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Abstract
Every Algebraic Datatype (ADT) is characterised as the initial al-
gebra of a polynomial functor on sets. This paper extends the char-
acterisation to the case of more advanced datatypes: Generalised
Algebraic Datatypes (GADTs) and Inductive Families. Specifi-
cally, we show that GADTs and Inductive Families are charac-
terised as initial algebras of dependent polynomial functors. The
theoretical tool we use throughout is an abstract notion of poly-
nomial between sets together with its associated general form of
polynomial functor between categories of indexed sets introduced
by Gambino and Hyland.

In the context of ADTs, this fundamental result is the basis
for various generic functional programming techniques. To estab-
lish the usefulness of our approach for such developments in the
broader context of inductively defined dependent types, we apply
the theory to construct zippers for Inductive Families.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Data types and Structures; F.3.3 [Logics and
Meaning of Programs]: Studies of Program Constructs—Type
structure

General Terms Theory, Languages

Keywords Dependent types, categorical semantics

1. Introduction
It is well-known that every Algebraic Datatype (ADT) is char-
acterised as the initial algebra of a polynomial functor, see e.g.
(Hagino 1987). This representation of ADTs is the basis for var-
ious generic functional programming techniques, such as:

• fold and fusion techniques (Meijer et al. 1991; Sheard and Fe-
garas 1993; Launchbury and Sheard 1995; Takano and Mei-
jer 1995; Hu et al. 1996; Ghani et al. 2005; Katsumata and
Nishimura 2008; Hinze 2010),

• polytypic programming (Jansson and Jeuring 1997),

• Generic Haskell (Hinze and Jeuring 2003),

• program reasoning (Danielsson et al. 2006), and

• generic zippers (McBride 2001; Morihata et al. 2009).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
WGP’11, September 18, 2011, Tokyo, Japan.
Copyright c© 2011 ACM 978-1-4503-0861-8/11/09. . . $10.00

The scene of functional languages is however rapidly shifting
to incorporate programming with some kind of dependent types.
Hence, the generic programming techniques listed above should be
extended also to this setting. To tackle the problem in a principled
manner one needs first to consider algebraic foundations for induc-
tively defined dependent types, exhibiting them as initial algebras
of a class of polynomial functors. These can then be used to refor-
mulate and extend the known generic programming techniques for
ADTs.

This paper is concerned with inductively defined dependent
types as given by Generalised Algebraic Datatypes (GADTs) and
Inductive Families (IFs). We show that they are characterised as
initial algebras of dependent polynomial functors between indexed
sets (as induced by an abstract notion of polynomial between sets)
introduced by (Gambino and Hyland 2003). This fundamental re-
sult provides links between ADTs, GADTs, and IFs. Thus enabling
the transfer of technologies developed in one world (e.g. ADTs)
to another one (e.g. GADTs) using the following relationships
amongst these classes of datatypes:

ADTs
extend to // GADTs Inductive Families

mimicked by
kk

extend to ,,

As an application of the theory realising the above, we give a
construction of zipper data structures for IFs that extends the one
for ADTs.

Contributions. The contributions of the paper are:

• elaboration on the polynomial representation of various GADTs
and IFs that automatically generate polynomial functors for
them;

• presentation of a simple proof of the existence and construction
of initial algebras of polynomial functors for GADTs and IFs;

• development of zippers for IFs.

Our work aims to establish foundations for generic program-
ming with dependent types as understood in the following two
senses:

• datatype generic, in that programs that may be instantiated to
different types are not redefined for each one;

• type-theory generic, in that programming principles apply uni-
versally (for any language that supports dependent types, such
as Haskell, Agda (Norell 2007), Coq, Epigram (McBride 2004),
Marin-Löf Type Theory, and the Calculus of Inductive Con-
structions (CIC)).

The foundations of ADTs by means of initial algebras of polyno-
mial functors have achieved these two goals. For instance, princi-



ples based on this representation hold in any language that supports
ADTs.

This paper achieves the goal of datatype genericity. As for the
second goal of type-theory genericity, we restrict attention to total
type theories and programming. Thus targeting the total fragments
of Haskell and Agda.

The development of type-theory generic foundations requires an
abstract mathematical approach, not relying on syntactic formula-
tions. Thus, encoding formalisms within some particular powerful
type theory (as e.g. CIC) does not match our purposes. Hence, we
take a category-theoretic approach. We are however not concerned
here in providing the most general categorical framework covering
all known languages and type theories. Instead, we work with a
concrete mathematical universe appropriate for the total type the-
ory and functional programming settings, viz. the category of sets.

Organisation. The paper is organised as follows. We recall the
notions of polynomial between sets and of polynomial functors
between categories of indexed sets in Section 2. We characterise
GADTs and IFs, by means of polynomials, as initial algebras for
polynomials functors in Sections 3 and 4. In Section 5, we apply the
theory to the construction of zipper data structures for IFs. Finally,
in Section 6, we discuss related work.

2. Polynomials

Indexed sets. The universes of discourse for modelling GADTs
and IFs considered in this paper are categories of indexed sets.

For a set I, the category SetI has

• objects: A : I→ Set, i.e. I-indexed sets {A(i) | i ∈ I};
• arrows: I-indexed functions f : A → B, i.e. functions f (i) :

A(i)→ B(i) for all i ∈ I.

We note that this construction is parametric in the indexing set, and
we will indeed need to use it in a variety of cases SetI , SetJ , SetI×J ,
SetU , etc.

We need recall three important functors between categories of
indexed sets. These arise from a function h : I→ J as follows:

h∗ : SetJ → SetI h∗(A)
def
= A◦h ,

Σh : SetI → SetJ
Σh(A)( j)

def
= ∑

i∈I
j≡h(i)

A(i) ,

Πh : SetI → SetJ
Πh(A)( j)

def
= ∏

i∈I
j≡h(i)

A(i) .

We call the functor h∗ reindexing, the functor Σh dependent sum,
and the functor Πh dependent product. Note that in the definition
of the latter two the index i is subject to the condition j ≡ h(i),
where “≡” denotes the equality of elements in a set. Note also that
a functor F : SetI → SetJ can be regarded as “curried”, so that it
takes two arguments X ∈ SetI and j ∈ J to give F(X)( j) ∈ Set.
Polynomials. We consider an abstract form of polynomials and
polynomial functors due to (Gambino and Hyland 2003). These
mathematical structures will be used to express GADTs and IFs.

Definition 2.1 A (dependent) polynomial P is a triple P = (d, p,c)
of functions between sets as follows:

I E
doo p // B

c // J .

Given a polynomial as above, respectively applying the reindex-
ing, dependent product, and dependent sum to each of its functions,

one obtains the series of functors

SetI d∗ // SetE
Πp // SetB

Σc // SetJ . (1)

Note that reindexing reverses the direction of the arrow.

Definition 2.2 The (dependent) polynomial functor FP associated
to a (dependent) polynomial P = (d, p,c) is defined as the compos-
ite (1); that is,

FP(X)
def
= Σc(Πp(d∗(X))).

We typically omit the subscript P when the polynomial is clear
from the context.

A functor between categories of indexed sets is said to be poly-
nomial whenever it is isomorphic to one induced by a polynomial.

We strictly distinguish between the intensional descriptions pro-
vided by polynomials and the extensional counterparts that they
generate in the form of polynomial functors. This can be under-
stood as in ordinary mathematics, where one distinguishes the syn-
tactic expression x2 and the mathematical function that squares its
argument.

Polynomial functors on Set are instances of dependent poly-
nomial functors for I = J = 1. On the other hand, by expanding
Def. 2.2, dependent polynomial functors can be described con-
cretely as systems of polynomial functors in many variables. In-
deed, the description

Polynomial functor of a polynomial P = (d, p,c):

FP(X)( j) = ∑
b∈B

j≡c(b)

∏
e∈E

b≡p(e)

X(d(e))

exhibits the dependent polynomial functor FP : SetI → SetJ as a
“sum of products” functor. More precisely, it is a J-indexed system
of polynomial functors in I variables{

FP
(
X)( j) | j ∈ J

}
with FP

(
X)( j) given by the sum over b in B j = {b ∈ B | c(b)≡ j}

of the monomials consisting of the product of the X(d(e)) for e
ranging over Eb = {e ∈ E | p(e)≡ b}.

Polynomials have several interesting closure properties, see
e.g. (Gambino and Hyland 2003; Kock 2009; Gambino and Kock
2010). Indeed, they are closed under sums, products, composition,
parameterised initial algebras, and differentiation.

In this paper, we use the fundamental result that every polyno-
mial endofunctor has an initial algebra (see Thms. 3.5 and 4.1, and
Props. 3.9 and 4.2) and the operations of sum and differentiation.
The sum of a family of polynomials {Pk = (dk, pk,ck) | k ∈ K}, for
K an arbitrary set, is the polynomial

Σk∈KPk = I Σk∈KEk
[dk]k∈Koo Σk∈K pk// Σk∈KBk

[ck]k∈K// J

for which FΣk∈K Pk
∼= Σk∈KFPk . The operation of differentiation is

discussed in §5.

3. GADTs as Polynomials
We begin with the general definition of GADTs.

We let α,ε range over type variables, and τ,σ range over mono
types as defined by the grammar

τ ::= α | b | τ→ τ
′ | D τ



where b is a base type and D is a type constructor. We use the
notation α

n for a sequence α1, . . . ,αn of length n (the superscript n
may be omitted). Hereafter, we only treat mono types, and just call
them types.

A GADT D is a type constructor specified in the following
Haskell-like syntactic form (Schrijvers et al. 2009).

data D : ∗n→∗ where

K : ∀αl ,εm. τ1→ ··· → τk→ D σ

Here ∗n→∗ denotes ∗→ ·· ·→ ∗→∗ (with→ iterated n-times), K
is a constructor, the type σ can only contain type variables from α,
and each type τi can contain both type variables from α and ε. The
type variables ε can be seen as existentially quantified, as they do
not appear in the conclusion of the constructor (i.e. the right-hand
side of the final→).

Notation 3.1 Throughout the paper we will adopt the above for-
mat to present datatype declaration schema. While the scheme con-
tains only one constructor, we implicitly assume that the declara-
tion provides finitely many of them. This simplifies the presenta-
tion.

An example of GADT is the GADT Fin of “bounded natural
numbers”, see e.g. (Johann and Ghani 2008), defined by in Haskell
notation as

data Z; data S a

data Fin :: * -> * where
Zero :: Fin (S a)
Succ :: Fin a -> Fin (S a)

Here Z and S a are distinct types (not data), defined to be empty.
Universal quantification is omitted in Haskell’s GADT declara-
tions. The example does not involve existential type variables. The
type Fin n types natural numbers below n, e.g.

Succ Zero :: Fin (S (S Z)).

In particular, the type Fin Z is not inhabited.

In the following subsections, we proceed to give initial-algebra
semantics for GADTs by means of polynomials. We do this
in a stepwise fashion, considering in turn Simple GADTs, Sim-
ple GADTs with constant types, and Positive GADTs. We assume
that there are no mutual definitions of GADTs in a program. Thus,
any datatype appearing in the declaration of a GADT D must be
constructed without using D.

3.1 Simple GADTs
We consider first the following restricted form of GADTs, referred
to as Simple GADTs.

Simple GADT

data D : ∗n→∗ where

K : ∀αl ,εm. D(d1[α,ε])→ ··· → D(dk[α,ε])→ D(c[α])

Assumption: D does not appear in every di and c.

The notation e[α] stands for an expression e that may contain type
variables in α. The di and c are sequences of types of length n.

Simple GADTs provide the most basic form of GDTs that
depart from ADTs. Fin is an example of a Simple GADT, where
c = S, and there is no ε.

To model a Simple GADT declaration as a polynomial

I E
doo p // B

c // J

we need first to define the sets I,E,B,J. In general, elements of
these sets are indices of types. What are the indices of a GADT D?
They are themselves types. Hence we need to collect all types used
for defining the GADT D. The set of all closed types U is thus
defined as

U 3 τ ::= b | τ→ τ
′ | D τ.

Modelling Fin. We start by showing how to model the GADT Fin
as a prototypical example of a Simple GADT. We then generalise
the analysis to arbitrary Simple GADTs.

First, we describe each constructor as a polynomial. We denote
by ! the unique function from the empty set ∅ to a set. The
constructor Zero :: Fin (S a) is modelled by the polynomial

Zero = U ∅!oo ! // U
S // U.

The polynomial for Succ :: Fin a -> Fin (S a) is

Succ = U U
idoo id // U

S // U.

These definitions are systematically generated according to the
constructor specification. For instance, for

Succ :: Fin a -> Fin (S a),

the domain Fin a corresponds to the first id in the polynomial
Succ, and the codomain Fin (S a) corresponds to the S in the
polynomial. The middle id is due to Succ being unary.

Applying the construction (1) to each polynomial we obtain
their corresponding polynomial functors.

FZero : SetU
!∗ // Set∅

Π! // SetU
ΣS // SetU

FSucc : SetU
id∗ // SetU

Πid // SetU
ΣS // SetU

The polynomial functor FFin : SetU → SetU for the GADT Fin is
defined as the sum

FFin(X)(τ)
def
= FZero(X)(τ)+FSucc(X)(τ)

= ΣSΠ!!∗(X)(τ)+ΣSΠidid∗(X)(τ)

= ∑
a∈U

τ≡S a

∏
e∈∅

X(!(e)) + ∑
a∈U

τ≡S a

∏
e∈U
a≡id(e)

X(id(e))

= ∑
a∈U

τ≡S a

1+ ∑
a∈U

τ≡S a

X(a) = ∑
a∈U

τ≡S a

1+X(a)

The definition of this functor is equivalent to the definition by
pattern-matching

FFin(X)(S a) = 1+X(a)
FFin(X)(a) = ∅ otherwise.

It is a general phenomenon that the equality constraint under which
dependent sums are subject expresses pattern-matching. This is
also known as the Henry Ford encoding (see the discussion in §6).

Crucially, one can ensure that the functor FFin has an initial
algebra by a general construction (see Thm. 3.5). This can be
calculated as the union of the ω-chain

0⊆ FFin(0)⊆ F2
Fin(0)⊆ ·· ·

where 0 = {∅ | u ∈U} ∈ SetU . For n > 0, the ω-chain at an index
Sn a is

∅ ⊆ {Zero} ⊆ {Zero}+{Succ a | a ∈ {Zero}} ⊆ ·· ·



The union Fin ∈ SetU of these, for a ∈U , is thus described as

Fin(Sn a) = {Zero, Succ Zero, · · · ,Succn−1 Zero},
Fin(a) = ∅ otherwise.

This certainly models the GADT Fin.

General case. Let D be a Simple GADT with constructors
K1, . . . ,Kl . Since di[α,ε] is a sequence of types of length n,
seen as taking types α,ε as inputs, it is modelled as a func-
tion di : U l+m → Un. Similarly, c[α] is modelled as a function
c : U l →Un.

Notation 3.2 Given two functions f : A → C, g : B → C, we
write [ f ,g] : A + B→ C for the function [ f ,g](x) = f (x) if x ∈ A,
[ f ,g](x) = g(x) if x ∈ B. We also use the function ∇ = [idA, idA] :
A+A→ A, and more generally ∇k : kA→ A as its k-folded version
(here kA denotes the k-fold sum A+ · · ·+A).

The polynomial Pi for a constructor Ki of a Simple GADT is
defined as

Un kU l+m
[d1, . . . ,dk]oo ∇k // U l+m

cπl // Un

where πl : U l+m→U l is the projection: πl(τ l ,τl+1, . . . ,τl+m) = τ
l .

This induces the polynomial functor FPi : SetU
n → SetU

n
given by

FPi X(τ) = ∑
α∈U l ,ε∈Um

τ≡c(α)

X(d1(α,ε))×·· ·×X(dk(α,ε))

Notation 3.3 As above, for ease of reference, we hereafter present
the polynomial of a datatype within double-framed boxes and indi-
cate its corresponding polynomial functor with a left vertical bar.

The polynomial functor FP : SetU
n → SetU

n
for the Sim-

ple GADT D is the sum of the above:

FPX(τ) = FP1 X(τ)+ · · ·+FPl X(τ).

(Recall that as noted in §2 the sum of polynomial functors is again
a polynomial functor.)

We record the following corollary of Thm. 3.5.

Proposition 3.4 The polynomial functor of a Simple GADT has an
initial algebra.

3.2 Simple GADTs with constant types
Simple GADTs lack constant parameters within their definition.
Consider the GADT Vec of length-indexed lists, called vectors.

data Vec :: * -> * where
Nil :: Vec Z
Cons :: Int -> Vec n -> Vec (S n)

This declaration involves the constant type Int, not covered by
the previous account. So we extend the class of Simple GADTs
as follows.

Simple GADT with constant types

data D : ∗n→∗ where

K : ∀αl ,εm. Q[α,ε]→ D(d1[α,ε])→ ··· → D(dk[α,ε])
→ D(c[α])

Here Q introduces “constant types” as a sequence of arbitrary types
that may contain type variables, D does not appear in Q, and c is a
sequence of types of length n.

Comprehension of an indexed set. We present a construction that
collects all elements of an indexed set. This is needed to define the
polynomial for GADTs with constants.

Let A ∈ SetI . The disjoint union of the family {A(i) | i ∈ I} is
usually defined by the union of index-labelled sets as

]i∈IA(i)
def
= ∪i∈I {i}×A(i)
= {(i,a) | i ∈ I, a ∈ A(i)}.

Hence the disjoint union operation constructs a single set from an
indexed set. We use the new notation {{{A}}} for ]i∈IAi, and call it
the comprehension of A, as it comprehensively collects all elements
of A. For a pair (i,a) ∈ {{{A}}}, the first component is an index i ∈ I,
and the second an element a ∈ A(i). We define the “projection”
function π that selects the corresponding index of an element by

π : {{{A}}}→ I; π(i,a) = i.

(The theoretical background for the notion of comprehension is
discussed in §6.5).

Polynomial for a constant. Using comprehension, one can define
a constant type Q ∈ SetU as the polynomial PQ

U ∅!oo ! // {{{Q}}} π // U .

Indeed, calculating the polynomial functor FPQ : SetU → SetU , we
have

FPQ X(τ) = ΣπΠ!!∗(X)(τ)

= ∑
(i,t)∈{{{Q}}}
τ≡π(i,t)

1 = ∑
(τ,t)∈{{{Q}}}

1 = ∑
t∈Q(τ)

1 ∼= Q(τ).

The important points in this derivation are: (τ, t) ∈ {{{Q}}}⇔ t ∈ Q(τ)
(by definition) and ∑s∈S1∼= S (for every set S).

Interpretation of a type. We also prepare the way to interpret
types. The polynomial of a GADT D is denoted PD, and we use the
shorter notation FD for its associated polynomial functor FPD . The
initial FD-algebra is denoted µFD. Each base type b is associated
with some set B; e.g. Int is associated with Z.

The interpretation [[αl ` τ]] of a mono type τ under the type vari-
able context α is an indexed set in SetU

l
, taking closed types σ∈U l

to give the set [[αl ` τ]](σ) interpreting τ instantiated at σ. The def-
inition is as follows:

[[α ` αi]](σ) = [[ ` σi]]
[[α ` b]](σ) = B

[[α ` τ→ τ
′]](σ) = [[α ` τ]](σ)→ [[α ` τ

′]](σ)
[[α ` D τ

n]](σ) = (µFD)([[α ` τ1]](σ), · · · , [[α ` τn]](σ))

We remark that, even though a polynomial PD may use the inter-
pretation function, the definition is not circular because we do not
consider mutual GADTs in this paper.

Polynomial for a Simple GADT with constant types. We define
the polynomial for Simple GADTs with constants.

Suppose the “constant type” part Q[α,ε] in a declaration of a
Simple GADT with constant types to be a sequence Q1[α,ε], . . . ,Qp[α,ε]
of types. Each type Qi[α,ε] is modelled as the indexed set Q̃i =
[[α,ε ` Qi]] ∈ SetU

l+m
, and the type Q[α,ε] is modelled as Q̃ =

Q̃1×·· ·× Q̃p ∈ SetU
l+m

. The expressions c are modelled as func-
tions c : U l → Un. The polynomial PD for a Simple GADT with



constants is

Un k{{{Q̃}}}
[d1, . . . ,dk]◦ kπoo ∇k // {{{Q̃}}}

cπlπ // Un

This gives the polynomial functor FD : SetU
n → SetU

n

FDX(τ) = ∑
α∈U l ,ε∈Um

τ≡c(α)

Q̃(α,ε)×X(d1(α,ε))×·· ·×X(dk(α,ε))

Theorem 3.5 For every Simple GADT D with constant types, the
polynomial functor FD has an initial algebra D. Moreover, D can
be explicitly constructed as

D(u) =
[

i∈Nat
F i

D(0)(u)

for every u ∈Un.

Proof It is well-known that there are adjoints: Σh a h∗ a Πh
(see §6.2). Thus, being left adjoints, ([d1, . . . ,dk]π)∗ and Σcπl π

preserve colimits (see e.g. (Mac Lane 1971)). Moreover, since Π∇k
is finitary (see e.g. (Gambino and Kock 2010, Sec. 1.19)), the
composite FD preserves filtered colimits. Hence one can apply the
Basic Lemma of (Smyth and Plotkin 1982) to construct the initial
algebra. This is as stated because colimits in categories of indexed
sets are given pointwise. �

Example 3.6 (Well-scoped λ-terms) Consider the GADT of
well-scoped untyped λ-terms.

data Lam :: * -> * where
Var :: Fin n -> Lam n
App :: Lam n -> Lam n -> Lam n
Abs :: Lam (S n) -> Lam n

This is a Simple GADT with constant types because it contains
Fin n. Using Fin ∈ SetU as constructed in §3.1, we define the
polynomials

Var = U ∅!oo ! // {{{Fin}}} π // U

App = U 2U
∇oo ∇ // U

id // U

Abs = U U
Soo id // U

id // U

Applying Def. 2.2 yields the polynomial functor F : SetU → SetU

FX(n) = Fin(n)+X(n)×X(n)+X(S n)

which is the same as the well-known one from (Fiore et al. 1999).
The initial algebra Lam can be explicitly calculated by repeatedly
applying F to 0 ∈ SetU as in the case of Fin.

Example 3.7 (Nested datatype style λ-terms) Bird and Paterson
gave a slightly different representation of well-scoped λ-terms us-
ing a so-called nested datatype (Bird and Paterson 1999b). It can be
presented as a GADT as follows.

data Incr :: * -> * where
Zero :: Incr a
Succ :: Incr a -> Incr a

data Lam :: * -> * where
Var :: a -> Lam a
App :: Lam a -> Lam a -> Lam a
Abs :: Lam (Incr a) -> Lam a

An important difference with the previous representations is that
the domain of Var is a type variable a. The use of this type variable
is essential to get an element (i.e. de Bruijn variable) from an
instantiated type. The interpretation of the type variable in Var is
[[α ` α]] ∈ SetU , hence

Var = U ∅!oo ! // {{{[[α ` α]]}}} π // U

App = U 2U
∇oo ∇ // U

id // U

Abs = U U
Incroo id // U

id // U

These yield the polynomial functor FLam : SetU → SetU

FLamX(τ) = [[ ` τ]]+X(τ)×X(τ)+X(Incr τ)

Here we assume that U does not contain types of the form Lam σ.
This is practically unproblematic because the type variable a is
usually expected to be instantiated with type level natural num-
bers. The reason for this exclusion is that [[ ` τ]] uses µFLam when
τ = Lam σ. The complete solution to cope with this mutual ref-
erence may be formulated in the framework of indexed induction-
recursion (Dybjer and Setzer 2006) or using the technique of nested
inductive types (Abbott et al. 2004).

Example 3.8 (Typed expressions) Consider the GADT of typed
expressions.

data Expr :: * -> * where
Const :: Int -> Expr Int
IsZero :: Expr Int -> Expr Bool
If :: Expr Bool -> Expr a -> Expr a -> Expr a

We set KZ = {Z | u ∈U} ∈ SetU , and define KInt ,KBool : U →U
by KInt(τ) = Int, KBool(τ) = Bool. The polynomials are

Const = U ∅!oo ! // {{{KZ}}}
KInt π // U

IsZero = U U
KIntoo id // U

KBool // U

If = U 3U
[KBool ,id,id]oo ∇3 // U

id // U

These yield the polynomial functor F : SetU → SetU

FX(τ) = (τ≡ Int)×Z
+ (τ≡ Bool)×X(Int)

+ X(Bool)×X2(τ).

where (τ≡ σ)
def
= {? | τ≡ σ}; i.e. (τ≡ σ) is the singleton set {?} if

τ = σ, and the empty set if τ 6= σ. This is equivalent to the definition
by pattern-matching

FX(Int) = Z + X(Bool)×X2(Int),

FX(Bool) = X(Int) + X(Bool)×X2(Bool),

FX(τ) = X(Bool)×X2(τ) otherwise.

3.3 Positive GADTs
We finally consider the most general case, allowing the constructors
to be parameterised by functions.



Positive GADT

data D : ∗n→∗ where

K : ∀αl ,εm.Q[α,ε]→ (S1[α,ε]→ D(d1[α,ε]))→ ···
→ (Sk[α,ε]→ D(dk[α,ε]))→ D(c[α])

Assumption: D does not appear in Q and every Si.

Each Si is modelled as S̃i ∈ SetU
l+m

. We define the function d :
{{{Q̃× (S̃1 + · · ·+ S̃k)}}} →Un by d((α,ε), t,(i,s)) = di(α,ε), where
each d1, . . . ,dk is modelled as di : U l+m → Un. We also define
p1((α,ε), t,(i,s))= ((α,ε), t) for t ∈ Q̃(α,ε), s∈ S̃i(α,ε), 1≤ i≤ k.

Considering the previous accounts, we let the polynomial for a
Positive GADT D be given by

Un {{{Q̃× (S̃1 + · · ·+ S̃k)}}}
doo p1 // {{{Q̃}}}

cπlπ // Un

This gives the polynomial functor

FDX(τ) = ∑
((α,ε),t)∈{{{Q̃}}}

τ≡c(α)

∏
((α,ε),t,(i,s))∈{{{Q̃}}}×(S̃1+···+S̃k)

X(di((α,ε),s))

= ∑
α∈U l ,ε∈Um

τ≡c(α)

Q̃(α,ε)× (S̃1(α,ε)→ X(d1(α,ε)))×·· ·

× (S̃k(α,ε)→ X(dk(α,ε)))

These polynomial functors have weaker preservation proper-
ties than those of the previous cases: they preserve κ-colimits for
κ a limit ordinal greater than the cardinality of every S̃i(α,ε) (so
that, for instance, they preserve ω-colimits when every S̃i(α,ε)
is a finite set). In this case, the existence and explicit construc-
tion of initial algebras is guaranteed by a transfinite version of
the Basic Lemma (Smyth and Plotkin 1982) previously developed
by (Adamek 1974). Hence we also have the following.

Proposition 3.9 The polynomial functor of a Positive GADT has
an initial algebra.

4. Inductive Families as Polynomials
Dybjer introduced the notion of Inductive Family (IF) as a powerful
schema for inductively defined dependent types (Dybjer 1994). For
brevity, we treat here a slightly cut down version of this notion. As
before, we do this in a stepwise fashion, considering first Simple IFs
and then Basic IFs.

In this section, we use Agda notation (Norell 2007). Further-
more, we assume that there are no mutual definitions between IFs
in a program. That is, any type appearing in the declaration of an
IF does not refer to it.

4.1 Simple Inductive Families
We consider first a simple, yet practical, class of IFs close to
Simple GADTs with constant types.

Simple Inductive Family

data D : I→ Set where

K : ( j : J)→ (e : E)→
Q[ j,e]→ D(d1[ j,e])→ ··· → D(dk[ j,e])→ D(c[ j])

Here I = I1×·· ·× In, J = J1×·· ·× Jl ,
and E = E1×·· ·×Em, Q = Q1×·· ·×Qq.

Assumption: D does not appear in I,J,E,Q

We assume I,J,E to be product types to avoid clutter. Of course,
our modelling works also for the usual presentation in curried form.

In a Simple IF declaration, E is a type other than D. Each
d1, . . . ,dk,c is a sequence of expressions of length n. Also j : J
denotes a sequence ( j1, . . . , jl) : J1×·· ·× Jl (though we avoid the
tedious notation j for it), as so does e : E.

To compare the scheme for Simple IFs to the one for Sim-
ple GADTs with constants, note that the variable j and the type E
in a Simple IF respectively correspond to the type variables α and
the constant part Q in a Simple GADT.

The essential difference is that in a Simple IF the parameter j
does not stand for a tuple of types but for a tuple of elements of
types J1, . . . ,Jl . This scheme is more natural than GADTs in many
practical examples because one does not need to use a type class
technique to express constraints.

The scheme of Simple IFs practically covers almost all everyday
uses of IFs. Indeed, except for the use of large type parameters
such as (A : Set), all examples in (Oury and Swierstra 2008) are
Simple IFs.

Polynomial for a Simple IF. Our polynomial modelling follows.

• The types J1, . . . ,Jl are modelled as sets by means of the initial-

algebra semantics, and J
def
= J1×·· ·× Jl ∈ Set. Likewise, E

def
=

E1×·· ·×Em ∈ Set.
• The type Q is modelled as an indexed set Q ∈ SetJ×E .

• Each expression di[ j,e] is modelled as a function di : J×E→ I.

• The expression c is modelled as a function c : J→ I.

The polynomial PD for this scheme is the same as the polyno-
mial for Simple GADTs with constant types.

I k{{{Q}}}
[d1, . . . ,dk] ◦ kπoo ∇k // {{{Q}}}

cπlπ // I

It gives the polynomial functor FD : SetI → SetI

FDX(m) = ∑
j∈J,e∈E
m≡c( j)

Q( j,e)×X(d1( j,e))×·· ·×X(dk( j,e))

Theorem 4.1 . For every Simple IF D, the polynomial functor FD
has an initial algebra D. Moreover, D can be explicitly constructed
as

D(u) =
[

i∈Nat
F i

P(0)(u)

for every u ∈ I.

Proof Analogous to Thm. 3.5. �

4.2 Basic Inductive Families
We introduce an extension to the scheme of the previous section.



Basic Inductive Family

data D : I→ Set where

K : ( j : J)→
(e : E[ j])→ ((s : S1[ j,e])→ D(d1[ j,e,s]))→ ···

→ ((s : Sk[ j,e])→ D(dk[ j,e,s]))→ D(c[ j])

where I = I1×·· ·× In, J = J1×·· ·× Jl , E = E1×·· ·×Em.

Assumption: D does not appear in I,J,E and every Si.

This scheme is similar to that of Positive GADTs (with the vari-
able e corresponding to the type variables ε) but generalised to con-
structors parameterised by dependent functions.

Polynomial for a Basic IF. Modelling Basic IFs is a further
elaboration on the previous developments.

• J,c are modelled as before.

• E is modelled as an indexed set E ∈ SetJ .

• Each type Si is modelled as an indexed set Si ∈ Set{{{E}}}; so that
S1 + · · ·+Sk ∈ Set{{{E}}}, and hence {{{S1 + · · ·+Sk}}} ∈ Set.
• Each expression di[ j,e,s] is modelled as a function

di : {{{Si}}}→ I.

• The function d : {{{S1 + · · ·+Sk}}}→ I is defined by

d(( j, t),(i,s)) = di( j, t,s)

The polynomial PD for a Basic IF D is

I {{{S1 + · · ·+Sk}}}
doo π // {{{E}}} cπ // I

This gives the polynomial functor FD : SetI → SetI

FPX(u) = ∑
j∈J

u≡c( j)

∏
(i,s)∈(S1+···+Sk)( j,e)

X(di( j,e,s))

∼= ∑
j∈J,e∈E( j)

u≡c( j)

∏
s∈S1( j,e)

X(d1( j,e,s))×·· ·×∏
s∈Sk( j,e)

X(dk( j,e,s))

As in Prop. 3.9 we have the following.

Proposition 4.2 The polynomial functor for a Basic IF has an
initial algebra.

Basic IFs are very similar to the Inductive Families of (Dybjer
1994). The differences are that in the latter

(i) every sequence of types is a so-called telescope (namely, later
types may depend on earlier types in the sequence), and

(ii) the large type Set is allowed as a type of a parameter.

The model above can be extended to cope with these: (i) is
easily modelled by using the dependent sum of sets corresponding
to the types; as for (ii), modelling large types can be treated in the
framework of induction-recursion (Dybjer and Setzer 2003, 2006).

5. Application: Dependent Zippers
As an application of the use of polynomial functors, we consider
zippers for IFs.

A zipper is a datatype for navigating a tree-like structure (Huet
1997). It is given by a pair of the current focus (called the cursor)

in a tree, and a context consisting of the list of depth-one linear
contexts obtained after navigation. Zippers have only been consid-
ered on ordinary ADTs (Huet 1997; McBride 2001; Adams 2010;
Morihata et al. 2009), such as lists and trees.

McBride found the interesting phenomenon that the deriva-
tive of the polynomial functor associated with an ADT pro-
vides the type of depth-one linear contexts for the zipper on the
datatype (McBride 2001). For instance, for the ADT of binary
trees with associated polynomial functor FX = 1 + X × X , the
formal derivative F ′X = X +X gives the type of depth-one linear
contexts because: when the cursor goes to the left (resp. right) child
of a tree, one needs to push the right (resp. left) subtree to a stack
for later navigation; so that the left (resp. right) summand in F ′X is
for the right (left) depth-one linear context.

In this section, we consider partial derivatives for dependent
polynomial functors, observe that the notion is again well-suited for
the representation of depth-one linear contexts, and thereby develop
zippers on IFs and GADTs.

5.1 Partial derivatives of the polynomial functor for λ-terms
We saw in Example 3.6 that the polynomial functor for well-scoped
λ-terms is F : SetNat→ SetNat defined by

FX(n) = Fin(n)+X(n)×X(n)+X(S n).

where Nat is the ADT of natural numbers.
We now want to built the zipper for λ-terms. This is of practical

importance; for instance, to develop programs for navigating and
modifying λ-terms (in a structured editor, in an interpreter, etc.)
represented by the GADT or IF of this polynomial functor. To
define the zipper, we need the type of depth-one linear contexts.
This we will build from the partial derivatives of the polynomial
functor.

For the case of well-scoped λ-terms, the partial derivative of F
with respect to m ∈ Nat is ∂m F : SetNat→ SetNat given by

∂m F(X)(n) = (m≡ n)× (X(n)+X(n)) + (m≡ S n)×1. (2)

In general, the index m of the partial derivative ∂m F designates the
index of the cursor of the zipper. In the case of the GADT or IF of
λ-terms, an index of the datatype is an environment (i.e. a set of all
possible free variables). The summands of (2) are the type of depth-
one linear contexts in the environment n. At the technical level one
can see this by observing that there is a canonical function

plug : µF(m)×∂m F(µF)(n)→ µF(n)

that plugs a λ-term in environment m into a depth-one linear con-
text for λ-terms in environment n to construct a λ-term in envi-
ronment n. Indeed, according to the three summands of (2), the
function plug is built from the following three functions

plugL : µF(m)×µF(m)→ µF(m) , plugL(t,c) = App t c
plugR : µF(m)×µF(m)→ µF(m) , plugR(t,c) = App c t
plugI : µF(S m)→ µF(m) , plugI(t) = Abs t

that respectively plug a term in the left-hand-side of an application,
in the right-hand-side of an application, and inside an abstraction.

Formula (2) is obtained as an instance of a general formula for
partial derivation that we introduce next.

5.2 Differentiation
The differentiation operator ∂ maps a polynomial functor F :
SetI → SetJ to a polynomial functor ∂F : SetI → SetI×J . It is
assembled from the partial derivatives of F with respect to i ∈ I,
for which we write ∂i F : SetI → SetJ , in a pointwise fashion as
follows

∂F(X)(i, j) = ∂i F(X)( j).



data Ctx : I→ Set where

[] : {m : I}→ Ctx(m)
Ki : { j : J}→ {e : E}→ Q[ j,e] →

D(d1[ j,e])→ ··· → D(dk[ j,e])→ Ctx(c[ j])→ Ctx(di[ j,e])︸ ︷︷ ︸
with only D(di[ j,e]) missing


i∈[k]

downi : { j : J}→ {e : E}→ Zipper(c[ j])→ Zipper(di[ j,e])
downi(K q a1 . . . ai−1 ai ai+1 . . . ak . C) = (ai . Ki q a1 . . . ai−1 ai+1 . . . ak C)
upfromi : { j : J}→ {e : E}→ Zipper(di[ j,e])→ Zipper(c[ j])
upfromi(ai . Ki q a1 . . . ai−1 ai+1 . . . ak C) = (K q a1 . . . ai−1 ai ai+1 ak . C)

data Zipper : I→ Set where

. : {m : I}→ D(m)→ Ctx(m)→ Zipper(m)
failure : {m : I}→ Zipper(m)

Figure 1. Zipper for a Simple IF D

The partial derivative operators are to satisfy the following basic
laws.

• For every monomial M = (I d←− E !−→ 1 id−→ 1) with induced
monomial functor FM(X) = ∏e∈E X(d(e)),

∂i FM(X) ∼= ∑
`∈E

i≡d(`)

∏
e∈E\{`}

X(d(e)).

• For a family of polynomial functors {Fk : SetI → SetJ | k ∈ K},
∂i (∑k∈K Fk)(X) ∼= ∑k∈K ∂i Fk(X).

It follows that for a polynomial P = (I d←− E
p−→ B c−→ J) with

induced polynomial functor

FP(X)( j) = ∑
b∈B

j≡c(b)

∏
e∈E

b≡p(e)

X(d(e))

its partial derivative should be given by

Partial derivatives of polynomial functors

∂i FP(X)( j) = ∑
b∈B

j≡c(b)

∑
`∈Eb
i≡d(`)

∏
e∈Eb\{`}

X(d(e)) (3)

where
Eb

def
= {e ∈ E | b≡ p(e)}

Intuitively, this definition of partial derivative can be understood
as follows. The set Eb consists of the available indices of the
product part of the polynomial functor FP. If the index of the cursor
of a zipper uses ` ∈ Eb, then the indices of the rest depth-one linear
context are the elements in Eb except for ` (as this index is being
used as that for the cursor).

We instantiate the general formula for partial derivatives in two
concrete cases.

Proposition 5.1 The partial derivatives of the polynomial functor
for a Simple IF D are

∂m FD(X)(n) ∼= ∑
j∈J,e∈E
n≡c( j)

∑
i∈[k]

m≡di( j,e)

Q( j,e)× ∏
`∈[k]\{i}

X(d`( j,e))

where [k]
def
= {` ∈ N | 1≤ `≤ k}.

The partial derivatives of the polynomial functor for λ-terms
of (2) are an instance of the above proposition.

Proposition 5.2 The partial derivatives of the polynomial functor
for a Basic IF D are

∂m FD(X)(n) = ∑
j∈J,e∈E( j)

n≡c( j)

∑
(i,s)∈S( j,e)
m≡di( j,e,s)

∏
(i′,s′)∈S( j,e)\{(i,s)}

X(di′( j,e,s′))

where S
def
= S1 + · · ·+Sk.

Polynomials are indeed closed under differentiation; as one has
that

∂FP(X)∼= F∂P(X)
for

∂(I d←− E
p−→ B c−→ J)

def
= (I d′←− E ′

p′−→ B′ c′−→ I× J)

where
Ei,b = {` ∈ E | i≡ d(`),b≡ p(`)} ,

E ′ = ∑
(i, j)∈I×J

∑
b∈B

j≡c(b)

∑
`∈Ei,b

Eb \{`} ,

B′ = ∑
(i, j)∈I×J

∑
b∈B

j≡c(b)

Ei,b ,

d′((i, j),b, `,e) = d(e) ,

p′((i, j),b, `,e) = ((i, j),b, `) ,

c′((i, j),b,e) = (i, j) .

Finally, and importantly for what follows, we note that for a
polynomial functor F : SetI → SetI , its partial derivatives come
equipped with canonical functions

(i) µF(m)×∂m F(µF)(n)→ µF(n), and

(ii) µF(n)×∑b∈B Em,b→ 1+
(

µF(m)×∂m F(µF)(n)
)

for (i) plugging-in data in a depth-one linear context, and (ii) for,
whenever possible, disassembling data at a given index, into a
datum and a depth-one linear context.

5.3 Dependent zippers
The zipper for a polynomial functor F : SetI → SetI is the indexed
set Zipper ∈ SetI defined as

Zipper(m)
def
= µF(m)×Ctx(m)



where
Ctx(m)∼= 1+ ∑

n∈I
∂m F(µF)(n)×Ctx(n). (4)

As such, Zipper consists of pairs of the current focus and a context.
A context in Ctx is a list of depth-one linear contexts for the focus.

Simple IFs. Figure 1 gives an implementation of the zipper
datatype for a Simple IF D in Agda. It is based on the partial
derivatives of the associated polynomial functor FD as explained
above, and provides the navigation operations down and upfrom.

The implementation of Ctx by means of the datatype Ctx is
derived as follows. By (4), the type of a constructor of Ctx should
be

∑
n∈I

∂m FD(D)(n)×Ctx(n)→ Ctx(m).

By expanding ∂m FD(D)(n) for the case of the Simple IF D (see
Prop. 5.1), this type is isomorphic to

∑
n∈I

∑
j∈J,e∈E
n≡c( j)

∑
i∈[k]

m≡di( j,e)

Q( j,e)× ∏
`∈[k]\{i}

D(d`( j,e))×Ctx(n)→ Ctx(m).

By instantiating the equality constraints for n and m, and swapping
the second and the third sum, this is in turn isomorphic to

∑
i∈[k]

∑
j∈J
e∈E

Q( j,e)× ∏
`∈[k]\{i}

D(d`( j,e))×Ctx(c( j))→ Ctx(di( j,e))

which is the type used for the constructor Ki in the declaration
of Ctx in Figure 1. Thus, we implement Ctx as the datatype Ctx
with depth-one linear contexts given by constructors Ki, where i
indicates the missing argument of the original constructor K.

The navigation operations are defined schematically for ev-
ery K and Ki. Failure cases are omitted for simplicity. The func-
tion (downi z) expresses “going down to the i-th child in the D-part
in the zipper z”. Similarly, (upfromi z) expresses “going up from
the i-th child”. Going down and up to a child in the Q-part in a zip-
per are defined similarly; as so are change, insertion, and deletion
operations on zippers.

Instantiating this general zipper for the datatype of λ-terms, we
obtain the zipper on well-scoped λ-terms. The zipper at the root
of a λ-term t is (t . []), expressing that the cursor is focused
on t and that the current context is empty. Starting from this, the
navigation operations enable any traversal of the structure of the
λ-term. In this process, a context increases or decreases as needed.
Note that the crucial operations of stripping and adding binders on
λ-terms by means of down and upfrom are defined using suitable
indexes on the type Zipper. Hence the operations maintain the
invariant of terms being well-scoped. This is one of the principles of
dependently-typed programming: program correctness is ensured
by typing.

Note also that our schema is generic in the sense that its instan-
tiation to any Simple IF yields a zipper. We say that a datatype is
zipperable whenever there is a zipper datatype for it that supports
navigation operations. As we have seen, then, every Simple IF is
zipperable.

A Simple IF can be simulated by a Simple GADT with constant
types because the polynomials obtained for these are the same. This
is an example of what we have referred to in the Introduction as
“enabling the transfer of technologies (the zipper) developed in
one world (IFs) to another one (GADTs)”. It follows that every
Simple GADT is zipperable.

Basic IFs. Is a Basic IF zipperable? In theory, yes; though in prac-
tice this is unclear. This is because even though we have obtained
an explicit formula for the partial derivatives of arbitrary Basic IFs

from which one can in principle implement the type Zipper to-
gether with the navigation operations, the kind of dependently-
typed programming required may be too involved. The issue here is
the implementation of the “set difference” S( j,e) \ {(i,s)} used in
the definition of ∂m F(X)(n) (see Prop. 5.2). This operation invokes
computations and equality in the definition of the datatype Ctx with
the effect that the pattern matching in the down and upfrom opera-
tions requires explicit proofs to be passed to the type checker. (This
complication does not appear in the case of Simple IFs because the
required “set difference” was implemented by explicitly omitting
an argument from the type of a context Ki in the definition of Ctx.)

Fortunately, almost all dependently-typed data structures found
in the literature (Oury and Swierstra 2008; Norell 2008; Bove and
Dybjer 2008) are Simple IFs. Hence there seems to be no current
need for zippers on non-simple inductive families. We hope that the
difficulty discussed above will be resolved when dependently-typed
programming is mature.

In the case of Positive GADTs the situation is worse, as Haskell
seems not to be powerful enough to manipulate the needed complex
types for indexing.

6. Discussion and Related Work
6.1 Henry Ford encoding and GADTs
The departure of GADTs from ordinary ADTs resides in that the
codomain of each constructor may have various instances, e.g.

data Expr :: * -> * where
Const :: Int -> Expr Int
IsZero :: Expr Int -> Expr Bool
If :: Expr Bool -> Expr a -> Expr a -> Expr a

Using equality constraints, however, this can be rewritten as

data Expr :: * -> * where
Const :: (a ~ Int) => Int -> Expr a
IsZero :: (a ~ Bool) => Expr Int -> Expr a
If :: Expr Bool -> Expr a -> Expr a -> Expr a

where (a ~ τ) is the equality constraint a ≡ τ on types. In this
manner, GADTs can be regarded as parameterised ordinary ADTs,
with all constructors having the same codomain type, but under
equality constraints. This technique is known from the early days
of GADTs (Hinze 2003) and has been used in the formulation of
type inference for GADTs (Schrijvers et al. 2009).

In fact, the idea was already known for IFs before GADTs
were proposed by the Haskell community. McBride explained the
general technique using Henry Ford’s phrase: “You can have any
color you like, as long as it’s black.” (McBride 1999, Sec. 3.5). In
this light, the use of the equality type in a constructor declaration
such as the one below

Const : ∀α.(α≡ Int)→ Int→ Expr(α)

expresses that “you can have any type α you like, as long as it’s
Int”.

6.2 Left Kan extensions and GADTs
Another technique to make all codomains of a GADT declaration
have the same type (by appropriately shifting the varying types to
the domain side) involves the use of the category-theoretic con-
cepts of Kan extension and adjunction1. These notions play a fun-
damental role in what regards to the three functors used to define

1 In the context of functional programming, the concept of right Kan exten-
sion has been used to derive generalised fold for nested datatypes (Bird and
Paterson 1999a; Abel et al. 2005). Various adjunctions, including those for
Kan extensions, are applied to develop “adjoint fold” techniques in (Hinze
2010).



polynomial functors, and so we review that first. Subsequently, we
consider encodings for GADTs by left Kan extensions.

Kan extensions. It is well-known in categorical logic and type the-
ory that the dependent sum functor Σh, the reindexing functor h∗,
and the dependent product functor Πh form a string of adjunctions.
Explicitly, for every h, we have the following two adjoint pairs of
functors (Lawvere 1969)

Σh a h∗ a Πh.

This fact was used in arguing for the existence of initial algebras.
This adjointness is an instance of another well-known adjoint-

ness characterising Kan extensions:

Lanh a (−◦h) a Ranh.

Here Lanh, left Kan extending along h, is the left adjoint to the
precomposition functor (−◦ h) = h∗. Dually, Ranh, right Kan ex-
tending along h, is the right adjoint to h∗.

In the presence of enough categorical structure, left and right
Kan extending can be respectively described by means of coends
and ends (Mac Lane 1971, Chap. X.4), for which one typically
uses the notation

R
due to Yoneda (Yoneda 1960). (A coend is

a colimit, readily described as a coequalizer between coproducts;
dually, an end is a limit, readily described as an equalizer between
products.) In the context of indexed sets, the (co)end formulae for
Kan extending along h : I→ J are:

(LanhX)( j) =
Z i∈I

J(h(i), j)×X(i) ∼= ∑
i∈I

j≡h(i)

X(i) = Σh(X)( j)

(RanhX)( j) =
Z

i∈I
[J( j,h(i))⇒X(i)] ∼= ∏

i∈I
j≡h(i)

X(i) = Πh(X)( j)

Note that a set J is considered as a discrete category. Hence the
homset J(h(i), j) is either empty or consists only of the identity,
which entails the equality constraining j ≡ h(i).

Lan encoding for GADTs. Johann and Ghani have studied a
technique to provide initial-algebra semantics for GADTs using
left Kan extensions (Johann and Ghani 2008). Their approach is to
reduce the problem to the case of ordinary initial-algebra semantics
of ADTs. For example, in this theory, the GADT Fin is transformed
to the following one

data Fin :: * -> * where
NZero :: Lan S One j -> Fin j
NSucc :: Lan S Fin j -> Fin j

data One j = One
data Lan h _X j = forall i. Lan (Eql j (h i), _X i)
data Eql i j where Refl :: Eql i i

This seems mysterious; though, as we proceed to explain, the trans-
formed datatype is equivalent to the original one.

First, the type Lan is an implementation of the left Kan ex-
tension formula for LanhX( j) as ∑i∈U ( j ≡ h(i)) × X(i). The
set-theoretic sum with equality is implemented by an existential
type (NB: this forall means ∃) with the equality type Eql on
Haskell types.

Second, since Lanh is left adjoint to −◦h, there is a one-to-one
correspondence as follows

f : Fin→ Fin◦S
f̌ : LanS Fin→ Fin

(5)

That is, precomposition with S in the codomain can be transported
to left Kan extension along S in the domain2. Hence, by adjoint-
ness, to give

NSucc : (LanS Fin)( j)→ Fin( j)

is mathematically equivalent to give

Succ : Fin( j)→ Fin(S( j)).

The Lan encoding is thus equivalent to the original definition.

6.3 Henry Ford and Lan encodings
We observe that the Henry Ford and Lan encodings are equivalent.
Indeed, using that (LanS Fin)( j) ∼= ∑i∈U, j≡S(i) Fin(i), one equiva-
lently has that

NSucc : ∑
i∈U

j≡S(i)

Fin(i) → Fin( j).

This is a set-theoretical expression of the Henry Ford encoding

Succ :: (j ~ S i) => Fin i -> Fin j

stating “you can have any j you like, as long as it’s S(i) (for
some i)”.

6.4 Polynomial functor approach
The polynomial functor approach structurally subsumes the Henry
Ford and Lan approaches. We explain this in the light of the previ-
ous example.

Recall that the polynomial associated to the constructor

Succ :: Fin a -> Fin (S a)

is

Succ = U U
idoo id // U

S // U .

Its associated polynomial can be presented in the following three
equivalent forms

∑
i∈U, j≡S(i)

X(i)︸ ︷︷ ︸
= ΣSX( j)

∼= ∑
i∈U

( j ≡ S(i))×X(i)︸ ︷︷ ︸
∼= LanSX( j)

∼= ΣSΠidid∗(X)( j)︸ ︷︷ ︸
= FSuccX( j)

.

It is from these that the three approaches to modelling the type of
Succ arise; namely

(Henry Ford encoding) ∑i∈U, j≡S(i) Fin(i)→ Fin( j)

(Lan Encoding) LanSFin( j)→ Fin( j)

(Polynomial Functor) FSuccFin( j)→ Fin( j)

The Henry Ford and Lan encodings are just ways in which to
transfer indexing structure from the codomain to the domain. As
such, then, they correspond to the polynomial functor approach
restricted to polynomials of the form

I I
idoo id // I

c // J .

What is the advantage of the polynomial functor approach?
There are at least three advantages.

2 This is the fundamental principle underlying adjunctions (and Galois con-
nections). Currying may be the most well-known adjunction for functional
programmers: f : A→ (B⇒C)

f̌ : A×B→C
(6)

Observe the formal similarity between (5) and (6).



[I] The first advantage resides in the general form

I E
doo p // B

c // J

taken by polynomials, that allows one to express varying multi-ary
forms for the argument types of a constructor. This has been a main
topic of the paper. For instance, we saw in §3.1 that Simple GADTs
are modelled by a polynomial of the form

Un kU l+m
[d1, . . . ,dk]oo ∇k // U l+m

cπl // Un .

An algebra for the associated polynomial functor is an indexed
set X together with an indexed function

∑
i∈U

j≡c(i)

X(d1(i))×·· ·×X(dk(i))→ X( j)

that provides a k-ary constructor with varying indexing as specified
by each of the di. As shown in §3.3 and §4.2, more involved forms
for the domain (e.g. with dependent function spaces) can be also
expressed.

[II] The second more important advantage is that every polynomial
functor has an initial algebra constructed by (a possibly transfinite)
iteration. This property is not enjoyed by the Henry Ford and Lan
approaches. In them initial algebras are only guaranteed when the
arguments to Σ or Lan are well-behaved. Hence the polynomial
functor approach is generic, and more appropriate than the other
two approaches for modelling GADTs and IFs; making clear the
polynomial character of these datatypes.

[III] The third prospective advantage is the generality of the frame-
work. The original notions of polynomial and polynomial func-
tor (Gambino and Hyland 2003) are more general that considered
here and were developed within an ambient lccc (locally cartesian
closed category), viz. a category for which every slice category is
cartesian closed. The slice categories of the ambient lccc are used
for indexing, and polynomial functors are induced by means of ad-
joints Σh a h∗ a Πh between slices available for every map h. The
set-theoretic setting is the special case for the lccc Set.

While in this paper we have restricted attention to the set-
theoretic setting, it is interesting to consider domain-theoretic set-
tings (i.e. categories of CPOs) and more involved models of higher-
order polymorphism that more tightly match with Haskell. In this
respect, lcccs may not be general enough and the more general
closed comprehension categories may be more appropriate (Ja-
cobs 1999, Sec. 10.6). These cover the domain-theoretic case and
model dependent sums, reindexing, dependent products, and com-
prehension. As such, thus, they support our polynomial modelling
of GADTs and IFs. This direction will be pursued in future work.

6.5 On comprehension
The construction of the set {{{Q}}} for an indexed set Q of §3.2 can
be understood from various categorical viewpoints. While this fact
has not been used explicitly in the paper, it might be useful for fur-
ther generalisation and so we note it here. For presheaves, this con-
struction was first used by Yoneda and is often called the category
of elements. More generally, it is also seen as the Grothendieck
construction of an indexed category with the projection π forming
a fibration. The notation {{{−}}} is taken from that for “comprehen-
sion” in a comprehension category (Jacobs 1999, Sec. 10.4.7).

6.6 Coinductive datatypes
We have chosen the set-theoretic setting in this paper to concretely
show the correspondence between datatype declarations, polyno-
mials, and polynomial functors with minimal categorical notions,
and aiming at the application to generic programming. This setting

does not only suffices to model total functional programming with
inductively defined datatypes, but also with coinductively defined
ones. Indeed, since d∗ and Πp preserve limits, and Σc preserves
limits of ωop-chains, it follows that every polynomial functors has a
final coalgebra. These are non-well-founded data structures. Hence,
the lazy datatypes of Haskell and the codata feature of Agda might
be modelled in this setting. The details are left as future work.

6.7 Further related work
Gambino and Hyland introduced dependent polynomial functors
between slices of an ambient lccc and show that they have initial
algebras provided that the ambient category admits W-types (Gam-
bino and Hyland 2003). In this paper, we reveal the polynomials
for GADTs and IFs, and thereby provide a simple and direct initial-
algebra semantics by means of dependent polynomial functors that
generalise the polynomial functors for ADTs. This characterisation
is well-suited for exchanging technologies between functional pro-
gramming and type theory.

The mathematics of polynomial functors is investigated in (Kock
2009; Gambino and Kock 2010). This work might be useful for fur-
ther applications to GADTs and IFs with our analysis.

Inductive Families were formulated by (Dybjer 1994). (Dy-
bjer and Setzer 2003) gave an initial-algebra characterisation of
inductive-recursive definitions, which covers all IFs. Since one
needs to model an extra inductive-recursive feature, the form of
functors for IFs is not that clear in that presentation.

Indexed containers (Altenkirch and Morris 2009) are a type-
theoretic rendering of dependent polynomial functors. Morris and
Altenkirch gave a type-theoretic characterisation showing that in-
dexed containers can express IFs.

Differentiation has been considered for generalised species of
structures (Fiore 2005) and for (non-indexed) containers (Abbott
et al. 2005). In both cases, derivatives can be characterised as
linear exponentials. This extends to dependent polynomial functors
between categories of indexed sets.

There are a number of works on generic programming within
dependent type systems based on modelling dependent types in a
dependent type theory (Altenkirch and McBride 2002; Benke et al.
2003; Chapman et al. 2010). These models are very often founded
on some mathematical semantics of dependent type theory, such as
(indexed) induction-recursion (Dybjer and Setzer 2003, 2006) or
containers (Abbott et al. 2005; Altenkirch and Morris 2009), imple-
menting these semantics at the level of type theory. The polynomial
functor approach will be also realised in this way. This will serve as
a basis for transporting generic functional programming techniques
to dependent type theory.
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