorical algebra. Of direct concern to us in this paper is the rela-
tionship between the first two.

Universal algebra provides a model theory for algebraic structure and equa-
tional logic a formal deductive system for reasoning about it. These are related
by Birkhoff’s theorem [4] establishing the semantic soundness and completeness
of equational deduction (see Goguen and Meseguer [16] for the many-sorted
case). The theory of computation also plays a role here: (bidirectional) term
rewriting provides a sound and complete computational method for establishing
equational derivability (see e.g. [3]).

We are interested in this paper in extending the above fundamental theory
from first to second order, i.e. to languages with variable binding. Such for-
malisms arise in a wide range of subjects: category theory (e.g. ends), logic (e.g.
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quantifiers), mathematics (e.g. integration), process calculi (e.g. restriction), pro-
gramming languages (e.g. local scope), type theory (e.g. lambda calculi).

A central theme of our development is thus to set up the algebraic model
theory and the formal deductive system that underlie higher-order equational
theories. As in the first-order case, the model theory should provide general alge-
braic semantics from which syntactic models are to arise as free algebras. In ad-
dition, the deductive system should elucidate higher-order equational reasoning.
This requirement rules out any system based on a higher-order metalanguage.

Syntactically, the passage from first to second order involves extending the
language with both variable-binding operators and parameterised metavariables.
These two concepts are orthogonal to each other, but it is with both of them
in place that the language attains the required expressiveness. Variable-binding
operators may bind a list of variables in each of their arguments and thereby lead
to syntax up to alpha equivalence. Parameterised metavariables are, in effect,
second-order variables for which substitution also involves instantiation. As far
as we are aware, such second-order syntax was first put forward by Aczel [1]. (A
variation of it incorporating abstractions features in the CRSs of Klop [21].)

A mathematical theory of second-order syntax was developed by Fiore [11],
building on work of Fiore, Plotkin and Turi [15] and of Hamana [18]. In it,
second-order syntax is abstractly characterised by free algebras of a term monad
on a suitable semantic universe. This provides initial-algebra semantics, induc-
tion principles, and structural recursion. Moreover, the crucial result that term
monads are strong provides a second-order substitution calculus, see [11, Part I].

Term monads for second-order syntax (being strong with respect to a bi-
closed action) fit into the mathematical framework of Fiore and Hur [13, 7, 19]
for synthesising equational logics. This framework provides a canonical algebraic
model theory for categorical equational presentations (in the form of sets of par-
allel pairs of Kleisli maps) together with a sound categorical equational metalogic
for reasoning about them.

The gist of the work in this paper is then to instantiate our framework and ap-
ply the supporting methodology to: (i) derive a universal algebra for second-order
equational presentations; (ii) synthesise a sound equational logic for reasoning
about them; and (iii) relate the two by means of a completeness theorem.

Our work initiates thus the development of Second-Order Universal Alge-
bra, which generalises the model theory of (first-order) algebraic theories and of
(untyped and simply-typed) lambda calculi. The associated Second-Order Equa-
tional Logic is distilled from a categorical Equational Metalogic, but thereafter
can be understood completely independent of it. Besides the rules for axioms
and equivalence, it consists of just one additional rule stating that the opera-
tion of metavariable substitution in extended variable contexts is a congruence.
At the level of equational derivability, the relationship between universal alge-
bra and our second-order extension translates as a conservative-extension re-
sult. We further establish the semantic completeness of equational derivability,
and the derivability completeness of (bidirectional) Second-Order Term Rewrit-
ing. These results firmly establish Second-Order Universal Algebra, Second-Order



Equational Logic, and Second-Order Term Rewriting as the model theory, proof
theory, and rewriting theory of higher-order equational theories. (In particular,
we provide model-theoretic foundations for CRSs; finally answering question (f)
in [22, Section 15].)

In addition, we note that the perspective to first-order algebraic structure
offered by Lawvere theories [23] has also been extended to second-order by Fiore
and Mahmoud, see the companion paper [14].

Concerning related work, equational deductive systems for reasoning about
algebraic structure with binding have already been considered in the literature.
The systems closest to ours are the Equational Logic for Binding Algebras of
Sun [27, 28] and the Multi-Sorted Binding Equational Logic of Plotkin [26]. These
somehow sit in between our Second-Order Equational Logic and our bidirectional
Second-Order Term Rewriting. The core of Sun’s system consists of a substitution
rule for variables and metavariables, and congruence rules for metavariables and
operators. A major difference appears in the model theory, which Sun restricts
to functional models (as in Aczel’s Frege Structures [2]) that do not support free
constructions and lead to a restricted completeness result. On the other hand,
the system outlined by Plotkin shares the same syntax with ours, but it is also
set up with congruence rules for metavariables and operators, and cut rules for
variables and metavariables. Plotkin also considers general abstract models that
axiomatise the algebraic structure of functional concrete models and are able to
encompass initial syntactic models.

Another early system is the Abstract Variable Binding Calculus of Pigozzi
and Salibra [25]. A strong point of departure between this system and ours is
that in it metavariables are treated informally in the metalanguage. This results
in the deductive system not being a true equational theory. More recently, there
have been the Equational Logic for Binding Terms (ELBT) of Hamana [17], the
Nominal Algebra of Gabbay and Mathijssen [24], and the Nominal Equational
Logic of Clouston and Pitts [6]. The nominal systems have been shown to corre-
spond to the Synthetic Nominal Equational Logic (SNEL) of Fiore and Hur [13]
with metavariables that can be solely parameterised by names. The only essen-
tial difference between SNEL and ELBT is that the latter lacks a rule for atom
elimination.

2 Syntactic Theory

The syntactic theory underlying Second-Order Equational Logic is introduced.
The development comprises second-order signatures on top of which second-
order terms in context are defined. For these the needed two-level substitution
calculus is presented.
Signatures. A (second-order) signature Σ = (T,O, |−|) is specified by a set of
types T , a set of operators O, and an arity function |−| : O // (T ∗ × T )∗ × T .
This definition is a typed version of the binding signatures of Aczel [1] (see
also [22, 15]).

Notation. We let |~σ | be the length of a sequence ~σ. For 1 ≤ i ≤ |~σ |, we let σi
be the ith element of ~σ; so that ~σ = σ1, . . . , σ|~σ|.



For an operator o ∈ O, we typically write o : ( ~σ1)τ1, . . . , ( ~σn)τn // τ when-
ever |o | =

(
( ~σ1, τ1) . . . ( ~σn, τn), τ

)
. The intended meaning here is that o is an

operator of type τ taking n arguments each of which binds ni = | ~σi | variables
of types σi,1, . . . , σi,ni in a term of type τi.

The second-order signature of the λ-calculus [1] is given below. Further exam-
ples already spelled out in the literature are the primitive recursion operator [1],
the quantifiers [2], the fixpoint operator [22], and the list iterator [29]. In fact,
any language with variable binding fits the formalism.
Example 1. The signature of the typed λ-calculus over a set of base types B has
set of types B=> given by

β ∈ B
β ∈ B=>

σ, τ ∈ B=>

σ => τ ∈ B=>

and, for σ, τ ∈ B=>, operators absσ,τ : (σ)τ // σ => τ and appσ,τ : σ => τ, σ // τ .
The signature of the untyped λ-calculus is as above when only one type, say D,

is available. Hence, it has operators abs : (D)D // D and app : D,D // D.
Contexts. We will consider terms in typing contexts. Typing contexts have two
zones, each respectively typing variables and metavariables. Variable typings
are types. Metavariable typings are parameterised types: a metavariable of type
[σ1, . . . , σn]τ , when parameterised by terms of type σ1, . . . , σn, will yield a term
of type τ . In accordance, we use the following representation for typing contexts:
m1 : [ ~σ1]τ1, . . . ,mk : [ ~σk]τk B x1 : σ′1, . . . , x` : σ′`, where all metavariables and all
variables are assumed distinct.
Terms. Signatures give rise to terms. These are built up by means of operators
from both variables and metavariables, and hence referred to as second-order.

Terms are considered up the α-equivalence relation induced by stipulating
that, for every operator o, in the term o

(
. . . , (~xi)ti, . . .

)
the ~xi are bound in ti.

This may be formalised in a variety of ways, but it is not necessary for us to do
so here.

The judgement for terms in context Θ B Γ ` − : τ is defined by the rules
below. This definition is a typed version of the second-order syntax of Aczel [1].
(Variables) For (x : τ) ∈ Γ ,

Θ B Γ ` x : τ
(1)

(Metavariables) For (m : [τ1, . . . , τn]τ) ∈ Θ,

Θ B Γ ` ti : τi (1 ≤ i ≤ n)

Θ B Γ ` m[t1, . . . , tn] : τ
(2)

(Operators) For o : ( ~σ1)τ1, . . . , ( ~σn)τn // τ ,

Θ B Γ, ~xi : ~σi ` ti : τi (1 ≤ i ≤ n)

Θ B Γ ` o
(
( ~x1) t1, . . . , ( ~xn) tn

)
: τ

(3)

where ~x : ~σ stands for x1 : σ1, . . . , xk : σk.



Example 2. Two sample terms for the signature of the typed λ-calculus follow:

m : [σ]τ,n : σ B · ` app
(
abs
(
(x)m[x]

)
,n[ ]

)
: τ ,

m : [σ]τ,n : σ B · ` m[n[ ]] : τ .

Substitution calculus. The second-order nature of the syntax requires a two-
level substitution calculus [1, 22, 29, 11]. Each level respectively accounts for the
substitution of variables and metavariables, with the latter operation depending
on the former.

The operation of capture-avoiding simultaneous substitution of terms for vari-
ables maps

Θ B x1 : σ1, . . . , xn : σn ` t : τ and Θ B Γ ` ti : σi (1 ≤ i ≤ n)
to

Θ B Γ ` t[ti/xi]1≤i≤n : τ

according to the following definition:

• xj [ti/xi]1≤i≤n = tj

•
(
m[. . . , s, . . .]

)
[ti/xi]1≤i≤n = m

[
. . . , s[ti/xi]1≤i≤n, . . .

]
•
(
o(. . . , (y1, . . . , yk)s, . . .)

)
[ti/xi]1≤i≤n

= o
(
. . . , (z1, . . . , zk)s[ti/xi, zj/yj ]1≤i≤n,1≤j≤k, . . .

)
with zj 6∈ dom(Γ ) for all 1 ≤ j ≤ k

The operation of metasubstitution of abstracted terms for metavariables maps

m1 : [ ~σ1]τ1, . . . ,mk : [ ~σk]τk B Γ ` t : τ and Θ B Γ, ~xi : ~σi ` ti : τi (1 ≤ i ≤ k)
to

Θ B Γ ` t{mi := (~xi)ti}1≤i≤k : τ
according to the following definition:

• x{mi := (~xi)ti}1≤i≤k = x

•
(
m`[s1, . . . , sm]

)
{mi := (~xi)ti}1≤i≤k = t`[s

′
j/xi,j ]1≤j≤m

where, for 1 ≤ j ≤ m, s′j = sj{mi := (~xi)ti}1≤i≤k
•
(
o(. . . , (~x)s, . . .)

)
{mi := (~xi)ti}1≤i≤k = o

(
. . . , (~x)s{mi := (~xi)ti}1≤i≤k, . . .

)
The syntactic theory can be completely justified on model-theoretic grounds,

see [11]. We turn to this next.

3 Abstract Syntactic Theory

Having developed the second-order syntactic theory, our purpose in this sec-
tion is to show how it arises from a model theory. This is important for several
reasons: it provides an abstract characterisation of syntax by free constructions
and thereby supports initial-algebra semantics and definitions by structural re-
cursion; it encompasses and guarantees all the necessary properties of the sub-
stitution calculus; and it opens up the development of an algebraic model theory



for second-order equational presentations together with an associated equational
logic.

We now introduce the semantic universe and, within it, constructions for
modelling substitution and algebraic structure. These lead to a canonical notion
of model for second-order signatures [15, 10]. The syntactic nature of free models
is then explained.
Notation. For a sequence ~σ, we let [~σ] = { 1, . . . , |~σ | }.
Semantic universe. For a set T , we write F[T ] for the free cocartesian cate-
gory on T . Explicitly, it has set of objects T ∗ and morphisms ~σ // ~τ given by
functions ρ : [~σ] // [~τ ] such that σi = τρi for all i ∈ [~σ].

For a set of types T , we will work within and over the semantic universe(
SetF[T ]

)T of T -sorted sets in T -typed contexts [8]. We write y for the Yoneda
embedding F[T ]op � � // SetF[T ].
Substitution. We recall the substitution monoidal structure in semantic uni-
verses [9]. It has tensor unit and tensor product respectively given by Vτ = y(τ)
and (X • Y )τ = Xτ �•Y where P �•Y =

∫ ~σ∈F[T ]
P (~σ)×

∏
i∈[~σ] Yσi .

A monoid V // A oo A • A for the substitution monoidal structure equips
A with substitution structure. In particular, the components y(γ) // Aγ of the
unit induce the embedding`
Aτ

y(~σ)×
Q
i∈[~σ]Aσi

´
(~γ) // Aτ (~γ, ~σ)×

Q
j∈[~γ]Aγj (~γ)×

Q
i∈[~σ]Aσi(~γ) //

`
Aτ �•A

´
(~γ)

which together with the component Aτ �•A // Aτ of the multiplication yield a
substitution operation

ς~σ,τ : Aτy(~σ) ×
∏
i∈[~σ]Aσi

// Aτ .

These substitution operations provide the interpretation of metavariables.
The category of monoids for the substitution tensor product is isomorphic to

that of T -sorted Lawvere theories and maps. The Lawvere theory LA associated
to A has objects T ∗ and hom-sets LA(~σ, ~τ) =

∏
i∈[~τ ]Aτi(~σ), with identities and

composition provided by the monoid structure. On the other hand, for every
cartesian category C and assignment C ∈ C T consider the functor

〈C,−〉 : C T //
(
SetF[T ]

)T (4)

defined as 〈C,D〉τ = 〈〈C,Dτ 〉〉 with 〈〈C, d〉〉(~σ) = C
(∏

1≤i≤|~σ| Cσi , d
)
. Then,

〈C,C〉 has a canonical monoid structure given by projections and composition.
Algebras. Every signature Σ over a set of types T induces a signature endo-
functor on (SetF[T ])T given by (ΣX)τ =

∐
o:( ~σ1)τ1,...,( ~σn)τn // τ

∏
1≤i≤n Xτi

y( ~σi).
Σ-algebras provide interpretations for the operators of Σ.

We note that there are canonical natural isomorphisms∐
i∈I(Xi • Y ) ∼=

(∐
i∈I Xi

)
• Y(∏

1≤i≤nXi

)
• Y ∼=

∏
1≤i≤n(Xi • Y )

and, for all points ν : V // Y , a natural extension map

ν# : P y(~σ)�•Y // (P �•Y )y(~σ) .



These constructions equip every signature endofunctor with a pointed strength

$X,V //Y : Σ(X) • Y − // Σ(X • Y ) .

(See [11] for details.)

Models. The models that we are interested in (referred to as Σ-monoids in [15,
11]) are algebras equipped with a compatible substitution structure.

For a signature Σ over a set of types T , we let Σ-Mod be the category
of Σ-models with objects A ∈ (SetF[T ])T equipped with a Σ-algebra struc-
ture ΣA // A and a monoid structure V // A oo A •A that are compatible in
the sense that the diagram

Σ(A) •A

��

$A,V //A
// Σ(A •A) // Σ(A)

��

A •A // A

commutes. Morphisms are maps that are both Σ-algebra and monoid homomor-
phims.

Term monad. The forgetful functor Σ-Mod //
(
SetF[T ]

)T is monadic [11, 12].
Hence, writingM for the induced monad andM-Alg for its category of Eilenberg-
Moore algebras, we have a canonical isomorphism Σ-Mod ∼=M-Alg.

Carriers of free models can be explicitly described as initial algebras:

M(X) = µZ.V +X • Z +ΣZ .

Free models on objects arising from metavariable contexts have a syntactic de-
scription [18, 11]. Indeed, for Θ =

(
m1 : [ ~σ1]τ1, . . . ,mk : [ ~σk]τk

)
a metavariable

context, let Θ =
∐

1≤i≤k y(~σi)@τi in
(
SetF[T ]

)T , where (P@τ )α is P for α = τ
and 0 otherwise. Then, using that

Θ • Z ∼=
∐

1≤i≤k
(∏

1≤j≤| ~σi| Zσi,j
)
@τi

,

the initial algebra structure

V +Θ •MΘ +ΣMΘ ∼= //MΘ

corresponds to the rules in (1–3), and we have the following syntactic character-
isation

(MΘ)τ (~σ) ∼= { t | Θ B ~x : ~σ ` t : τ } . (5)

We thus refer to M as the term monad.
The two-level substitution calculus arises as follows. The monoid multipli-

cation M(Θ) •M(Θ) //M(Θ), for Θ a metavariable context, amounts to the
operation of capture-avoiding simultaneous substitution. On the other hand,
the term monad comes equipped with a strength M(X) ⊗ P // M(X ⊗ P )
where (X ⊗ P )τ = Xτ × P . Thereby, every model MA // A admits an in-
terpretation map M(X) ⊗ [X,A] // M

(
X ⊗ [X,A]

)
// M(A) // A where

[X,Y ] =
∏
τ∈T Yτ

Xτ . In particular, for metavariable contexts Θ and Ξ, the in-
terpretation map M(Θ) ⊗ [Θ,M(Ξ)] // M(Ξ) amounts to the operation of
metasubstitution. (See [11] for details.)



(Axiom)

(f, g : X // TY ) ∈ E
E ` f ≡ g : X // TY

(Equivalence)

f : X // TY

E ` f ≡ f : X // TY

E ` f ≡ g : X // TY

E ` g ≡ f : X // TY

E ` f ≡ g : X // TY
E ` g ≡ h : X // TY

E ` f ≡ h : X // TY

(Composition)

E ` f1 ≡ g1 : X // TY E ` f2 ≡ g2 : Y // TZ

E ` f1[f2] ≡ g1[g2] : X // TZ

where, for f : X // TY and g : Y // TZ, f [g] is the Kleisli composite
X f // TY Tg // TTY // TY

(Parameterisation)

E ` f ≡ g : X // TY

E ` f〈P 〉 ≡ g〈P 〉 : X ⊗ P // T (Y ⊗ P )

where, for h : X // TY , h〈P 〉 =
`
X ⊗ P h⊗id // T (Y )⊗ P // T (Y ⊗ P )

´
(Local character)

E ` f ei ≡ g ei : Xi // TY (i ∈ I)

E ` f ≡ g : X // TY

`
{ei : Xi // X}i∈I jointly epi

´
Fig. 1. Equational Metalogic.

4 Equational Metalogic

Our aim now is to use the above monadic model theory for second-order syn-
tax to synthesise a Second-Order Equational Logic. This development, which is
presented in Section 5, depends on a general theory and methodology of the
authors [13, 7, 19]. For the sake of completeness, an outline of the framework
follows.

To every strong monad T with respect to a biclosed action [20] we associate
an Equational Metalogic. This is a deductive system for reasoning about the
equality of the interpretation of Kleisli maps X // TY in Eilenberg-Moore al-
gebras TA // A as captured by the following satisfaction relation:

A |= f ≡ g : X // TY iff [[f ]] = [[g]] : X ⊗ [Y,A] // A

where
[[h]] =

(
X ⊗ [Y,A]

h⊗id
// T (Y )⊗ [Y,A] // A

)
. (6)

Equational metalogic is parameterised by a set of axioms E given by parallel
pairs of Kleisli maps. The rules assert the derivability of judgements of the form
E ` f ≡ g : X // TY and are given in Figure 1.



Remark. In the presence of coproducts, the rule

(Local parameterised composition)

E ` f ≡ g : X // T
(∐

i∈I Yi
)

E ` fi ≡ gi : Yi ⊗ P // TZ (i ∈ I)

E ` f〈P 〉
[

[fi]i∈I
]
≡ g〈P 〉

[
[gi]i∈I

]
: X ⊗ P // T (Z)

is derivable, and may be used instead of the (Composition) and (Parameterisa-
tion) rules.

The category (T,E)-Alg of (T,E)-algebras is defined as the full subcategory
of the category T -Alg of Eilenberg-Moore algebras that satisfy the axioms E.
We have the following two important results.

(Soundness) If E ` f ≡ g then A |= f ≡ g for all (T,E)-algebras A.

(Internal completeness) If every object Z admits a free (T,E)-algebra TE(Z),
then we have a quotient map q : T // TE and the following are equivalent:
(1) A |= f ≡ g : X // TY for all (T,E)-algebras A
(2) TE(Y ) |= f ≡ g : X // TY

(3) qY f = qY g : X // TE(Y )

5 Second-Order Equational Logic

Second-Order Equational Logic is now synthesised from Equational Metalogic.
This is done by: (i) considering the term monadM; (ii) restricting attention to
Kleisli maps of the form y(~σ)@τ //M(Θ), which by (5) amount to second-order
terms of type τ in context Θ B ~x : ~σ; and (iii) rendering the rules in syntactic
form.
Presentations. An equational presentation is a set of axioms each of which is
a pair of terms in context.
Example 3. The equational presentation of the typed λ-calculus follows.

(β) m : [σ]τ,n : [ ]σ B · ` app
(
abs( (x)m[x] ),n[ ]

)
≡ m

[
n[ ]
]

: τ

(η) f : [ ](σ => τ) B · ` abs
(

(x)app(f[ ], x)
)
≡ f[ ] : σ => τ

On top of the second-order equational presentation of the typed λ-calculus,
one can then formalise any higher-order equational theory (like, for instance,
equational axiomatisations of Church’s Simple Theory of Types [5]) as an ex-
tended second-order equational presentation. We emphasise, however, that the
expressiveness of our formalism does not rely on that of lambda calculi. For in-
stance, one can directly axiomatise primitive recursion [1], predicate logic [26],
and integration [25] as second-order equational presentations.
Logic. The rules of Second-Order Equational Logic are given in Figure 2. The
(Extended metasubstitution) rule is a syntactic rendering of the (Local param-
eterised composition) rule. The syntactic counterpart of the (Local character)
rule is derivable and hence omitted.

We illustrate the expressive power of the system by giving two sample deriv-
able rules.



(Axiom)

(Θ B Γ ` s ≡ t : τ) ∈ E
Θ B Γ ` s ≡ t : τ

(Equivalence)

Θ B Γ ` t : τ

Θ B Γ ` t ≡ t : τ

Θ B Γ ` s ≡ t : τ

Θ B Γ ` t ≡ s : τ

Θ B Γ ` s ≡ t : τ Θ B Γ ` t ≡ u : τ

Θ B Γ ` s ≡ u : τ

(Extended metasubstitution)

m1 : [ ~σ1]τ1, . . . ,mk : [ ~σk]τk B Γ ` s ≡ t : τ

Θ B ∆, ~xi : ~σi ` si ≡ ti : τi (1 ≤ i ≤ k)

Θ B Γ,∆ ` s{mi := (~xi)si}1≤i≤k ≡ t{mi := (~xi)ti}1≤i≤k : τ

Fig. 2. Second-Order Equational Logic.

(Substitution)

Θ B x1 : σ1, . . . , xn : σn ` s ≡ t : τ Θ B Γ ` si ≡ ti : σi (1 ≤ i ≤ n)

Θ B Γ ` s[si/xi]1≤i≤n ≡ t[ti/xi]1≤i≤n : τ

(Extension)

m1 : [ ~σ1]τ1, . . . ,mk : [ ~σk]τk B Γ ` s ≡ t : τ

m1 : [ ~σ1, ~σ]τ1, . . . ,mk : [ ~σk, ~σ]τk B Γ, ~x : ~σ ` s# ≡ t# : τ

where u# = u{mi := (~xi)mi[~xi, ~x]}1≤i≤k

Parameterisation. Every term Θ B Γ ` t : τ can be parameterised to yield a
term Θ, Γ̂ B · ` t̂ : τ where, for Γ = (x1 : τ1, . . . , xn : τn),

Γ̂ = (x1 : [ ]τ1, . . . ,xn : [ ]τn) and t̂ = t[x1[ ]/x1, . . . , xn[ ]/xn] .

Performing the operation on a set of equations E to obtain a set of parameterised
equations Ê, we have that the following are equivalent:

Θ B Γ `E s ≡ t : τ , Θ, Γ̂ B · `E ŝ ≡ t̂ : τ ,

Θ B Γ ` bE s ≡ t : τ , Θ, Γ̂ B · ` bE ŝ ≡ t̂ : τ .

Thus, without loss of generality, one may restrict to axioms containing an empty
variable context as in the CRSs of Klop [22]. However, there is no need for us
to do so here.

6 Model Theory

The model theory of Second-Order Equational Logic is presented and exempli-
fied. The soundness of deduction is a by-product of our methodology. In the next
section, the model theory is used to establish a conservative-extension result.



Semantics. The interpretation of a term Θ B ~x : ~σ ` t : τ in a model A is that
of its associated Kleisli map y(~σ)@τ //M(Θ)

(
see (5)

)
according to the general

definition (6). Explicitly, for Θ = (m1 : [ ~α1]β1, . . . ,mk : [ ~αk]βk) and Γ = (~x : ~σ),
we have that the interpretation

[[Θ B Γ ` t : τ ]]A : [[Θ B Γ ]]A // Aτ ,

where [[Θ B Γ ]]A =
∏

1≤i≤k Aβi
y( ~αi)×y(~σ), is given inductively on the structure

of terms as follows.

• [[Θ B Γ ` xj : σj ]]A is the composite [[Θ B Γ ]]A
π2 // y(~σ) // y(σj) // Aσj .

• [[Θ B Γ ` mi[t1, . . . , tmi ] : βi]]A is the composite

[[Θ B Γ ]]A
〈πi π1,f〉

// Aβi
y( ~αi) ×

∏
1≤j≤mi Aαi,j

ς
// Aβi

where f =
〈
[[Θ B Γ ` tj : αi,j ]]A

〉
1≤j≤mi

.
• For o : ( ~γ1)τ1, . . . , ( ~γn)τn // τ ,

[[Θ B Γ ` o
(
(~y1)t1, . . . , ( ~yn)tn

)
: τ ]]

is the composite [[Θ B Γ ]]A
〈fj〉1≤j≤n

//
∏

1≤j≤nAτj
y( ~γj) // Aτ where fj is

the exponential transpose of∏
1≤i≤k Aβi

y( ~αi) × y(~σ)× y(~γj)

∼=
∏

1≤i≤k Aβi
y( ~αi) × y(~σ, ~γj)

[[ΘBΓ, ~yj : ~γj`tj :τj ]]A // Aτj .

Models. A modelA satisfies Θ B Γ ` s ≡ t : τ , writtenA |= (Θ B Γ ` s ≡ t : τ),
iff [[Θ B Γ ` s : τ ]]A = [[Θ B Γ ` t : τ ]]A.

For an equational presentation E over a signature Σ, we write (Σ,E)-Mod
for the full subcategory of Σ-Mod consisting of the Σ-models A that satisfy the
axioms E. Thus, (Σ,E)-Mod ∼= (M, E)-Alg where E is the set of parallel pairs
of Kleisli maps corresponding to the pairs of terms in E.

Example 4. For the signature of the typed λ-calculus over a set of base types B
(Example 1), a model

Aτ
y(σ) abs // Aσ=>τ , Aσ=>τ ×Aσ

app
// Aτ

y(τ) ν // Aτ oo Aτ �•A

satisfies the (β) and (η) axioms (Example 3) iff the following diagrams commute.

Aτ
y(σ) ×Aσ

(β)

ς

��

abs×id

��

Aσ=>τ ×Aσ app
// Aτ

Aσ=>τ

(η)λ(app (id×ν))
��

id

��

Aτ
y(σ)

abs
// Aσ=>τ

The Lawvere theory L associated to such a model is a B=>-sorted Lawvere
theory equipped with cartesian closed structure L(~γ ·σ , τ) ∼= L(~γ , σ => τ).



On the other hand, for every cartesian closed category C , an assignment
C : B // C extends to an assignment C# : B=> // C

(
with C#(β) = Cβ for

β ∈ B, and C#(σ => τ) = C#(σ) +3C#(τ)
)

and canonically gives rise to a model
on 〈C#, C#〉 that satisfies the (β) and (η) axioms.

Soundness. The soundness of Second-Order Equational Logic follows as a direct
consequence of that of Equational Metalogic.

(Soundness) For an equational presentation E over a signature Σ, if the judge-
ment Θ B Γ ` s ≡ t : τ is derivable from E then A |= (Θ B Γ ` s ≡ t : τ)
for all (Σ,E)-models A.

7 Conservativity

Every first-order signature can be regarded as a second-order signature, and ev-
ery first-order term Γ ` t : τ as the second-order term · B Γ ` t : τ . It follows
that, for a set of first-order equations,

if Γ ` s ≡ t : τ is derivable in (first-order) equational logic, then
· B Γ ` s ≡ t : τ is derivable in second-order equational logic.

(7)

We now proceed to establish the converse.
Let Ω be a first-order signature over a set of types T . For C cartesian and

C ∈ C T , since 〈C,−〉 : C T // (SetF[T ])T preserves limits, it follows that an
Ω-algebra structure∏

1≤i≤n Cτi
// Cτ

(
τ1, . . . , τn // τ in Ω

)
on C yields the Ω-algebra structure∏

1≤i≤n 〈〈C,Cτi〉〉 ∼=
〈〈
C,
∏

1≤i≤n Cτi
〉〉

// 〈〈C,Cτ 〉〉
(
τ1, . . . , τn // τ in Ω

)
on 〈C,C〉. This Ω-algebra structure is compatible with the canonical monoid
structure, and we thus obtain an Ω-model on 〈C,C〉.

The interpretations of first-order terms are related as follows:∏
1≤i≤n 〈〈C,Cτi〉〉

[[ bΓ B · ` bt : τ ]]〈C,C〉
&&LLLLLLLLLL
∼= //

〈〈
C,
∏

1≤i≤n Cτi
〉〉

〈〈C, [[Γ ` t : τ ]]C〉〉
xxqqqqqqqqqq

〈〈C,Cτ 〉〉

and we have that C |= (Γ ` s ≡ t : τ) iff 〈C,C〉 |= (Γ̂ B · ` ŝ ≡ t̂ : τ). Conse-
quently, if A |= (Γ̂ B · ` ŝ ≡ t̂ : τ) for all (Ω, Ê)-models A ∈

(
SetF[T ]

)T then
C |= (Γ ` s ≡ t : τ) for all (Ω,E)-algebras C ∈ C T . Thus, the converse of (7)
holds, and we have established the following result.

(Conservativity) Second-Order Equational Logic is a conservative extension of
(First-Order) Equational Logic.

8 Completeness

We finally outline the semantic completeness of equational derivability and the
derivability completeness of (bidirectional) Second-Order Term Rewriting.



(m1 : [ ~σ1]τ1, . . . ,mk : [ ~σk]τk B ~x : ~α ` l ≡ r : τ) ∈ E
ρ : ~α // ~β , Θ B ~y : ~β, ~xj : ~σj ` tj : τj (1 ≤ j ≤ k)

Θ B ~y : ~β ` l[yρi/xi]1≤i≤|~α|{mj := ( ~xj)tj}1≤j≤k ≈ r[yρi/xi]1≤i≤|~α|{mj := ( ~xj)tj}1≤j≤k : τ

Θ B ~x : ~σ ` s ≈ t : τ Θ B Γ ` si ≈ ti : σi (1 ≤ i ≤ |~σ |)
Θ B Γ ` s[si/xi]1≤i≤|~σ| ≈ t[ti/xi]1≤i≤|~σ| : τ

Θ B Γ, ~xi : ~σi ` si ≈ ti : τi (1 ≤ i ≤ k)

Θ B Γ ` o
`
( ~x1)s1, . . . , ( ~xk)sk

´
≈ o
`
( ~x1)t1, . . . , ( ~xk)tk

´
: τ

`
o : ( ~σ1)τ1, . . . , ( ~σk)τk // τ

´
Fig. 3. Rules of ≈ (omitting those of equivalence).

Free algebras. It follows from our theory of free constructions [12, 13] that the
forgetful functor (Σ,E)-Mod // (SetF[T ])T is monadic. Hence, writing ME for
the induced monad, we have a quotient map q :M //ME .

In fact, sinceM is finitary and preserves epimorphisms, we have the following
construction of free algebras, see [12, 13].

(A) For E = {Θi B Γi ` li ≡ ri : τi}i∈I we take the joint coequaliser

(
[[Θi B Γi]]MΘ

)
@τi

[[ΘiBΓi`li:τi]]@τi //

[[ΘiBΓi`ri:τi]]@τi

//MΘ
q1

coeq
// // (MΘ)1 (i ∈ I)

(B) We perform the following inductive construction setting (MΘ)0 =MΘ.

MMΘ

µΘ
��

µ1

$$III
III

I

MΘ
q1

// // (MΘ)1

M(MΘ)n

µn+1 ))SSSSSSSSSS
Mqn+1

// //M(MΘ)n+1

pushout
µn+2

))RRRRRRRRRR

(MΘ)n+1 qn+2
// // (MΘ)n+2

(C) We obtain MEΘ as the colimit of

MΘ
q1 // // (MΘ)1 // // · · · // // (MΘ)n

qn // // · · ·

Hence we have an epimorphic quotient map

qΘ :MΘ // //MEΘ . (8)

In the light of the (Internal completeness) result, our method for establish-
ing completeness is to show that, for Θ B ~x : ~σ ` s : τ and Θ B ~x : ~σ ` t : τ , if
qΘ,τ,~σ(s) = qΘ,τ,~σ(t) then Θ B ~x : ~σ ` s ≡ t : τ is derivable from E.
Syntactic model. A concrete analysis of the constructions (A–C) yields a char-
acterisation of the quotient (8) as induced by the equivalence relation ≈ onMΘ
given by the rules in Figure 3. Consequently, since derivability in this deductive
system can be mimicked in Second-Order Equational Logic, we have:



(m1 : [ ~σ1]τ1, . . . ,mk : [ ~σk]τk B ~x : ~α ` l ≡ r : τ) ∈ E
ρ : ~α // ~β , Θ B ~y : ~β, ~xj : ~σj ` tj : τj (1 ≤ j ≤ k)

Θ B Γ ` s` : β` (1 ≤ ` ≤ | ~β |)

Θ B Γ ` l′ // r′ : τ

where u′ = u[yρi/xi]1≤i≤|~α|{mj := ( ~xj)tj}1≤j≤k[s /̀y`]1≤`≤|~β|

Θ B Γ ` si // ti : σi

Θ B Γ ` m[. . . , si, . . .] // m[. . . , ti, . . .] : τ

`
1 ≤ i ≤ n , (m : [σ1, . . . , σn]τ) ∈ Θ

´
Θ B Γ, ~xi : ~σi ` si // ti : τi

Θ B Γ ` o
`
. . . , (~xi)si, . . .

´
// o
`
. . . , (~xi)ti, . . .

´
: τ

„
o : ( ~σ1)τ1, . . . , ( ~σk)τk // τ ,

1 ≤ i ≤ k

«

Fig. 4. Second-Order Term Rewriting.

(Completeness) For an equational presentation E over a signature Σ, if
A |= (Θ B Γ ` s ≡ t : τ) for all (Σ,E)-models A then Θ B Γ ` s ≡ t : τ
is derivable from E.

Moreover, since ≈ can be characterised as the equivalence relation generated
by the Second-Order Term Rewriting relation // given in Figure 4, we also have:

(Completeness of Second-Order Term Rewriting) For every equational presen-

tation, Θ B Γ ` s ≡ t : τ iff Θ B Γ ` s oo ∗ // t : τ .

9 Conclusion

We have introduced Second-Order Equational Logic: a logical framework for
specifying and reasoning about simply-typed equational theories over algebraic
signatures with variable-binding operators. The conceptual part of our devel-
opment consisted in the synthesis of the equational deductive system from a
canonical algebraic model theory that forms the basis of Second-Order Univer-
sal Algebra; the technical part established the soundness and completeness of the
logic. We have also provided logical and semantic foundations for higher-order
term rewriting, specifically CRSs, by exhibiting Second-Order Term Rewriting
as a sound and complete computational method for establishing equality.

Acknowledgement. We are most grateful to Pierre-Louis Curien for detailed com-
ments on a preliminary version of the paper.
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