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Abstract. In the first part of the paper I investigate categorical mod-
els of multiplicative biadditive intuitionistic linear logic, and note that
in them some surprising coherence laws arise. The thesis for the second
part of the paper is that these models provide the right framework for
investigating differential structure in the context of linear logic. Conse-
quently, within this setting, I introduce a notion of creation operator (as
considered by physicists for bosonic Fock space in the context of quan-
tum field theory), provide an equivalent description of creation operators
in terms of creation maps, and show that they induce a differential oper-
ator satisfying all the basic laws of differentiation (the product and chain
rules, the commutation relations, etc.).

1 Introduction

Recent developments in the model theory of linear logic, starting with the work
of Ehrhard [6, 7], have uncovered a variety of models with differential structure.
Examples include Kothe sequence spaces [6], finiteness spaces [7], the relational
model, generalised species of structures [11,12], interaction systems [15], and
complete semilattices [4]. This differential structure manifests itself as differential
operators. In this context, a differential operator is a natural linear map

A—oB—I!A—oA—oB (1)
that, when embedded as a map
A=B—A= (A —B) (2)

in the !-Kleisli category, enjoys the properties and satisfies the laws of dif-
ferentiation. Intuitively, such an operator D provides a linear approximation
D[f]x : A — B for every function f : A = B at any point x : A.

The algebra underlying these models has also been investigated recently.
Ehrhard and Regnier [8], isolated local-additive and commutative bialgebraic-
exponential structure and explained, amongst other things, how they support

Addendum: The Strength Law (14) in Definition 4.2(1) is redundant.



the product rule. Blute, Cockett, and Seely [4], considered local-additive and ex-
ponential structure further supporting the chain rule. A common feature of these
two approaches is that they take the local-additive structure, which allows mor-
phisms to be added and is the minimal expression of linear-algebraic structure,
as primitive. However, since local-additive structure in the presence of product
structure is equivalent to biproduct structure, one may instead take as primitive
the latter; which, furthermore, has the added bonus of inducing commutative
bialgebraic-exponential structure. This is the viewpoint advocated here. It leads
to the consideration of models of multiplicative biadditive intuitionistic linear
logic, in which the additive structures (given by product and coproduct) coin-
cide (as a biproduct), and to the thesis that these provide the right framework
for investigating differential structure in the context of linear logic.

The present work is close in spirit to that of Blute, Cockett, and Seely [4] on
differential categories, especially their Section 4. For latter comparison, I now
highlight the relevant parts of their development. A notion of differential operator
essentially as in (1) is introduced (see [4, Definition 2.3]). This is so that, for
instance, the induced differential operator as in (2) satisfies the usual product
and chain rules. Differential operators are shown to be in correspondence with
so-called deriving transformations of the form

0: A®IA—IA (3)

(see [4, Definition 2.5 and Proposition 2.6]). Moreover, these are further seen to
correspond to certain natural maps

n: A—1A (4)

(see [4, Definition 4.11 and Theorem 4.12]).

Without loss of generality, my analysis of differential structure starts with
the consideration of operators as in (3). These I call creation operators; as, inter-
preting the exponential as the bosonic Fock space construction [5], that models
quantum systems of many identical non-interacting particles, they intuitively
correspond to operators modelling particle creation. Indeed, categorical models
of multiplicative intuitionistic linear logic come equipped with a canonical notion
of annihilation operator

x: IA—ARIA

with respect to which creation operators are shown to satisfy the commutation
relations (see e.g. [14]). The above forms for creation and annihilation operators
is non-standard; the standard forms are derivable.

The concept of creation operator given in this paper is novel and differs
from that of deriving transformation mentioned above. This is clearly seen by
comparing Theorem 4.1 below, which establishes a bijective correspondence be-
tween creation operators and certain natural maps as in (4), that I call creation
maps, and [4, Corollary 4.13], which provides the corresponding result for de-
riving transformations. A crucial difference between the axiomatisations is that
the one provided here, besides being sharper, involves an axiom describing the



interaction between the differential structure and the monoidal strength of the
exponential. The present axiomatisation of creation maps has been directly influ-
enced by and developed through a thorough analysis of the differential structure
of generalised species of structures [10, 11], which is a bicategorical generalisation
of that of the relational model of linear logic.

Organisation and contribution of the paper. Section 2 provides basic back-
ground on biproduct structure. The emphasis there is on giving an algebraic pre-
sentation, analysing some of its consequences (importantly commutative bialge-
braic structure), and then characterising it in terms of enrichment. I guess that
these results are folklore. However, I do not know references for them. In Sec-
tion 3, I define categorical models of multiplicative biadditive intuitionistic linear
logic to be models of multiplicative intuitionistic linear logic, as have been con-
sidered in the literature, equipped with biproduct structure compatible with the
monoidal structure. This directly induces commutative bialgebraic-exponential
structure. More surprisingly, I note that in these models some unexpected co-
herence laws arise. These are important for the analysis of differential structure
carried over in Section 4. As mentioned above, differential structure is first anal-
ysed in terms of creation operators, for which the commutation relations with
respect to a canonical notion of annihilation operator hold. Subsequently, cre-
ation operators are characterised in terms of the simpler notion of creation maps.
These are shown to induce differential operators satisfying all the basic laws of
differentiation. Finally, Section 5 concludes with general remarks and prospects
for further work.

2 Biproduct Structure and Enrichment

Biproduct structure. 1 give an algebraic presentation of biproduct structure,
both on categories and on monoidal categories. This is the key to the modelling
of biadditive structure in models of linear logic.

Definition 2.1. A biproduct structure on a category is given by a symmetric
monoidal structure (L, %) on it together with natural transformations

T \u y T
A
v A
AxA AXA
such that:

1. (A,u,V) is a commutative monoid.

ToA 5 AxA < axT AsARA XL AxA

. e = |°

A*A—V>A

\%/
A



AxA Y A%A

A

A

2. (A,n,A) is a commutative comonoid.

///?\\\ A—2 > A%A
AR TN g |1ea

A
SN
A*xA - A¥A

Definition 2.2. A biproduct structure is degenerate whenever the following fur-
ther law

AXA

A/ﬁ//]\\z\A

18 satisfied.

The terminology of Definition 2.1 is justified by the following result.

Proposition 2.1. In a category with biproduct structure (L, %;u,V;n,A) the
following hold.

1. T s a zero object; that is, it is both initial and terminal.
2. The diagram

A= AxT K AxB <L T4p<--3B

1$ a coproduct.
3. The diagram

A< A¥T <X AxB"FL T4B -~ B

1$ a product.

That T is initial and Proposition 2.1(2) follow from Definition 2.1(1); dually,
that T is terminal and Proposition 2.1(3) follow from Definition 2.1(2).



Corollary 2.1. In a category with biproduct structure (LI, *;u,V;n,A), the
natural transformations w, V, n, A are monoidal; that is,

ur = nyt = 1t
Upxp = L—=>IT%1L —— A%*B
NMaxp = A¥B —— IT¥IT -==T
and
Vigr = Ixl-—=>1
Vass = AxBxAxB T AxaxBsB 25T AxB

Apsgs = A%B 2% ApaxBxB L AxBrAxB

It is important for our latter development to note that biproduct structure
is equivalent to commutative bialgebraic structure.

Proposition 2.2. In a category with biproduct structure (I, *;u,V;n,A), the
commutative monoid and comonoid structures (u, Vin,A) form a commutative
bialgebra; that is, w and V are comonoid homomorphisms and, equivalently, n
and A are monoitd homomorphisms.

A AXA A AXA
2;// \\Qg A%Al Tv%v
I 1 I AXAXAXA ARAXAXA
1¥y*1

A A
u A v n
I \/ \A%A A%A/ \% I
N /uf “ nﬂk a

I*xL IxT

Enrichment. 1 now recall the characterisation of biproduct structure in the
context of enrichment.

Let Mon (CMon) be the symmetric monoidal category of (commutative)
monoids with respect to the universal bilinear tensor product. Recall that
Mon-categories (CMon-categories) are categories all of whose homs [A, B] come
equipped with a (commutative) monoid structure (Oa B, +a ) such that com-
position is strict and bilinear; that is,

O,cf=0a, and fOcaA =0cpB
for all f: A — B, and
g(f+f)=gf+gf’ and (g+g')f=gf+g'f
for all f,f":A —B and g,g’:B—C.



Proposition 2.3. The following are equivalent.

1. Categories with biproduct structure.
2. Mon-categories with (necessarily enriched) finite products.
3. CMon-categories with (necessarily enriched) finite products.

The enrichment of categories with biproduct structure is given by convolu-
tion (see e.g. [21]) as follows:

0 = (A——>T—"5B)

%
f+g = (A—2> A%A —>BxB —_>B)

For SLat the symmetric monoidal category of semilattices with respect to
the universal bilinear tensor product we have the following result, which justifies
the terminology of Definition 2.2.

Proposition 2.4. The following are equivalent.

1. Categories with degenerate biproduct structure.
2. SLat-categories with (necessarily enriched) finite products.

Biproduct and monoidal structure. 1 further consider biproduct structure
on symmetric monoidal categories. To this end, note that in a monoidal category
with tensor ® and binary products x there is a natural distributive law as follows:

(=(Mm®1l,mel):(AxB)®C—(A®C)x (B®C(C)

Definition 2.3. A symmetric monoidal structure (I, ®) and a biproduct struc-
ture (L, *%;u, V;n,A) on a category are compatible whenever the following hold:

“&’I T C{@; A®1 A C Vol
A®C A®C A@C///7 ¢ \\\&A®C
\E\\ /47 j?\\ //47
T (A® C)*(A®C)

Recall that a Mon-enriched (symmetric) monoidal category is a (symmetric)
monoidal category with a Mon-enrichment for which the tensor is strict and
bilinear; that is, such that

Ox,y ® f = OxgA,yoB and f®0x,y =0Aagx,BoY
for all f: A — B, and
g (f+f)=gxf+g®f  and (g+9g)@f=gaf+g' @f

for all f,f":A—B and g,¢g’ : X —Y.



Propositions 2.3 and 2.4 extend to the symmetric monoidal setting.
Proposition 2.5. The following are equivalent.

1. Categories with compatible symmetric monoidal and biproduct structures.

2. Mon-enriched symmetric monoidal categories with (necessarily enriched)
finite products.

3. CMon-enriched symmetric monoidal categories with (necessarily enriched)
finite products.

Corollary 2.2. The following are equivalent.

1. Categories with compatible symmetric monoidal and degenerate biproduct
structures.

2. SLat-enriched symmetric monoidal categories with (necessarily enriched)
finite products.

3 Models of Multiplicative Biadditive Intuitionistic
Linear Logic

Models of multiplicative intuitionistic linear logic. 1 recall the definition
of categorical model of multiplicative intuitionistic linear logic as it has been
developed in the literature, see e.g. [17,20,2,3,1,18,19].

Definition 3.1. An E(!X)—model 1 given by a category equipped with

1. a symmetric monoidal structure (I,®);
2. a symmetric monoidal endofunctor (!, er:I—1Lep:!1Ax®!B— !(A®B));

. 5
3. a monoidal comonad structure A <— 1A —> 1A ;

4. a monoidal commutative comonoid structure I <— 1A L IA®IA
subject to the following compatibility laws:

IA —>= 1A




Amongst the many coherence conditions imposed by the above definition on
Li-models (for which see e.g. [3]) note the following two:

IA®IB—2=1(A®B)
e®el/ le/\@)B (6)

@] —=—>1

IA® !B ? (A ®B)

d®dl ldm}gs (7)
!A@!A@!B@!BM!AG@!B@!A@!BW!(A@B)@!(A@B)

Definition 3.2. An [,f&x—model 8 an Efg—model on a category with finite prod-
ucts (T, x).

In this context, we obtain the Seely monoidal natural isomorphism
s: IA®!B—==!(A x B)
given by the composite

A®B 2 IA B % (IA®1B) “““*I(Ag D) x (1©B)) == (A x B)

with inverse

(A x B) —% 1A x B) @ I(A x B] 22 A 1Y@ (T x B) —~> 1A ® IB

Also the map sy =1 L% T is an isomorphism, with inverse e : |'T — L.

It follows that the diagrams
/ \ (8)

A®IA (A x A)

SA,

A
7N
I . IT

commute; so that the contraction and weakening maps, d and e, arise from the
product structure via the Seely isomorphims.




Proposition 3.1. In an Ef&x—model the following coherence law holds.

IA® !B = I(A x B)

5®5l \L‘SAXB (10)
A @ 1B ———>!(!A ® |B) ———= !I(A x B)

The proof uses the definition of s, and the monoidality and associativity laws
of o.

Models of multiplicative biadditive intuitionistic linear logic. 1 define
categorical models of multiplicative biadditive intuitionistic linear logic to be
models of multiplicative intuitionistic linear logic equipped with compatible
biproduct structure. This is somewhat in the vein of Blute, Cockett, and Seely [4,
Section 4].

Definition 3.3. An L' *—model 8 an E -model equipped with a biproduct struc-
ture (L, ¥;u, Vi;n, A) compatzble with the symmetric monoidal structure (I, ®).

In this context, and via the monoidality of the Seely isomorphisms, the com-
mutative bialgebra structure induced by the biproduct structure yields commu-
tative bialgebraic-exponential structure.

Definition 3.4. In L' *—models, the coweakening and cocontraction maps,
1 and m, are defined as follows

ST lu

1 =1 IT A

m = IA®IA —225 1(AxA) —L> 1A

Proposition 3.2. In an Lfg s ~model, the natural transformations

I, S
—m

A®IA A®IA
form a commutative bialgebra.
More surprisingly, the following result exhibits three coherence laws enjoyed

by E models that can respectively be thought of as a kind of unfolding of
the coherence conditions (5), (6), (7).
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Theorem 3.1. In an Eég %—model the following coherence laws hold.

1.
A ° A
! b
!A®mf&?ﬂA®HAE:3WA®MJ
2,
IA®!B—2>I!(A®B)
=
I® 'B TARB (12)
I
Q] —=——>1
3.
A ® !B ® (A ®B)
mE1l
'AQR!A®!B m (13)
1®1d

| |

The proof of Theorem 3.1(1) uses the definition of m and the coherence law (10).
The proof of Theorem 3.1(2) uses the coherence law (9), the definitions of sy
and 1, the monoidality of (!, @1, @), and the strictness of the tensor product to
show that both composites are equal to the following one

10

[®!B-==IB (A ® B)

Finally, the proof of Theorem 3.1(3) uses the product structure of (I, %), the
bilinearity of the tensor product, the definitions of m and s~', the coherence
law (8), and the monoidality of d.

4 Differential Structure

The analysis of differential structure in £f® s-models follows.

Creation operators. The starting point is the definition of annihilation and
creation operators; the terminology for which is justified by Proposition 4.1.

Definition 4.1. In an E(!X)-model, the annihilation operator o : |1A — A ® |A
s the natural transformation given by the following composite

A—2>IARIA S AxIA
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Definition 4.2. A creation operator in an £<!X> %—model is a natural transfor-
mation
0:ARQIA—IA

satisfying the following laws.
1. Strength.

AIA®B—2 1A% B @

1®1®o<l TGA@)B (14)

(A ®B)

A®!A®B®!Bl® ®1A®B®'A®'31®T®>A®B®'(A®B)
2. Comonad.
A®IA—2 AQIA—2 s 1A—2 <A
1ge / 1®dl Taz (15)
A®I ARIARIA 358 AR !IA

3. Multiplication.

ADIA®DIA 25 A0 IA 1A

h / (18)

ARIA

The above form for creation and annihilation operators is non-standard. More
commonly, see e.g. [14], the literature deals with creation operators 9, : |A — A
for vectors v : I — A and annihilation operators o, : |A — A for covectors
v/ : A — 1. In the present setting, these are derived as follows:

3y, = IA=>10A 2 AgIA 1A
= IASARIALOL I9IA == 1A

Proposition 4.1. Creation and annihilation operators in L' Bk -models satisfy
the following commutation relations:

1. x0 =14+(1®0)(y®1)(1®x) :Ax!A—=A®!A
2.0(1®0) =0(1®03)(y®1) :ARAR®IA—IA
3 (I1x)x = (y®1)(1®x)x :1A—ARAR!A

It follows that
pdy = (IA==101A “2% TQIA == 1A) + (1A 220 1A)
9,0y = 0,0,

O(u/O(v/ = O(V/O(u_/

forallu,v:I—=A and u’,v': A—1L
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For comparison with the work of Blute, Cockett, and Seely on deriving trans-
formations, note that the laws of (15) are the linearity and the chaining con-
ditions of [4, Definition 2.5] and that the law of (16) is the multiplication rule
of [4, Definition 4.10]. The law of (14) is novel, and in its presence the constant
maps and the copying conditions of [4, Definition 2.5] are derivable (see Proposi-
tion 4.2 below). Thus, creation operators are deriving transformations satisfying
the multiplication rule.

Proposition 4.2. FEvery creation operator 0 in an Efg) *—model s such that

1. e0=0:A®R!A—1, and
d®1

2. dd = (91402) (1®d) : AQIA —= |AQIA where 31 = AQIARQIA —> IAQIA

andaz:A®'A®'A—>'A®A®'A£ﬁ>'A®’A

Propositions 4.1 and 4.2 are better established using the representation of
creation operators given in Theorem 4.1 below. The proofs of Propositions 4.1(1)
and 4.2(2) use the biproduct structure, the strictness and bilinearity of the
tensor product, the coherence of the Seely isomorphisms, and the bialgebraic-
exponential structure; the proofs of Propositions 4.1(26/3) use the commutative
of the bialgebraic-exponential structure; the proof of Proposition 4.2(1) uses the
strictness of the tensor product.

Creation maps. Creation operators have a simpler axiomatisation in terms of
creation maps.

Definition 4.3. A creation map in an L' 0% " -model is a natural transformation
N : A — A satisfying the following laws.

1. Strength.
A®'B—>'A®'B—>' (A ®B)

2. Comonad.

1A A—t s A—> 1A
VN ' |
= my
v

As a direct consequence of the strength and first comonad law, creation maps
are coherent with respect to the monoidal strength.
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Proposition 4.3. Every creation map n in an E(!g s ~model satisfies the follow-
ing coherence law: )

AXB
nen w
'A® !B " (A ® B)

Theorem 4.1. The mappings

DARIA—>IA > N=A=>A0] —2>AQIA-2IA
NiA—>1A > 0= AxA 2L AgIA "= A

yield a bijection between creation operators and creation maps in /Q(!g) *—models.

To show that the map n induced by a creation operator 0 satisfies the strength
law one uses the strength law for 0 and the coherence law (12); to show that n
satisfies the first comonad law one uses the first comonad law for 9; to show that
1 satisfies the second comonad law one uses the second comonad law and the
multiplication law for 0. Conversely, to show that the operator 0 induced by a
creation map 1 satisfies the strength law one uses the strength law for n and the
coherence law (13); to show that 0 satisfies the first comonad law one uses the
biproduct structure, the strictness of the tensor product, and the first comonad
law for n; to show that 0 satisfies the second comonad law one uses the strength
law and second comonad law for m, the coherence condition (5), the coherence
laws (11) and (13), and the comonad laws for (!, €,8); to show that 0 satisfies
the multiplication law one uses the associativity of m.

Differentiation. In the presence of the above differential structure, one obtains
a natural differential operator

D[—] =1[0,—]: ['A,B] —[A ® A B]
such that the following rules hold.

1. Identity rule.
D[] = 0o

2. Composition rule.
D[t f] = {DIf] (f:!'A—B,{:B—C)

3. Constant rule.

4. Sum rule.
D[f + ¢g] = DI[f]+ D[g] (f,g:!A —B)
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5. Tensor rule.
D[(feg)d] = (D[fl®g+ (feD[g])(y®1)) (led) (f:!A—B,g:!A—C)
6. Linearity rule.
Dilea] = ((1®ea) ({:A—B)
7. Chain rule.
Digff] = D[g](DIfl®ff)(1®d)  (f:!A—B,g:!B—C)

where ff = (1f)5: 1A —IB

Further, for ,Cg_;lé—models, i.e. in the presence of closed structure (—o), one
may internalise the differential operator as a partial derivative operator

D=Au:AA:IA—B.M:IAf(du®x)) :A—o(lA—-B)—o!A—oB
for which, moreover, the following rules hold.
1. Symmetry rule.
u:Av:AF DyoD,=D,oDy :!A—B
2. Strength rule.
f:l(A®B) —oC,u:A x:!A,y:!B
+ Du[7\x : !A.f((p(x@)y))}x = letv®z=x(y):B®!B in Dugyv [f] ((p(x®z)) :C

5 Concluding Remarks

The general theme of this paper has been the investigation of categorical models
of multiplicative biadditive intuitionistic linear logic, and of differential structure
therein. Within each of these two strands, various possibilities for research still
remain. I mention a few here.

From the abstract theoretical viewpoint, the consideration of £ -models
equipped with differential structure as categorical models of the differential
A-calculus of Ehrhard and Regnier [9] will be considered in the full version of
the paper. A more important next step, however, is to work out the type and
proof theory of E:é_;k—models, both as a term assignment system and a graph-
ical calculus, and thereafter extend them to incorporate differential structure.
In another direction, the relationship of our axiomatics with the earlier cate-
gorical axiomatic investigation of differential structure provided by Synthetic
Differential Geometry (see e.g. [16, Part I]) should be addressed.

From the model-theoretic viewpoint, the discussion of concrete £575 -models
equipped with differential structure will be considered in the full version of the
paper, where the diligent, but otherwise evident, verification that the models
mentioned at the beginning of the Introduction are examples will be covered.
More interestingly, I conjecture that the category of convenient vector spaces
and linear maps of Frolicher and Kriegl [13] provides yet another example; as so
may be the case, indicated to me by Anders Kock in correspondence, with the
category of modules for the ring object of line type in some models of Synthetic
Differential Geometry (see e.g. [16, Part I1I]).
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