
Classical Logic with Mendler Induction

A Dual Calculus and its Strong Normalization

Marco Devesas Campos? and Marcelo Fiore??

Computer Laboratory, University of Cambridge, United Kingdom

Abstract. We investigate (co-)induction in Classical Logic under the
propositions-as-types paradigm, considering propositional, second-order,
and (co-)inductive types. Specifically, we introduce an extension of the
Dual Calculus with a Mendler-style (co-)iterator that remains strongly
normalizing under head reduction. We prove this using a non-constructive
realizability argument.

Keywords: Mendler Induction, Classical Logic, Curry-Howard isomor-
phism, Dual Calculus, Realizability

1 Introduction

The Curry-Howard Isomorphism The interplay between Logic and Computer
Science has a long and rich history. In particular, the Curry-Howard isomor-
phism, the correspondence between types and theorems, and between typings
and proofs, is a long established bridge through which results in one field can
fruitfully migrate to the other. One such example, motivating of the research
presented herein, is the use of typing systems based on Gentzen’s sequent cal-
culus LK [10]. At its core, LK is a calculus of the dual concepts of necessary
assumptions and possible conclusions—which map neatly, on the Computer Sci-
ence side, to required inputs (or computations) and possible outputs (or contin-
uations).

Classical Calculi The unconventional form of LK belies an extreme symmetry
and regularity that make it more amenable to analysis than other systems that
can be encoded in it. Indeed, Gentzen introduced LK as an intermediate step
in his proof that Hilbert-style derivation systems and his own system of Natural
Deduction, NK , were consistent. Curry-Howard descendants of LK are Curien
and Herbelin’s λµµ̃ [6] and Wadler’s Dual Calculus [19]. As an example of the
kind of analysis that can be done using sequents, these works focused on estab-
lishing syntacticly the duality of the two most common evaluations strategies for
the lambda-calculus: call-by-name and call-by-value. While originally Classical
calculi included only propositional types—i.e. conjunction, disjunction, negation,

? This work was supported by the United Kingdom’s Engineering and Physical Sci-
ences Research Council [grant number EP/J500380/1].

?? Partially supported by ERC ECSYM.

2 Marco Devesas Campos and Marcelo Fiore

implication and subtraction (the dual connective of implication)—they were later
extended with second-order types [13, 17], and also with positive (co-)inductive
types [13]; the latter fundamentally depended on the map operation of the un-
derlying type-schemes.

Mendler Induction In continuing with this theme, we turn our attention here
to a more general induction scheme due to Mendler [15]. Originally, this induc-
tion scheme was merely seen as an ingenious use of polymorphism that allowed
induction to occur without direct use of mapping operations. However, it was
later shown that with Mendler’s iterator one could in fact induct on data-types
of arbitrary variance—i.e. data-types whose induction variable may also appear
negatively [14, 18]. Due to its generality, Mendler Induction has been applied
in a number of different contexts, amongst which we find higher-order recursive
types [1, 2] and automated theorem proving [12].

Classical Logic and Mendler Induction Can one export Mendler Induction to
non-functional settings without introducing unexpected side-effects? Specifically,
can one extend Classical Logic with Mendler Induction without losing consis-
tency? Note that Classical Logic has been shown to be quite misbehaved if not
handled properly [11]; and certain forms of Mendler Induction have been shown
to break strong normalization at higher-ranked types [2].

This paper answers both questions affirmatively. In summary, we:

– extend the second-order Dual Calculus with functional types—viz., with
arrow and subtractive types (Section 2);

– prove its strong normalization (Section 3) via a realizability argument (a
lattice-theoretic distillation of Parigot’s proof for the Symmetric Lambda-
calculus [3, 16]);

– recall the idea underlying Mendler Induction in the functional setting (Sec-
tion 4);

– present our extension of the Dual Calculus with Mendler (co-)inductive types
and argue why functional types are indispensable to its definition (Section 5);
and

– extend the aforementioned realizability argument to give a non-constructive
proof that the extension is also strongly normalizing (Section 6).

2 Second-order Dual Calculus

The Base Calculus Our base formalism is Wadler’s Dual Calculus [19]—often
abbreviated DC. We begin by reviewing the original propositional version ex-
tended with second-order types [13] and subtractive types [5, 6]. Tables 11, 2,
and 3 respectively summarize the syntax, the types and typing rules, and the
reduction rules of the calculus.

1 Unlike Wadler’s presentation, we keep the standard practice of avoiding suffix oper-
ators; whilst lexical duality is lost, we think it improves readability.

Classical Logic with Mendler Induction 3

Syntax The sequent calculus LK is a calculus of multiple assumptions and con-
clusions, as witnessed by the action of the right and left derivation rules. Simi-
larly, the two main components of DC are split into two kinds: terms (or com-
putations) which, intuitively, produce values; and co-terms (or continuations),
which consume them. However, whereas in the sequent calculus one can mix the
different kinds of rules in any order, to keep the computational connection, the
term and co-term formation rules are restricted in what phrases they expect—
e.g. pairs should combine values, while projections pass the components of a
pair to some other continuation. This distinction also forces the existence of two
kinds of variables: variables for terms and co-variables for co-terms. We assume
that they belong to some disjoint and countably infinite sets Var and Covar ,
respectively.

Terms

t := x, y, . . . ∈ Var |
〈
t, t′
〉
| i1〈t〉 | i2〈t〉 | not〈k〉 | λx.(t) | (t#k) | a〈t〉 | e〈t〉

︸ ︷︷ ︸
Introductions

| α.(c)

Co-terms

k := α, β, . . . ∈ Covar |
[
k, k′

]
| fst[k] | snd[k] | not[t] | (t@k) | µα.(k) | a[k] | e[k]

︸ ︷︷ ︸
Eliminations

| x.(c)

Cuts

c := t • k

Table 1. Syntax of the second-order Dual Calculus

Cuts and Abstractions The third and final kind of phrase in the Dual Calculus
are cuts. Recall the famous dictum of Computer Science:

Data-structures + Algorithms = Programs .

In DC, where terms represent the creation of information and co-terms consume
it, we find that cuts, the combination of a term with a continuation, are analogous
to programs:

Terms + Co-terms = Cuts ;

they are the entities that are capable of being executed. Given a cut, one can
consider the computation that would ensue if given data for a variable or co-
variable. The calculus provides a mechanism to express such situations by means
of abstractions x.(c) and of co-abstractions α.(c) on any cut c. Abstractions are
continuations—they expect values in order to proceed with some execution—
and, dually, co-abstractions are computations.

4 Marco Devesas Campos and Marcelo Fiore

Subtraction One novelty of this paper is the central role given to subtractive
types, A − B [5]. Subtraction is the dual connective to implication; it is to
continuations what implication is to terms: it allows one to abstract co-variables
in co-terms—and thereby compose continuations. Given a continuation k where
a co-variable α might appear free, the subtractive abstraction (or catch, due to
its connection with exception handling) is defined as µα.(k), the idea being that
applying (read, cutting) a continuation k′ and value t to it, packed together as
(t#k′), yields a cut of the form t • k[k′/α].

Typing Judgments We present the types and the typing rules in Table 2; we omit
the structural rules here but they can be found in the aforementioned paper by
Wadler [19]. We have three forms of typing judgments that go hand-in-hand
with the three different types of phrases: Γ ` t : A | ∆ for terms, Γ | k : A a ∆
for co-terms, and Γ ` c a ∆ for cuts. In all cases, the entailment symbols
point to the phrase under judgment, and they appear in the same position as
they would appear in the corresponding sequent of LK . Typing contexts Γ assign
variables to their assumed types; dually, typing co-contexts ∆ assign co-variables
to their types. Tacitly, we assume that they always include the free (co-)variables
in the phrase under consideration. Type-schemes F (X) are types in which a
distinguished type variable X may appear free; the instantiation of such a type-
scheme to a particular type T is simply the substitution of the distinguished X
by T and is denoted F (T).

Example: Witness the Lack of Witness We can apply the rules in Table 2 to
bear proof of valid formulas in second-order Classical Logic. One such example
at the second-order level is ¬∀X.T → ∃X.¬T :

| not[a〈α.(e〈not〈α〉〉 • β)〉] : ¬∀X.T a β : ∃X.¬T .

Note how the existential does not construct witnesses but simply diverts the flow
of execution (by use of a co-abstraction).

Head Reduction The final ingredient of the calculus is the set of (head) reduc-
tion rules (Table 3). They are non-deterministic—as a cut made of abstractions
and co-abstractions can reduce by either one of the abstraction rules—and non-
confluent. Confluence can be reestablished by prioritizing the reduction of one
type of abstraction over the other; this gives rise to two confluent reduction dis-
ciplines that we term abstraction prioritizing and co-abstraction prioritizing. In
any case, reduction of well-typed cuts yields well-typed cuts.2

2 As we are not looking at call-by-name and call-by-value we do not use the same
reduction rule for implication as Wadler [19]; the rule here is due to Curien and
Herbelin [6].

Classical Logic with Mendler Induction 5

Types
T,A,B := X | A ∧B | A ∨B | ¬A | A→ B | A−B | ∀X.T | ∃X.T

Identity

x : A ` x : A | | α : A a α : A

Abstractions
Γ ` c a ∆,α : A

Γ ` α.(c) : A | ∆

x : A,Γ ` c a ∆

Γ | x.(c) : A a ∆
Cut

Γ ` t : A | ∆ Γ | k : A a ∆

Γ ` t • k a ∆
Conjunction

Γ ` t : A | ∆ Γ ` t′ : B | ∆

Γ `
〈
t, t′

〉
: A ∧B | ∆

Γ | k : A a ∆

Γ | fst[k] : A ∧B a ∆

Γ | k : B a ∆

Γ | snd[k] : A ∧B a ∆

Disjunction

Γ ` t : A | ∆

Γ ` i1〈t〉 : A ∨B | ∆

Γ ` t : B | ∆

Γ ` i2〈t〉 : A ∨B | ∆

Γ | k : A a ∆ Γ | k′ : B a ∆

Γ |
[
k, k′

]
: A ∨B a ∆

Negation
Γ | k : A a ∆

Γ ` not〈k〉 : ¬A | ∆

Γ ` t : A | ∆

Γ | not[t] : ¬A a ∆
Implication

x : A,Γ ` t : B | ∆

Γ ` λx.(t) : A→ B | ∆

Γ ` t : A | ∆ Γ | k : B a ∆

Γ | (t@k) : A→ B a ∆
Subtraction

Γ ` t : A | ∆ Γ | k : B a ∆

Γ ` (t#k) : A−B | ∆

Γ | k : A a ∆,α : B

Γ | µα.(k) : A−B a ∆
Universal Quantification

Γ ` t : F (X) | ∆

Γ ` a〈t〉 : ∀X.F (X) | ∆
(X not free in Γ , ∆)

Γ | k : F (A) a ∆

Γ | a[k] : ∀X.F (X) a ∆

Existential Quantification

Γ ` t : F (A) | ∆

Γ ` e〈t〉 : ∃X.F (X) | ∆

Γ | k : F (X) a ∆

Γ | e[k] : ∃X.F (X) a ∆
(X not free in Γ , ∆)

Table 2. Typing for the second-order propositional Dual Calculus (with the structural
rules omitted).

6 Marco Devesas Campos and Marcelo Fiore

〈
t, t′
〉
• fst[k] ; t • k

〈
t, t′
〉
• snd[k] ; t′ • k

i1〈t〉 •
[
k, k′

]
; t • k i2〈t〉 •

[
k, k′

]
; t • k′

not〈k〉 • not[t] ; t • k
λx.(t) •

(
t′ @k

)
; t

[
t′/x

]
• k (t#k) • µα.

(
k′
)
; t • k′[k/α]

a〈t〉 • a[k] ; t • k e〈t〉 • e[k] ; t • k
α.(c) • k ; c[k/α] t • x.(c) ; c[t/x]

Table 3. Head reduction for the second-order Dual Calculus

3 Strong Normalization of the Second-order Dual
Calculus

The Proof of Strong Normalization Having surveyed the syntax, types and reduc-
tion rules of DC, we will now give a proof of its strong normalization—i.e., that all
reduction sequences of well-typed cuts terminate in a finite number of steps—for
the given non-deterministic reduction rules. It will follow, then, that the deter-
ministic sub-calculi, where one prioritizes the reduction of one kind abstraction
over the other, are also strongly normalizing.

The proof rests on a realizability interpretation for terms. Similar approaches
for the propositional fragment can be found in the literature [17, 9]; however,
the biggest influence on our proof was the one by Parigot for the second-order
extension of the Symmetric Lambda-Calculus [16]. Our main innovation is the
identification of a complete lattice structure with fix-points suitable for the inter-
pretation of (co-)inductive types. We will, in fact, need to consider two lattices:
OP and ONP. In OP, we find, intuitively, all the terms/co-terms of types. In the
lattice ONP we find only terms/co-terms that are introductions/eliminations;
these correspond, again intuitively, to values/co-values of types. Between these
two classes we have type-directed actions from OP to ONP, and a completion
operator from ONP to OP that generates all terms/co-terms compatible with
the given values/co-values.

6 Marco Devesas Campos and Marcelo Fiore

⌦
t, t0

↵
• fst[k] ; t • k

⌦
t, t0

↵
• snd[k] ; t0 • k

i1hti •
⇥
k, k0⇤

; t • k i2hti •
⇥
k, k0⇤

; t • k0

nothki • not[t] ; t • k

�x.(t) •
�
t0@k

�
; t

⇥
t0/x

⇤
• k (t#k) • µ↵.

�
k0�

; t • k0[k/↵]

ahti • a[k] ; t • k ehti • e[k] ; t • k

↵.(c) • k ; c[k/↵] t • x.(c) ; c[t/x]

Table 3. Head reduction for the second-order Dual Calculus

given non-deterministic reduction rules. It will follow, then, that the determin-
istic sub-calculi, where one prioritizes the reduction of one kind abstraction over
the other, are also strongly normalizing.

The proof rests on a realizability interpretation for terms. Similar approaches
for the propositional fragment can be found in the literature [17, 9]; however,
the biggest influence on our proof was the one by Parigot for the second-order
extension of the Symmetric Lambda-Calculus [16]. Our main innovation is the
identification of a complete lattice structure with fix-points suitable for the inter-
pretation of (co-)inductive types. We will, in fact, need to consider two lattices:
OP and ONP. In OP, we find, intuitively, all the terms/co-terms of types. In the
lattice ONP we find only terms/co-terms that are introductions/eliminations;
these correspond intuitively to values/co-values of types. Between these two
classes we have type-directed actions from OP to ONP , and a completion op-
erator from ONP to OP that generates all terms/co-terms compatible with
the given values/co-values.

OP
^,_,¬,...

**
ONPii (1)

In this setting, we give (two) mutually induced interpretations for types (one in
ONP and the other in OP, Table 4) and establish an adequacy result (Theo-
rem 4) from which strong normalization follows as a corollary. The development
is outlined next.

Sets of Syntax The set of all terms formed using the rules in Table 1 will be
denoted by T ; similarly, co-terms will be K and cuts C. We will also need three
special subsets of those sets: IT for those terms whose outer syntactic form is
an introduction; EK, dually, for the co-terms whose outer syntactic form is an
eliminator; and SN for the set of strongly-normalizing cuts.3

3 A non-terminating, non-well-typed cut: ↵.(noth↵i • ↵) • not[↵.(noth↵i • ↵)].

(1)

In this setting, we give (two) mutually induced interpretations for types (one in
ONP and the other in OP, Table 4) and establish an adequacy result (Theo-
rem 4) from which strong normalization follows as a corollary. The development
is outlined next.

Sets of Syntax The set of all terms formed using the rules in Table 1 will be
denoted by T ; similarly, co-terms will be K and cuts C. We will also need three

Classical Logic with Mendler Induction 7

special subsets of those sets: IT for those terms whose outer syntactic form is
an introduction; EK, dually, for the co-terms whose outer syntactic form is an
eliminator; and SN for the set of strongly-normalizing cuts.3

Syntactic Actions on Sets The syntactic constructors give rise to obvious actions
on sets of terms, co-terms, and cuts; e.g.

− • − : P(T)× P(K)→ P(C) , T •K = {t • k | t ∈ T, k ∈ K} .

By abuse of notation these operators shall be denoted as their syntactic counter-
parts; they are basic to our realizability interpretation.

Restriction under Substitution The substitution operation lifts point-wise to the
level of sets as a monotone function (−)[(=)/φ] : P(U)× P(V)→ P(U) for V
the set of terms (resp. co-terms), φ a variable (resp. co-variable), and U either
the set of terms, co-terms, or cuts. We will make extensive use of the right adjoint

(−)
∣∣∣Qφ to (−)[Q/φ] characterized by

R[Q/φ] ⊆ P iff R ⊆ P
∣∣∣Qφ ,

and that we term the restriction under substitution. With it we can, e.g., express
the set of cuts that are strongly normalizing when free occurrences of a co-
variable α are substituted by co-terms from a set K:

SN
∣∣K
α = { c ∈ C | for all k ∈ K . c[k/α] ∈ SN } .

Orthogonal Pairs Whenever a term t and a co-term k form a strongly normalizing
cut t•k, we say that they are orthogonal. Similarly, for sets T of terms and K of
co-terms, we say that they are orthogonal if T •K ⊆ SN . We call pairs of such
sets orthogonal pairs, and the set of all such pairs OP. For any orthogonal pair
P ∈ OP, its set of terms is denoted (P)

T
and its set of co-terms by (P)

K
. Note

that no type restriction is in play in the definition of orthogonal pairs; e.g. a cut
of an injection with a projection is by definition orthogonal as no reduction rule
applies.

Lattices Recall that a lattice S is a partially ordered set such that any non-empty
finite subset S′ ⊆ S has a least upper bound (or join, or lub) and a greatest lower-
bound (or meet, or glb), respectively denoted by

∨
S′ and

∧
S′. If the bounds

exist for any subset of S one says that the lattice is complete. In particular, this
entails the existence of a bottom and a top element for the partial order. The
powerset P(S) of a set S is a complete lattice under inclusion; the dual Lop of a
(complete) lattice L (where we take the opposite order and invert the bounds) is
a (complete) lattice, as is the point-wise product of any two (complete) lattices.

3 A non-terminating, non-well-typed cut: α.(not〈α〉 • α) • not[α.(not〈α〉 • α)].

8 Marco Devesas Campos and Marcelo Fiore

Proposition 1 (Lattice Structure of OP). The set of orthogonal pairs is a
sub-lattice of P(T)× P(K)

op
. Explicitly, for P,Q ∈ OP,

P ≤ Q iff (P)
T ⊆ (Q)

T
and (P)

K ⊇ (Q)
K

;

the join and meet of arbitrary non-empty sets S ⊆ OP are

∨
S ≡

(⋃
P∈S

(P)
T
,
⋂
P∈S

(P)
K

) ∧
S ≡

(⋂
P∈S

(P)
T
,
⋃
P∈S

(P)
K

)
.

Moreover, it is complete with empty join and meet given by ⊥ ≡ (∅,K) and
> ≡ (T , ∅).

Orthogonal Normal Pairs The other lattice we are interested in is the lattice
ONP of what we call orthogonal normal pairs. These are orthogonal pairs which
are made out at the outermost level by introductions and eliminators. Logically
speaking, they correspond to those proofs whose last derivation is a left or right
operational rule. Computationally, they correspond to the narrowest possible in-
terpretations of values and co-values. Orthogonal normal pairs inherit the lattice
structure of OP but for the empty lub and glb which become ⊥ ≡ (∅, EK) and
> ≡ (IT , ∅).

Type Actions Pairing together the actions of the introductions and eliminations
of a given type allows us to construct elements of ONP whenever we apply them
to orthogonal sets—in particular, then, when these sets are the components of
elements of OP—as witnessed by the following proposition.

Proposition 2. For P,Q ∈ OP and S ⊆ OP, the following definitions deter-
mine elements of ONP:

P ∧Q =
(〈

(P)T, (Q)T
〉
, fst
[
(P)K

]
∪ snd

[
(Q)K

])

P ∨Q =
(
i1
〈

(P)T
〉
∪ i2

〈
(Q)T

〉
,
[
(P)K, (Q)K

])

¬P =
(
not
〈

(P)K
〉
, not

[
(P)T

])

P → Q =
∨

x∈Var

(
λx.
(

(Q)T
∣∣∣(P)T

x

)
,
(

(P)T @(Q)K
))

P −Q =
∧

α∈Covar

((
(P)T #(Q)K

)
, µα.

(
(P)K

∣∣∣(Q)K

α

))

∀S =
∧

P∈S

(
a
〈

(P)T
〉
, a
[
(P)K

])
∃S =

∨

P∈S

(
e
〈

(P)T
〉
, e
[
(P)K

])

Classical Logic with Mendler Induction 9

Orthogonal Completion Now that we have interpretations for the actions that
construct values/co-values of a type in ONP, we need to go the other way (cf. Di-
agram 1, above) to OP, so that we also include (co-)variables and (co-)abstrac-
tions in our interpretations. So, for orthogonal sets of values T and of co-values
K, the term and co-term completions of T and K are respectively defined as:

[T](L) = Var ∪ T ∪
⋃

α∈Covar

α.
(
SN
∣∣L
α

)
, [K](U) = Covar ∪K ∪

⋃
x∈Var

x.
(
SN
∣∣U
x

)
.

Due to the non-determinism associated with the reduction of (co-)abstractions,
we need guarantee that all added (co-)abstractions are compatible not only with
the starting set of values, but also with any (co-)abstractions that have been
added in the process—and vice-versa. In other words, we need to iterate this
process by taking the least fix-point:

(T K) =
(

lfp([T] ◦ [K]) , [K] (lfp([T] ◦ [K]))
)
.

(In fact, as has been remarked elsewhere [3, 16], all one needs is a fix-point.)

Theorem 3. Let N ∈ ONP be an orthogonal normal pair; its structural com-
pletion N is an orthogonal pair:

N =
(

(N)
T

(N)
K
)
∈ OP .

Interpretations Given a type T and a (suitable) mapping γ from its free type
variables, ftv(T), to ONP—called the interpretation context—we define (Ta-
ble 4) two interpretations, as orthogonal pairs and as orthogonal normal pairs,
by mutual induction on the structure of T . They both satisfy the weakening and
substitution properties. The extension of an interpretation context γ where a
type-variable X is mapped to N ∈ ONP is denoted by γ[X 7→ N].

Theorem 4 (Adequacy). Let t, k and c stand for terms, co-terms and cuts of
the Dual Calculus. For any typing context Γ and co-context ∆, and type T such
that

Γ ` t : T | ∆ , Γ | k : T a ∆ , Γ ` c a ∆ ,

and for any suitable interpretation context γ for Γ , ∆ and T , and any substitu-
tion σ satisfying

(x : A) ∈ Γ =⇒ σ(x) ∈ (LAM(γ))
T

and (α : A) ∈ ∆ =⇒ σ(α) ∈ (LAM(γ))
K
,

we have that

t[σ] ∈ (LT M(γ))
T
, k[σ] ∈ (LT M(γ))

K
, c[σ] ∈ SN .

Corollary 5 (Strong Normalization). Every well-typed cut of DC is strongly
normalizing.

10 Marco Devesas Campos and Marcelo Fiore

JT K(γ) : ONP LT M(γ) : OP
JXK(γ) = γ(X) LT M(γ) = (JT K(γ))

JA ∧BK(γ) = LAM(γ) ∧ LBM(γ)

JA ∨BK(γ) = LAM(γ) ∨ LBM(γ)

J¬AK(γ) = ¬LAM(γ)

JA→ BK(γ) = LAM(γ)→ LBM(γ)

JA−BK(γ) = LAM(γ)− LBM(γ)

J∀X .AK(γ) = ∀{LAM(γ[X 7→ N]) | N ∈ ONP}
J∃X.AK(γ) = ∃{LAM(γ[X 7→ N]) | N ∈ ONP}

Table 4. Interpretations of the second-order Dual Calculus in ONP and OP.

4 Mendler Induction

Having covered the first theme of the paper, Classical Logical in its Dual Calculus
guise, let us focus in this section on the second theme we are exploring: Mendler
Induction. As the concept may be rather foreign, it is best to review it informally
in the familiar functional setting.

Inductive Definitions Roughly speaking, an inductive definition of a function is
one in which the function being defined can be used in its own definition provided
that it is applied only to values of strictly smaller character than the input. The
fix-point operator

fix :
(
(µX.F (X)→ A)→ µX.F (X)→ A

)
→ µX.F (X)→ A

fix f x = f (fix f) x

associated to the inductive type µX.F (X) arising from a type scheme F (X),
clearly violates induction, and indeed breaks strong normalization: one can feed
it the identity function to yield a looping term. One may naively attempt to
tame this behavior by considering the following modified fix-point operator

fix′ :
(
(µX.F (X)→ A)→ F

(
µX.F (X)

)
→ A

)
→ µX.F (X)→ A

fix′ f (in x′) = f (fix′ f) x′

in which, for the introduction in : F
(
µX.F (X)

)
→ µX.F (X), one may regard x′

as being of strictly smaller character than in(x′). Of course, this is still unsatisfac-
tory as, for instance, we have the looping term fix′ (λf. f ◦ in). The problem here
is that the functional λf. f ◦in : (µX.F (X)→ A)→ F

(
µX.F (X)

)
→ A of which

we are taking the fix-point takes advantage of the concrete type F
(
µX.F (X)

)
of x′ used in the recursive call.

Classical Logic with Mendler Induction 11

Mendler Induction The ingenuity of Mendler Induction is to ban such perver-
sities by restricting the type of the functionals that the iterator can be applied
to: these should not rely on the inductive type but rather be abstract; in other
words, be represented by a fresh type variable X as in the typing below4:

mitr :
(
(X → A)→ F (X)→ A

)
→ µX.F (X)→ A

mitr f (min x) = f (mitr f) x

for min the introduction F
(
µX.F (X)

)
→ µX.F (X).

Note that if the type scheme F (X) is endowed with a polymorphic mapping
operation mapF : (A → B) → F (A) → F (B), every term a : F (A) → A has as
associated catamorphism cata(a) ≡ mitr

(
λ f . a ◦ (mapF f)

)
: µX.F (X) → A.

In particular, one has cata(mapF min) : µX.F (X)→ F
(
µX.F (X)

)
.

5 Dual Calculus with Mendler Induction

Mendler Induction We shall now formalize Mendler Induction in the Classical
Calculus of Section 2. Additionally, we shall also introduce its dual, Mendler co-
Induction. This requires: type constructors; syntactic operations corresponding
to the introductions and eliminations, and their typing rules; and reduction
rules. These are summarized in Table 5. First, we take a type scheme F (X) and
represent its inductive type by µX.F (X)—dually, we represent the associated
co-inductive type by νX.F (X).

Syntax As usual, the inductive introduction, min〈−〉, witnesses that the values
of the unfolding of the inductive type F (µX.F (X)) are injected in the inductive
type µX.F (X). It is in performing induction that we consume values of inductive
type and, hence, the induction operator (or iterator, or inductor), mitrρ,α[k, l]
corresponds to an elimination. It is comprised of an iteration step k, an output
continuation l, and two distinct induction co-variables, ρ and α. We postpone
the explanation of their significance for the section on reduction below, but note
now that the iterator binds ρ and α in the iteration continuation but not in the
output continuation; thus, e.g.,(

mitrρ,α[k, l]
)
[k′/ρ][l′/α] = mitrρ,α[k, l[k′/ρ][l′/α]] .

The co-inductive operators, mcoitrr,x〈t, u〉 and mout[k], are obtained via dual-
ization. In particular, the co-inductive eliminator, mout[k], witnesses that the
co-values k of type F (νX.F (X)) translate into co-values of νX.F (X).

4 We note that the original presentation of this inductive operator [15] was in
System F and, accordingly, the operator considered instead functionals of type
∀X.(X → A)→ F (X)→ A. Cognoscenti will recognize that this type is the type-
theoretic Yoneda reformulation ∀X.(X → A)→ T (X) of T (A) = F (A) → A for
T (X) = F (X)→ A.

12 Marco Devesas Campos and Marcelo Fiore

Types
T := . . . | µX.F (X) | νX.F (X)

Syntax

t := . . . | . . . | min〈t〉 | mcoitrr,x
〈
t, t′
〉

︸ ︷︷ ︸
Introductions

| . . .

k := . . . | . . . | mitrρ,α
[
k, k′

]
| mout[k]

︸ ︷︷ ︸
Eliminations

| . . .

Reduction

min〈t〉 •mitrρ,α[k, l] ; t • k[µα.(mitrρ,α[k, α])/ρ][l/α]

mcoitrr,x〈t, u〉 •mout[k] ; t[λx.(mcoitrr,x〈t, x〉)/r][u/x] • k

Typing rules
Γ ` t : F (µX.F (X)) | ∆
Γ ` min〈t〉 : µX.F (X) | ∆

Γ | k : F (X) a ∆, ρ : X −A,α : A Γ | l : A a ∆
Γ | mitrρ,α[k, l] : µX.F (X) a ∆

(X not free in Γ , ∆, A)

x : A, r : A→ X,Γ ` t : F (X) | ∆ Γ ` u : A | ∆
Γ ` mcoitrr,x〈t, u〉 : νX.F (X) | ∆

(X not free in Γ , ∆, A)

Γ | k : F (νX.F (X)) a ∆
Γ | mout[k] : νX.F (X) a ∆

Table 5. Extension of the second-order Dual Calculus with Mendler Induction

Classical Logic with Mendler Induction 13

Reduction To reduce an inductive cut min〈t〉 •mitrρ,α[k, l], we start by passing
the unwrapped inductive value t to the induction step k. However, in the spirit of
Mendler Induction, the induction step must be instantiated with the induction
itself and, because we are in a Classical calculus, the output continuation—
this is where the parameter co-variables come into play. The first co-variable,
ρ, receives the induction; the induction step may call this co-variable (using a
cut) arbitrarily and it must also be able to capture the output of those calls—
in other words, it needs to compose this continuation with other continuations;
therefore one needs to pass µα.(mitrρ,α[k, α]), the induction with the output
continuation (subtractively) abstracted. The other co-variable, α, represents in
k the output of the induction—which for a call mitrρ,α[k, l] is l5. For co-induction,
we dualize—in particular, the co-inductive call expects the lambda-abstraction
of the co-inductive step.

Typing Lastly, we have the typing rules that force induction to be well-founded.
Recall that this was achieved in the functional setting by forcing the inductive
step to take an argument of arbitrary instances of the type scheme F (X). Here
we do the same. In typing mitrρ,α[k, l] for µX.F (X) we require k to have type
F (X) where X is a variable that appears nowhere in the derivation except in
the (input) type of the co-variable ρ.

Example: Naturals Let us look at a concrete example: natural numbers under
the abstraction prioritizing strategy. We posit a distinguished type variable B,
and from it construct the type 1 ≡ B ∨¬B, which is inhabited by the witness of
the law of the excluded middle, ∗ ≡ α.(i2〈not〈x.(i1〈x〉 • α)〉〉 • α). The base type
scheme for the naturals is F (X) ≡ 1 ∨X, and the naturals are then defined as
N ≡ µX.F (X). Examples of this type are:

zero ≡ min〈i1〈∗〉〉 , one ≡ min〈i2〈zero〉〉 , and two ≡ min〈i2〈one〉〉 .
For any continuation k on N , the successor “function” is defined as the following
continuation for N

succkk ≡ x.(min〈i2〈x〉〉 • k) (x /∈ fv(k)) .

Example: Addition The above primitives are all we need to define addition of
these naturals. The inductive step “add m to” is

Stepmρ,α ≡
[
x.(m • α), x.

(
(x# succkα) • ρ

)]
.

Theorem 6. Let n and m stand for the encoding of two natural numbers and
the encoding of their sum be (by abuse of notation) n+m. Under the abstraction
prioritizing reduction rule,

n •mitrρ,α
[
Stepmρ,α, l

]
;∗ (n+m) • l .

5 One may wonder if the output continuation is strictly necessary. As outputs appear
on the right of sequents, and the induction is already a left-rule, the only possible
alternative would be to add a co-variable to represent it. However, under this rule
the system would no longer be closed under substitution [13].

14 Marco Devesas Campos and Marcelo Fiore

6 Strong Normalization for Mendler Induction

We now come to the main contribution of the paper: the extension of the Orthog-
onal Pairs realizability interpretation of the second-order Dual Calculus (Sec-
tion 3) to Mendler Induction, which establishes that the extension is strongly
normalizing.

Lattice Structure The extension begins with the reformulation of the sets SN , T ,
K, C, IT , and EK so that they accommodate the (co-)inductive operators. Mod-
ulo these changes, the definitions of OP and ONP remain the same; so do the
actions for propositional and second order types, and the orthogonal completion,

. All that remains, then, is to give suitable definitions for the (co-)inductive
actions and the interpretations of (co-)inductive types.

Inductive Restrictions The reduction rule for Mendler Induction is unlike any
other of the calculus. When performing an inductive step for mitrρ,α[k, l], the
bound variable ρ will be only substituted by one specific term: µα.(mitrρ,α[k, α]).
One needs a different kind of restriction to encode this invariant: take K and L to
be sets of co-terms (intuitively, where the inductive step and output continuation
live) and define the inductive restriction by

K/ραL ≡ { k ∈ K | for all l ∈ L, k[µα.(mitrρ,α[k, α])/ρ][l/α] ∈ K } ;

and also for co-induction, for sets of terms T and U :

T/rxU ≡ { t ∈ T | for all u ∈ U , t[λx.(mcoitrr,x〈t, x〉)/r][u/x] ∈ T } .

Mendler Pairing Combining the inductive restriction with the inductive in-
troduction/elimination set operations, we can easily create orthogonal normal
pairs—much as we did for the propositional actions—from two given orthog-
onal pairs: one intuitively standing for the interpretation of F (µF.F (X)) and
the other for the output type. However, the interpretation of the inductive type
should not depend on a specific choice of output type but should accept all in-
stantiations of output, as well as all possible induction co-variables; model-wise
this corresponds to taking a meet over all possible choices for the parameters:

MuP(P) =
∧

Q∈OP
ρ6=α∈Covar

(
min

〈
(P)T

〉
,mitrρ,α

[
(P)K

/
ρ
α (Q)K , (Q)K

])
∈ ONP ;

and similarly for its dual, NuP:

NuP(P) =
∨

Q∈OP
r 6=x∈Var

(
mcoitrr,x

〈
(P)T

/
r
x (Q)T , (Q)T

〉
,mout

[
(P)K

])
∈ ONP .

Classical Logic with Mendler Induction 15

Monotonization The typing constraints on Mendler Induction correspond—
model-wise—to a monotonization step. This turns out to be what we need to
guarantee that an inductive type can be modeled by a least fix-point; without
this step, the interpretation of a type scheme would be a function on lattices
that would not necessarily be monotone. There are two possible universal ways
to induce monotone endofunctions from a given endofunction f on a lattice: the
first one, dfe, we call the monotone extension and use it for inductive types, the
other one, the monotone restriction bfc, will be useful for co-inductive types.
Their definitions6 are:

dfex ≡
∨
y≤x

f y and bfcx ≡
∧
x≤y

f y .

They are, respectively, the least monotone function above and the greatest mono-
tone function below f . Necessarily, by Tarski’s fix-point theorem, they both have
least and greatest fix-points; in particular we have lfp(dfe) and gfp(bfc).

Inductive Actions Combining the above ingredients, one can define the actions
corresponding to inductive and to co-inductive types. They are parametrized by
functions f : ONP → OP,

µf ≡ lfp(dMuP ◦fe) ∈ ONP and νf ≡ gfp(bNuP ◦fc) ∈ ONP .

Interpretations For (co-)inductive types associated to a type-scheme F (X) and
mappings ρ : ftv(µX.F (X))→ ONP (the context) we set

JµX.F (X)K(γ) = µLF (X)M(γ[X 7→ −]) , JνX.F (X)K(γ) = νLF (X)M(γ[X 7→ −]) ;

while their orthogonal interpretation is as before. These interpretations also sat-
isfy the weakening and substitution properties.

Classically Reasoning about Mendler Induction Mendler’s original proof of strong
normalization for his induction principle in a functional setting was already clas-
sical [15]. For us, this issue centers around the co-term component of the inter-
pretation of inductive types (and, dually, the term component of co-inductive
types). Roughly, the induction hypothesis of the adequacy theorem states that

for any N ∈ ONP, m ∈ (LX −AM(γ[X 7→ N]))
K

, l ∈ (LAM(γ))
K

, and realizability
substitution σ we have

k[σ][m/ρ][l/α] ∈ (LF (X)M(γ[X 7→ N]))
K
, (2)

and if we were to prove that mitrρ,α[k[σ], l[σ]] ∈ (JµX.F (X)K(γ))
K

just by the
fix-point property of the interpretation, we would need to have

(k[σ])[µα.(mitrρ,α[k[σ], α])/ρ][l/α] ∈ (LF (X)M(γ[X 7→ JµX.F (X)K(γ)]))
K

6 Cognoscenti will recognize that they are point-wise Kan extensions.

16 Marco Devesas Campos and Marcelo Fiore

for arbitrary l ∈ (LAM(γ))
K

. Instantiating Formula 2 to the case when N is the
interpretation of our fix-point, JµX.F (X)K(γ), we see that in order to prove

that mitrρ,α[k[σ], l[σ]] ∈ (JµX.F (X)K(γ))
K

we would need to prove that for any

l′ ∈ (LAM(γ))
K

we have that mitrρ,α[k[σ], l′] ∈ (LµX.F (X)M(γ))
K

—a circularity!
For ω-complete posets there is an alternative characterization of the least

fix-point of a continuous function as the least upper bound of a countable chain.
The completion operation used in the definition of the OP interpretation is
not continuous. However, classically, the least fix-point of any monotone function
f on a complete lattice lies in the transfinite chain [7]

dα+1 = f(dα) and dλ =
∨
α<λ

dα (for limit λ)

(and dually for co-induction).
A set (or property) P ⊆ ONP is said to be admissible iff (i) preserves lubs:

S ⊆ P =⇒ P(
∨
S); and (ii) is downward closed: a ≤ b and P(b) =⇒ P(a).

Theorem 7 (Scott Induction for Monotone Extensions of Endofunc-
tions). Let f : L → L be an endofunction (not necessarily a homomorphism)
and P be an admissible property on a complete lattice L. If f preserves prop-
erty P, i.e. P(a) =⇒ P(f a), then P holds for the least fix-point of its monotone
extension, i.e. P

(
lfp(dfe)

)
.

With this proof principle and its dual one shows that the interpretation of DC
with Mendler (co-)induction via realizability as orthogonal pairs satisfies the
adequacy theorem (Theorem 4), and obtains the following result as a corollary.

Theorem 8 (Strong Normalization). Every well-typed cut of the Dual Cal-
culus with Mendler Induction is strongly normalizing.

7 Concluding Remarks

We have investigated Classical Logic with Mendler Induction, presenting a Clas-
sical calculus with very general (co-)inductive types. Our work borrows from
and generalizes systems based on Gentzen’s LK under the Curry-Howard cor-
respondence. Despite its generality, and as outlined by means of a realizability
interpretation, our Dual Calculus with Mendler Induction is well-behaved in that
its well-typed cuts are guaranteed to terminate. We expect—but have yet to fully
confirm—that other models fit within our framework for interpreting Mendler
Induction; our prime example is based on inflationary fix-points like those used
in complexity theory [8] and which also apply to non-monotone functionals.

It is known that LK -based calculi can encode various other calculi [6, 19].
Our calculus supports map operations for all positive (co-)inductive types. In
an extended version of the paper, we expect to use these to encode Kimura and
Tatsuta’s extension of the Dual Calculus with positive (co-)inductive types [13].

One avenue of research that remains unexplored is how one may extract
proofs from within our system—in previous work, Berardi, et al. [4] showed how,

Classical Logic with Mendler Induction 17

embracing the non-determinism of reduction inherent in the Symmetric Lambda-
calculus (and also present in DC), one could express proof witnesses that behave
like processes for a logic based on Peano arithmetic. A further direction would be
to direct these investigations into the realm of linear logic, where the connection
with processes may be more salient.

Acknowledgments Thanks to Anuj Dawar, Tim Griffin, Ohad Kammar, Andy
Pitts, and the anonymous referees for their comments and suggestions.

References

1. Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for higher-
order and nested datatypes. Theoretical Computer Science 333(1), 3–66 (2005)

2. Ahn, K.Y., Sheard, T.: A hierarchy of Mendler style recursion combinators: Tam-
ing inductive datatypes with negative occurrences. In: Proceedings of the 16th
ACM SIGPLAN International Conference on Functional Programming. pp. 234–
246. ICFP ’11, ACM, New York, NY, USA (2011)

3. Barbanera, F., Berardi, S.: A symmetric lambda calculus for classical program
extraction. Information and Computation 125(2), 103–117 (1996)

4. Barbanera, F., Berardi, S., Schivalocchi, M.: “Classical” programming-with-proofs
in λSymPA : An analysis of non-confluence. In: Abadi, M., Ito, T. (eds.) Theoretical
Aspects of Computer Software, Lecture Notes in Computer Science, vol. 1281, pp.
365–390. Springer Berlin Heidelberg (1997)

5. Crolard, T.: A formulae-as-types interpretation of subtractive logic. Journal of
Logic and Computation 14(4), 529–570 (2004)

6. Curien, P.L., Herbelin, H.: The duality of computation. In: Proceedings of the
Fifth ACM SIGPLAN International Conference on Functional Programming. pp.
233–243. ICFP ’00, ACM, New York, NY, USA (2000)

7. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge Uni-
versity Press (2002)

8. Dawar, A., Gurevich, Y.: Fixed point logics. Bulletin of Symbolic Logic 8(01),
65–88 (2002)

9. Dougherty, D., Ghilezan, S., Lescanne, P., Likavec, S.: Strong normalization of
the dual classical sequent calculus. In: Sutcliffe, G., Voronkov, A. (eds.) Logic for
Programming, Artificial Intelligence, and Reasoning, Lecture Notes in Computer
Science, vol. 3835, pp. 169–183. Springer Berlin Heidelberg (2005)

10. Gentzen, G.: Investigations into logical deduction. American Philosophical Quar-
terly 1(4), 288–306 (1964)

11. Harper, B., Lillibridge, M.: ML with callcc is unsound. Post to TYPES mailing
list (1991)

12. Hur, C.K., Neis, G., Dreyer, D., Vafeiadis, V.: The power of parameterization in
coinductive proof. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 193–206. POPL ’13,
ACM, New York, NY, USA (2013)

13. Kimura, D., Tatsuta, M.: Dual calculus with inductive and coinductive types. In:
Treinen, R. (ed.) Rewriting Techniques and Applications, Lecture Notes in Com-
puter Science, vol. 5595, pp. 224–238. Springer Berlin Heidelberg (2009)

18 Marco Devesas Campos and Marcelo Fiore

14. Matthes, R.: Extensions of System F by Iteration and Primitive Recursion on
Monotone Inductive Types. Ph.D. thesis, Ludwig-Maximilians Universität (May
1998)

15. Mendler, N.: Inductive types and type constraints in the second-order lambda
calculus. Annals of Pure and Applied Logic 51(1), 159–172 (1991)

16. Parigot, M.: Strong normalization of second order symmetric λ-calculus. In:
Kapoor, S., Prasad, S. (eds.) FST TCS 2000: Foundations of Software Technol-
ogy and Theoretical Computer Science, Lecture Notes in Computer Science, vol.
1974, pp. 442–453. Springer Berlin Heidelberg (2000)

17. Tzevelekos, N.: Investigations on the Dual Calculus. Theoretical Computer Science
360(1), 289–326 (2006)

18. Uustalu, T., Vene, V.: Mendler-style inductive types, categorically. Nord. J. Com-
put. 6(3), 343 (1999)

19. Wadler, P.: Call-by-value is dual to call-by-name. In: Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Programming. pp. 189–
201. ICFP ’03, ACM, New York, NY, USA (2003)

