
System Fi
a Higher-Order Polymorphic λ-Calculus

with Erasable Term-Indices

Ki Yung Ahn1, Tim Sheard1, Marcelo Fiore2, and Andrew M. Pitts2

1 Portland State University, Portland, Oregon, USA ?

{kya,sheard}@cs.pdx.edu
2 University of Cambridge, Cambridge, UK
{Marcelo.Fiore,Andrew.Pitts}@cl.cam.ac.uk

Abstract. We introduce a foundational lambda calculus, System Fi, for
studying programming languages with term-indexed datatypes – higher-
kinded datatypes whose indices range over data such as natural num-
bers or lists. System Fi is an extension of System Fω that introduces
the minimal features needed to support term-indexing. We show that
System Fi provides a theory for analysing programs with term-indexed
types and also argue that it constitutes a basis for the design of logically-
sound light-weight dependent programming languages. We establish era-
sure properties of Fi-types that capture the idea that term-indices are
discardable in that they are irrelevant for computation. Index erasure
projects typing in System Fi to typing in System Fω. So, System Fi
inherits strong normalization and logical consistency from System Fω.

Keywords: term-indexed data types, generalized algebraic data types,
higher-order polymorphism, type-constructor polymorphism, higher-kinded
types, impredicative encoding, strong normalization, logical consistency

1 Introduction

We are interested in the use of indexed types to state and maintain program
properties. A type parameter (like Int in (List Int)) usually tells us something
about data stored in values of that type. A type-index (like 3 in (Vector Int

3)) states an inductive property of values with that type. For example, values
of type (Vector Int 3) have three elements.

Indexed types come in two flavors: type-indexed and term-indexed types.
An example of type-indexing is a definition of a representation type [8] using

GADTs in Haskell:

data TypeRep t where

RepInt :: TypeRep Int

RepBool :: TypeRep Bool

RepPair :: TypeRep a -> TypeRep b -> TypeRep (a,b)

? supported by NSF grant 0910500.

Here, a value of type (TypeRep t) is isomorphic in shape with the type-index t.
For example, (RepPair RepInt RepBool) :: TypeRep (Int,Bool).

An example of Term-indices are datatypes with indices ranging over data
structures, such as natural numbers (like Z, (S Z)) or lists (like Nil or (Cons Z

Nil)). A classic example of a term-index is the second parameter to the length-
indexed list type Vec (as in (Vec Int (S Z))).

In languages such as Haskell3 or OCaml [10], which support GADTs with
only type-indexing, term-indices are simulated (or faked) by reflecting data at
the type-level with uninhabited type constructors. For example,

data S n

data Z

data Vec t n where

Cons :: a -> Vec a n -> Vec a (S n)

Nil :: Vec a Z

This simulation comes with a number of problems. First, there is no way to say
that types such as (S Int) are ill-formed, and second the costs associated with
duplicating the constructors of data to be used as term-indices. Nevertheless,
GADTs with “faked” term-indices have become extremely popular as a light-
weight, type-based mechanism to raise the confidence of users that software
systems maintain important properties.

Our approach in this direction is to design a new foundational calculus, Sys-
tem Fi, for functional programming languages with term-indexed datatypes. In
a nutshell, System Fi is obtained by minimally extending System Fω with type-
indexed kinds. Notably, this yields a logical calculus that is expressive enough to
embed non-dependent term-indexed datatypes and their eliminators. Our contri-
butions in this development are as follows.
– Identifying the features that are needed in a higher-order polymorphic λ-

calculus to embed term-indexed datatypes (Sect. 2), in isolation from other
features normally associated with such calculi (e.g., general recursion, large
elimination, dependent types).

– The design of the calculus, System Fi (Sect. 4), and its use to study proper-
ties of languages with term-indexed datatypes, including the embedding of
term-indexed datatypes into the calculus (Sect. 6) using Church or Mendler
style encodings, and proofs about these encodings. For instance, one can use
System Fi to prove that the Mendler-style eliminators for GADTs [3] are
normalizing.

– Showing that System Fi enjoys a simple erasure property (Sect. 5.2) and
inherits meta-theoretic results, strong normalization and logical consistency,
from Fω (Sect. 5.3).

2 Motivation: from System Fω to System Fi, and back

It is well known that datatypes can be embedded into polymorphic lambda
calculi by means of functional encodings [5].

3 see Sect. 7 for a very recent GHC extension, which enable true term-indices.

In System F, one can embed regular datatypes, like homogeneous lists:

Haskell: data List a = Cons a (List a) | Nil

System F: List A , ∀X.(A→ X → X)→ X → X

Cons , λw.λx.λy.λz. y w (x y z), Nil , λy.λz.z

In such regular datatypes, constructors have algebraic structure that directly
translates into polymorphic operations on abstract types as encapsulated by
universal quantification over types (of kind ∗).

In the more expressive System Fω (where one can abstract over type con-
structors of any kind), one can encode more general type-indexed datatypes that
go beyond the regular datatypes. For example, one can embed powerlists with
heterogeneous elements in which an element of type a is followed by an element
of the product type (a,a):

Haskell: data Powl a = PCons a (Powl(a,a)) | PNil

-- PCons 1 (PCons (2,3) (PCons ((3,4),(1,2)) PNil)) :: Powl Int

System Fω: Powl , λA∗.∀X∗→∗.(A→ X(A×A)→ XA)→ XA→ XA

Note the non-regular occurrence (Powl(a,a)) in the definition of (Powl a), and
the use of universal quantification over higher-order kinds (∀X∗→∗). The term
encodings for PCons and PNil are exactly the same as the term encodings for
Cons and Nil, but have different types.

What about term-indexed datatypes? What extensions to System Fω are
needed to embed term-indices as well as type-indices? Our answer is System Fi.

In a functional language supporting term-indexed datatypes, we envisage
that the classic example of homogeneous length-indexed lists would be defined
along the following lines (in Nax4-like syntax):

data Nat = S Nat | Z

data Vec : * -> Nat -> * where

VCons : a -> Vec a {i} -> Vec a {S i}

VNil : Vec a {Z}

Here the type constructor Vec is defined to admit parameterisation by both type
and term-indices. For instance, the type (Vec (List Nat) {S (S Z)}) is that
of two-dimensional vectors of natural numbers. By design, our syntax directly
reflects the difference between type and term-indexing by enclosing the latter
in curly braces. We also make this distinction in System Fi, where it is useful
within the type system to guarantee the static nature of term-indexing.

The encoding of the vector datatype in System Fi is as follows:

Vec , λA∗.λiNat.∀XNat→∗.(∀jNat.A→ X{j} → X{S j})→ X{Z} → X{i}
where Nat, Z, and S respectively encode the natural number type and its two
constructors, zero and successor. Again, the term encodings for VCons and VNil

are exactly the same as the encodings for Cons and Nil, but have different types.
Without going into the details of the formalism, which are given in the next

section, one sees that such a calculus incorporating term-indexing structure needs
four additional constructs (see Fig. 1 for the highlighted extended syntax).

4 We are developing a language called Nax whose theory is based on System Fi.

1. Type-indexed kinding (A→ κ), as in (Nat→*) in the example above, where
the compile-time nature of term-indexing will be reflected in the typing rules,
enforcing that A be a closed type (rule (Ri) in Fig. 2).

2. Term-index abstraction λiA.F (as λiNat. · · · in the example above) for con-
structing (or introducing) term-indexed kinds (rule (λi) in Fig. 2).

3. Term-index application F{s} (as X{Z}, X{j}, and X{S j} in the exam-
ple above) for destructing (or eliminating) term-indexed kinds, where the
compile-time nature of indexing will be reflected in the typing rules, enfor-
ceing that the index be statically typed (rule (@i) in Fig. 2) .

4. Term-index polymorphism ∀iA.B (as ∀jNat. · · · in the example above) where
the compile-time nature of polymorphic term-indexing will be reflected in the
typing rules enforcing that the variable i be static of closed type A (rule (∀Ii)
in Fig. 2).

As described above, System Fi maintains a clear-cut separation between type-
indexing and term-indexing. This adds a level of abstraction to System Fω and
yields types that in addition to parametric polymorphism also keep track of in-
ductive invariants using term-indices. All term-index information can be erased,
since it is only used at compile-time. It is possible to project any well-typed
System Fi term into a well-typed System Fω term. For instance, the erasure of
the Fi-type Vec is the Fω-type List. This is established in Sect. 5 and used to
deduce the strong normalization of System Fi.

3 Why Term-Indexed Calculi? (rather than dependent types)

We claim that a moderate extension to the polymorphic calculus (Fω) is a better
candidate than a dependently typed calculus for the basis of a practical program-
ming system. We hope to design a unified system for programming as well as
reasoning. Language designs based on indexed types can benefit from existing
compiler technology and type inference algorithms for functional programming
languages. In addition, theories for term-indexd datatypes are simpler than the-
ories for full-fledged dependent datatypes, because term-indexd datatypes can
be encoded as functions (using Church-like encodings).

The implementation technology for functional programming languages based
on polymorphic calculi is quite mature. The industrial strength Glasgow Haskell
Compiler (GHC), whose intermediate core language is an extension of Fω, is used
by thousands every day. Our term-indexed calculus Fi is closely related to Fω by
an index-erasure property. The hope is that a language implementation based on
Fi can benefit from these technologies. We have built a language implementation
of these ideas, which we call Nax.

Type inference algorithms for functional programming languages are often
based on certain restrictions of the Curry-style polymorphic lambda calculi.
These restrictions are designed to avoid higher-order unification during type
inference. We have developed a conservative extension of Hindley–Milner type
inference for Nax. This was possible because Nax is based on a restricted Fi. De-
pendently typed languages, on the other hand, are often based on bidirectional

type checking, which requires annotations on top level definitions, rather than
Hindley–Milner-style type inference.

In dependent type theories, datatypes are usually introduced as primitive
constructs (with axioms), rather than as functional encodings (e.g., Church en-
codings). One can give functional encodings for datatypes in a dependent type
theory, but one soon realizes that the induction principles (or, dependent elimi-
nators) for those datatypes cannot be derived within the pure dependent calculi
[11]. So, dependently typed reasoning systems support datatypes as primitives.
For instance, Coq is based on Calculus of Inductive Constructions, which extends
Calculus of Constructions [7] with dependent datatypes and their induction prin-
ciples.

In contrast, in polymorphic type theories, all imaginable datatypes within
the calculi have functional encodings (e.g., Church encodings). For instance, Fω
need not introduce datatypes as primitive constructs, since Fω can embed all
these datatypes, including non-regular recursive datatypes with type indices.

Another reason to use Fi is to extend the application of Mendler-style recur-
sion schemes, which are well-understood in the context of polymorphic lambda
calculi like Fω. Researchers have thought about (though not published)5 Mendler-
style primitive recursion over dependently-typed functions over positive datatypes
(i.e., datatypes that have a map), but not for negative (or, mixed-variant)
datatypes. In System Fi, we can embed Mendler-style recursion schemes, (just
as we embedded them in Fω) that are also well-defined for negative datatypes.

4 System Fi

System Fi is a higher-order polymorphic lambda calculus designed to extend
System Fω by the inclusion of term-indices. The syntax and rules of System Fi
are described in Figs. 1, 2 and 3. The extensions new to System Fi, which are not
originally part of System Fω, are highlighted by grey boxes . Eliding all the grey
boxes from Figs. 1, 2 and 3, one obtains a version of System Fω with Curry-style
terms and the typing context separated into two parts (type-level context ∆ and
term-level context Γ).

We assume readers to be familiar with System Fω and focus on describing
the new constructs of Fi, which appear in grey boxes.

Kinds (Fig. 1). The key extension to Fω is the addition of term-indexed arrow

kinds of the form A→ κ . This allows type constructors to have terms as indices.
The rest of the development of Fi flows naturally from this single extension.

Sorting (Fig. 2). The formation of indexed arrow kinds is governed by the sorting

rule (Ri) . The rule (Ri) specifies that an indexed arrow kind A → κ is well-

sorted when A has kind ∗ under the empty type-level context (·) and κ is well-
sorted. Requiring A to be well-kinded under the empty type-level context avoids

5 Tarmo Uustalu described this on a whiteboard when we met with him at the Uni-
versity of Cambridge in 2011.

Syntax: Term Variables x, y, z, . . . , i, j, k, . . .

Type Constructor Variables X,Y, Z, . . .

Sort �

Kinds κ ::= ∗ | κ→ κ | A→ κ

Type Constructors A,B, F,G ::= X | A→ B | λXκ.F | F G | ∀Xκ.B

| λiA.F | F {s} | ∀iA.B

Terms r, s, t ::= x | λx.t | r s

Typing Contexts ∆ ::= · | ∆,Xκ | ∆, iA

Γ ::= · | Γ, x : A

Reduction: t t′

(λx.t) s t[s/x]
t t′

λx.t λx.t′
r r′

r s r′ s

s s′

r s r s′

Fig. 1. Syntax and Reduction rules of Fi

dependent kinds (i.e., kinds depending on type-level or value-level bindings).
That is, A should be a closed type of kind ∗, which does not contain any free
type variables or index variables. For example, (ListX → ∗) is not a well-sorted
kind since X appears free, while ((∀X∗.ListX)→ ∗) is a well-sorted kind.

Typing contexts (Fig. 1). Typing contexts are split into two parts. Type level
contexts (∆) for type-level (static) bindings, and term-level contexts (Γ) for
term-level (dynamic) bindings. A new form of index variable binding (iA) can
appear in type-level contexts in addition to the traditional type variable bindings
(Xκ). There is only one form of term-level binding (x : A) that appears in term-
level contexts. Note, both x and i represent the same syntactic category of “Type
Variables”. The distinction between x and i is only a convention for the sake of
readability.

Well-formed typing contexts (Fig. 2). A type-level context ∆ is well-formed if
(1) it is either empty, or (2) extended by a type variable binding Xκ whose kind
κ is well-sorted under ∆, or (3) extended by an index binding iA whose type A
is well-kinded under the empty type-level context at kind ∗. This restriction is
similar to the one that occurs in the sorting rule (Ri) for term-indexed arrow
kinds (see the paragraph Sorting). The consequence of this is that, in typing
contexts and in sorts, A must be a closed type (not a type constructor!) without
free variables.

A term-level context Γ is well-formed under a type-level context ∆ when it
is either empty or extended by a term variable binding x : A whose type A is
well-kinded under ∆.

Type constructors and their kinding rules (Figs. 1 and 2). We extend the type
constructor syntax by three constructs, and extend the kinding rules accordingly.

Well-formed typing contexts:

` ∆ ` ·
` ∆ ` κ : �
` ∆,Xκ

(
X /∈ dom(∆)

) ` ∆ · ` A : ∗
` ∆, iA

(
i /∈ dom(∆)

)
∆ ` Γ ` ∆

∆ ` ·
∆ ` Γ ∆ ` A : ∗

∆ ` Γ, x : A

(
x /∈ dom(Γ)

)

Sorting: ` κ : �

(A) ` ∗ : �
(R) ` κ : � ` κ′ : �

` κ→ κ′ : �
(Ri) · ` A : ∗ ` κ : �

` A→ κ : �

Kinding: ∆ ` F : κ (V ar)
Xκ ∈ ∆ ` ∆
∆ ` X : κ

(→) ∆ ` A : ∗ ∆ ` B : ∗
∆ ` A→ B : ∗

(λ)
` κ : � ∆,Xκ ` F : κ′

∆ ` λXκ.F : κ→ κ′ (λi)
· ` A : ∗ ∆, iA ` F : κ

∆ ` λiA.F : A→ κ

(@) ∆ ` F : κ→ κ′ ∆ ` G : κ

∆ ` F G : κ′ (@i)
∆ ` F : A→ κ ∆; · ` s : A

∆ ` F {s} : κ

(∀) ` κ : � ∆,Xκ ` B : ∗
∆ ` ∀Xκ.B : ∗

(∀i) · ` A : ∗ ∆, iA ` B : ∗
∆ ` ∀iA.B : ∗

(Conv) ∆ ` A : κ ∆ ` κ = κ′ : �
∆ ` A : κ′

Typing: ∆;Γ ` t : A (:)
(x : A) ∈ Γ ∆ ` Γ

∆;Γ ` x : A
(: i)

iA ∈ ∆ ∆ ` Γ
∆;Γ ` i : A

(→I)
∆ ` A : ∗ ∆;Γ, x : A ` t : B

∆;Γ ` λx.t : A→ B
(→E)

∆;Γ ` r : A→ B ∆;Γ ` s : A

∆;Γ ` r s : B

(∀I)
` κ : � ∆,Xκ;Γ ` t : B

∆;Γ ` t : ∀Xκ.B
(X /∈ FV(Γ)) (∀E)

∆;Γ ` t : ∀Xκ.B ∆ ` G : κ

∆;Γ ` t : B[G/X]

(∀Ii) · ` A : ∗ ∆, iA;Γ ` t : B

∆;Γ ` t : ∀iA.B

(
i /∈ FV(t),
i /∈ FV(Γ)

)
(∀Ei) ∆;Γ ` t : ∀iA.B ∆; · ` s : A

∆;Γ ` t : B[s/i]

(=)
∆;Γ ` t : A ∆ ` A = B : ∗

∆;Γ ` t : B

Fig. 2. Well-formedness, Sorting, Kinding, and Typing rules of Fi

Kind equality: ` κ = κ′ : � · ` A = A′ : ∗ ` κ = κ′ : �
` A→ κ = A′ → κ′ : �

Type constructor equality: ∆ ` F = F ′ : κ

∆,Xκ ` F : κ′ ∆ ` G : κ

∆ ` (λXκ.F)G = F [G/X] : κ′
∆, iA ` F : κ ∆; · ` s : A

∆ ` (λiA.F) {s} = F [s/i] : κ

∆ ` F = F ′ : A→ κ ∆; · ` s = s′ : A

∆ ` F {s} = F ′ {s′} : κ

Term equality: ∆;Γ ` t = t′ : A
∆;Γ, x : A ` t : B ∆;Γ ` s : A

∆;Γ ` (λx.t) s = t[s/x] : B

Fig. 3. Equality rules of Fi (only the key rules are shown)

λiA.F is the type-level abstraction over an index (or, index abstraction).

Index abstractions introduce indexed arrow kinds by the kinding rule (λi) .

Note, the use of the new form of context extension, iA, in the kinding rule (λi).

F {s} is the type-level term-index application. In contrast to the ordinary

type-level type-application (F G) where the argument (G) is a type (of arbitrary
kind). The argument of an term-index application (F {s}) is a term (s). We use
the curly bracket notation around an index argument in a type to emphasize
the transition from ordinary type to term, and to emphasize that s is a term-
index, which is erasable. Index applications eliminate indexed arrow kinds by the

kinding rule (@i) . Note, we type check the term-index (s) under the current

type-level context paired with the empty term-level context (∆; ·) since we do
not want the term-index (s) to depend on any term-level bindings. Otherwise,
we would admit value dependencies in types.

∀iA.B is an index polymorphic type. The formation of indexed polymorphic

types is governed by the kinding rule ∀i , which is very similar to the formation
rule (∀) for ordinary polymorphic types.

In addition to the rules (λi), (@i), and (∀i), we need a conversion rule

(Conv) at kind level. This is because the new extension to the kind syntax

A→ κ involves types. Since kind syntax involves types, we need more than sim-
ple structural equality over kinds (see Fig. 3). For instance, A→ κ and A′ → κ
equivalent kinds when A′ and A are equivalent types. Only the key equality rules
are shown in Fig. 3, and the other structural rules (one for each sorting/kind-
ing/typing rule) and the congruence rules (symmetry, transitivity) are omitted.

Terms and their typing rules (Figs. 1 and 2). The term syntax is exactly the
same as other Curry-style calclui. We write x for ordinary term variables intro-
duced by term-level abstractions (λx.t). We write i for index variables introduced

by index abstractions (λiA.F) and by index polymorphic types (∀iA.B). As dis-
cussed earlier, the distinction between x and i is only for readability.

Since Fi has index polymorphic types (∀iA.B), we need typing rules for index

polymorphism: (∀Ii) for index generalization and (∀Ei) for index instantia-

tion. These rules are similar to the type generalization (∀I) and the type instan-
tiation (∀I) rules, but involve indices, rather than types, and have additional
side conditions compared to their type counterparts.

The additional side condition i /∈ FV(t) in the (∀Ii) rule prevents terms
from accessing the type-level index variables introduced by index polymorphism.
Without this side condition, ∀-binder would no longer behave polymorphically,
but instead would behave as a dependent function binder, which are usually de-
noted by Π in dependent type theories. Such side conditions on generalization
rules for polymorphism are fairly standard in dependent type theories that distin-
guish between polymorphism (or, erasable arguments) and dependent functions
(e.g., IPTS[17], ICC[16]).

The index instantiation rule (∀Ei) requires that the term-index s, which
instantiates i, be well-typed in the current type-level context paired with the
empty term-level context (∆; ·) rather than the current term-level context, since
we do not want indices to depend on term-level bindings.

In addition to the rules (∀Ii) and (∀Ei) for index polymorphism, we need

an additional variable rule (: i) to access index variables already in scope. In

examples like (λiA.F{s}) and (∀iA.F{s}), the term (s) should be able to access
the index variable (i) already in scope.

5 Metatheory

The expectation is that System Fi has all the nice properties of System Fω, yet
is more expressive (i.e., can state finer grained program properties) because of
the addition of term-indexed types.

We show some basic well-formedness properties for the judgments of Fi in
Sect. 5.1. We prove erasure properties of Fi, which capture the idea that indices
are erasable since they are irrelevant for reduction in Sect. 5.2. We show strong
normalization, logical consistence, and subject reduction for Fi by reasoning
about well-known calculi related to Fi in Sect. 5.3.

5.1 Well-formedness and Substitution Lemmas

We want to show that kinding and typing derivations give well-formed results
under well-formed contexts. That is, kinding derivations (∆ ` F : κ) result in
well-sorted kinds (` κ) under well-formed type-level contexts (` ∆) (Propo-
sition 1), and typing derivations (∆;Γ ` t : A) result in well-kinded types
(∆;Γ ` A : ∗) under well-formed type and term-level contexts (Proposition 2).

Proposition 1. ` ∆ ∆ ` F : κ
` κ : �

Proposition 2.
∆ ` Γ ∆;Γ ` t : A

∆ ` A : ∗

We can prove these well-formedness properties by induction over the judgment6

and using the substitution lemma below.

Lemma 1 (substitution).

1. (type substitution)
∆,Xκ ` F : κ′ ∆ ` G : κ

∆ ` F [G/X] : κ′

2. (index substitution)
∆, iA ` F : κ ∆; · ` s : A

∆ ` F [s/i] : κ

3. (term substitution)
∆;Γ, x : A ` t : B ∆;Γ ` s : A

∆;Γ ` t[s/x] : B

These substitution lemmas are fairly standard, comparable to substitution lem-
mas in other well-known systems such as Fω or ICC.

5.2 Erasure Properties

We define a meta-operation of index erasure that projects Fi-types to Fω-types.

Definition 1 (index erasure).

κ◦ ∗◦ = ∗ (κ1 → κ2)◦ = κ1
◦ → κ2

◦ (A→ κ)◦ = κ◦

F ◦ X◦ = X (A→ B)◦ = A◦ → B◦

(λXκ.F)◦ = λXκ◦
.F ◦ (λiA.F)◦ = F ◦

(F G)◦ = F ◦ G◦ (F {s})◦ = F ◦

(∀Xκ.B)◦ = ∀Xκ◦
.B◦ (∀iA.B)◦ = B◦

∆◦ ·◦ = · (∆,Xκ)◦ = ∆◦, Xκ◦
(∆, iA)◦ = ∆◦

Γ ◦ ·◦ = · (Γ, x : A)◦ = Γ ◦, x : A◦

In addition, we define another meta-operation, which selects out all the index
variable bindings from the type-level context. We use this in Theorem 6.

Definition 2 (index variable selection).

∆• ·• = · (∆,Xκ)• = ∆• (∆, iA)• = ∆•, i : A

Theorem 1 (index erasure on well-sorted kinds). ` κ : �
` κ◦ : �

Proof. By induction on the sort (κ). �

6 The proof for Propositions 1 and 2 are mutually inductive. So, we prove these two
propositions at the same time, using a combined judgment J , which is either a
kinding judgment or a typing judgment (i.e., J ::= ∆ ` F : κ | ∆;Γ ` t : A).

Remark 1. For any well-sorted kind κ in Fi, κ
◦ is a well-sorted kind in Fω.

Theorem 2 (index erasure on well-formed type-level contexts). ` ∆
` ∆◦

Proof. By induction on the type-level context (∆) and using Theorem 1. �

Remark 2. For any well-formed type-level context ∆ in Fi, ∆
◦ is a well-formed

type-level context in Fω.

Theorem 3 (index erasure on kind equality). ` κ = κ′ : �
` κ◦ = κ′◦ : �

Proof. By induction on the kind equality derivation (` κ = κ′ : �). �

Remark 3. For any well-sorted kind equality ` κ = κ′ : � in Fi, κ
◦ and κ′◦ are

the syntactically same Fω kinds. Note that no variables can appear in the erased
kinds by definition of the erasure operation on kinds.

Theorem 4 (index erasure on well-kinded type constructors).

` ∆ ∆ ` F : κ
∆◦ ` F ◦ : κ◦

Proof. By induction on the kinding derivation (∆ ` F : κ). We use Theorem 2
in the (V ar) case, Theorem 3 in the (Conv) case, and Theorem 1 in the (λ) and
(∀) cases. �

Remark 4. In the theorem above, F ◦ is a well-kinded type constructor in Fω.

Lemma 2. (F [G/X])◦ = F ◦[G◦/X] Lemma 3. (F [s/i])◦ = F ◦

Theorem 5 (index erasure on type constructor equality).

∆ ` F = F ′ : κ
∆◦ ` F ◦ = F ′◦ : κ◦

Proof. By induction on the derivation of the type constructor equality judgment
(∆ ` F = F ′ : κ). We also use Proposition 1 and Lemmas 2 and 3. �

Remark 5. When ∆ ` F = F ′ : κ is a valid type constructor equality in Fi,
∆◦ ` F ◦ = F ′◦ : κ◦ is a valid type constructor equality in Fω.

Theorem 6 (index erasure on well-formed term-level contexts prepended
by index variable selection).

∆ ` Γ
∆◦ ` (∆•, Γ)◦

Proof. By induction on the term-level context (Γ) and using Theorem 4. �

Remark 6. We can also show that ∆ ` Γ
∆◦ ` Γ ◦ and prove Corollary 1 directly.

Theorem 7 (index erasure on well-typed terms).
∆ ` Γ ∆;Γ ` t : A

∆◦; (∆•, Γ)◦ ` t : A◦

Proof. By induction on the typing derivation (∆;Γ ` t : A). We also make use
of Theorems 1, 4, 5, and 6. �

Remark 7. In the theorem above, t is a well typed term in Fω as well as in Fi.

Corollary 1 (index erasure on index-free well-typed terms).

∆ ` Γ ∆;Γ ` t : A

∆◦;Γ ◦ ` t : A◦
(dom(∆) ∩ FV(t) = ∅)

5.3 Strong Normalization and Logical Consistency

Strong normalization is a corollary of the erasure property since we know that
System Fω is strongly normalizing. Index erasure also implies logical consistency.
By index erasure, we know that any well-typed term in Fi is a well-typed term in
Fω with its erased type. That is, there are no extra well-typed terms in Fi that
are not well-typed in Fω. By the saturated sets model (as in [1]), we know that
the void type (∀X∗.X) in Fω is uninhabited. Therefore, the void type (∀X∗.X)
in Fi is uninhabited since it erases to the same void type in Fω. Alternatively,
logical consistency of Fi can be drawn from ICC. System Fi is a restriction of the
restricted implicit calculus [15] or ICC− [4], which are restrictions of ICC [16]
known to be logically consistent.

6 Encodings of Term-Indexed Datatypes

Recall that our motivation was a foundational calculus that can encode term-
indexed datatypes. In Sect. 2, we gave Church encodings of List (a regular
datatype), Powl (a type-indexed datatype), and Vec (a term-indexed datatype).
In this section, we discuss a more complex datatype [6] involving nested term-
indices, and several encoding schemes that we have seen used in practice – first,
encoding indexed datatypes using equality constraints [18, 8] and second, encod-
ing datatypes in the Mendler-style [2, 3].

Nested term-indices : System Fi is able to express datatypes with nested term-
indices – term-indices which are themselves term-indexed datatypes. Consider
the resource-state tracking environment [6] in Nax-like syntax below:

data Env : ({st} -> *) -> {Vec st {n}} -> * where

Extend : res {x} -> Env res {xs} -> Env res {VCons x xs}

Empty : Env res {VNil}

Note that Env has a term-index of type Vec, which is again indexed by Nat. For
simplicity,7 assume that n is some fixed constant (e.g., S(S(S Z)), i.e., 3). Then,

7 Nax supports rank-1 kind-level polymorphism. It would be virtually useless if nested
term-indices were only limited to constants rather than polymorphic variables. We

an Env tracks 3 independent resources (res), each which could be in a different
state (st). For example, 3 files in different states – one open for reading, the
next open for writing, and the third closed. We can encode Env in Fi as follows:

Env , λY st→∗. λi(Vec st n).∀X(Vec st {n})→∗.

(∀jst.∀k(Vec st n). Y{j} → X{k} → X{VCons j k})→ X{VNil} → X{i}
The term encodings for Extend and Empty are exactly the same as the term
encodings for Cons and Nil of the List datatype in Sect. 2.

Encoding indexed datatypes using equality constraints : Systematic encodings of
GADTs [18, 8], which are used in practical implementations, typically involve
equality constraints and existential quantification. Here, we want to emphasize
that such encoding schemes are expressible within System Fi, since it is possible
to define equalities and existentials over both types and term-indices in Fi.

It is well known that Leibniz equality over type constructors can be defined
within System Fω as (

κ
=) , λXκ

1 . λX
κ
2 .∀Xκ→∗. XX1 → XX2. Similarly, Leibniz

equality over term-indices is defined as (
A
=) , λiA. λjA.∀XA→∗. X{i} → X{j}

in System Fi. Then, we can encode Vec as the sum of its two data constructor
types:

Vec , λA∗. λiNat.∀XNat→∗. (∃jNat. (S j Nat
= i)×A×X{j}) + (Z

Nat
= i)

where + and × are the usual impredicative encoding of sums and products. We
can encode the existential quantification over indices (∃ used in the encoding of
Vec above) as ∃iA.B , ∀X∗.(∀iA.B → X) → X, which is similar to the usual
encoding of the existential quantification over types in System F or Fω.

Compared to the simple Church encoded versions in Sect. 2, the encodings
using equality constraints work particularly well with encodings of functions
that constrain their domain types by restricting their indices. For instance, the
function safeTail : Vec a {S n} → Vec a {n}, which can only be applied to
non-empty length indexed lists due the index of the domain type (S n).

The Mendler-style encoding : Recursive type theories that extend higher-order
polymorphic lambda calculi typically come with a built-in recursive type oper-
ator µκ : (κ → κ) → κ for each kind κ, which yields recursive types (µκ F : κ)
when applied to type constructors of appropriate kind (F : κ → κ). For in-
stance, List , λY ∗. µ∗(λX

∗.Y ×X + 1) where 1 is the unit type. One benefit
of factoring out the recursion at type-level (e.g., µ∗) from the base structure
(e.g., λX∗.Y ×X + 1) of recursive types is that such factorized (or, two-level)
representations are more amenable to express generic recursion schemes (e.g.,
catamorphism) that work over different recursive datatypes. Interestingly, there
exists an encoding scheme, namely the Mendler style, which can embed µκ within
Systems like Fω or Fi. The Mendler-style encoding can keep the theoretical basis
small, while enjoying the benefits of factoring out the recursion at type-level.

strongly believe rank-1 kind polymorphism does not introduce inconsistency, since
rank-1 polymorphic systems are essentially equivalent to simply-typed systems by
inlining the polymorphic definition with the instantiated arguments in each instan-
tiation site.

7 Related Work

System Fi is most closely related to Curry-style System Fω [2, 12] and the Implicit
Calculus of Constructions (ICC) [16]. All terms typable in a Curry-style System
Fω are typable (with the same type) in System Fi and all terms typable in Fi
are typable (with the same type8) in ICC.

As mentioned in Sect. 5.3, we can derive strong normalization of Fi from
System Fω, and derive logical consistency of Fi from certain restrictions of ICC
[15, 4]. In fact, ICC is more than just an extension of System Fi with dependent
types and stratified universes, since ICC includes η-reduction and η-equivalence.
We do not foresee any problems adding η-reduction and η-equivalence to Sys-
tem Fi. Although System Fi accepts fewer terms than ICC, it enjoys simpler
erasure properties (Theorem 7 and Corollary 1) just by looking at the syntax
of kinds and types, which ICC cannot enjoy due to its support for full depen-
dent types. In System Fi, term-indices appearing in types (e.g., s in F{s}) are
always erasable. Mishra-Linger and Sheard [17] generalized the ICC framework
to one which describes erasure on arbitrary Church-style calculi (EPTS) and
Curry-style calculi (IPTS), but only consider β-equivalence for type conversion.

In the practical setting of programming language implementation, Yorgey
et al. [19], inspired by McBride [14], recently designed an extension to Haskell’s
GADTs by allowing datatypes to be used as kinds. For instance, Bool is pro-
moted to a kind (i.e., Bool : �) and its data constructors True and False are
promoted to types. They extended System FC (the Glasgow Haskell Compiler’s
intermediate core language) to support datatype promotion and named it Sys-

tem F ↑C . The key difference between F ↑C and Fi is in their kind syntax:

F ↑C kinds κ ::= ∗ | κ→ κ | Fκ | X | ∀X .κ | · · ·
Fi kinds κ ::= ∗ | κ→ κ | A→ κ

In F ↑C , all type constructors (F) are promotable to the kind level and become
kinds when fully applied to other kinds (Fκ). On the other hand, in Fi, a type
can only appear as the domain of an index arrow kind (A→ κ). The ramifications

of this difference is that F ↑C can express type-level data structures but not nested
term-indices, while Fi supports the converse. Intuitively, a type constructor like
List : ∗ → ∗ is promoted to a kind constructor List : � → �, which enables
type-level data structures such as [Nat, Bool, Nat→ Bool] : List ∗. Type-level
data structures motivate type-level computations over promoted data. This is
made possible by type families9. The promotion of polymorphic types naturally
motivates kind polymorphism (∀X .κ). Kind polymorphism of arbitrary rank is
known to break strong normalization and cause logical inconsistency [13]. In a
programming language, inconsistency is not an issue. However, when studying
logically consistent systems, we need a more conservative approach, as in Fi.

8 The ∗ kind in Fω and Fi corresponds to Set in ICC
9 A GHC extension to define type-level functions in Haskell.

8 Summary and Ongoing Work

System Fi is a strongly-normalizing, logically-consistent, higher-order polymor-
phic lambda calculus that was designed to support the definition of datatypes
indexed by both terms and types. In terms of expressivity, System Fi sits between
System Fω and ICC. We designed System Fi as a tool to reason about program-
ming languages with term-indexed datatypes. System Fi can express a large class
of term-indexed datatypes, including datatypes with nested term-indices.

One limitation of System Fi is that it cannot express type-level data struc-
tures such as lists that contain type elements. We hope to overcome this limita-
tion by extending Fi with first-class type representations [9], which reflect types
as term-level data (a sort of a fully reflective version of TypeRep from Sect. 1).

Our goal is to build a unified programming and reasoning system, which
supports (1) an expressive class of datatypes including nested term-indexed
datatypes and negative datatypes, (2) logically consistent reasoning about pro-
gram properties, and (3) Hindley–Milner-style type inference. Towards this goal,
we are developing the programming language Nax based on System Fi. Nax is
given semantics in terms of System Fi. That is, all the primitive language con-
structs of Nax that are not present in Fi have translations into System Fi. Such
constructs include Mendler-style eliminators, recursive type operators, and pat-
tern matching.

Some language features we want to include in Nax go beyond Fi. One of them
is a recursion scheme that guarantee normalization due to paradigmatic use of
indices in datatypes. For instance, some recursive computations always reduce a
natural number term-index in every recursive call. Although such computations
obviously terminate, we cannot express them in System Fi, since term-indices
in them are erasable – Fi only accepts terms that are already type-correct in
Fω. We plan to explore extensions to System Fi that enable such computations
while maintaining logical consistency.

Bibliography

[1] Abel, A., Matthes, R.: Fixed points of type constructors and primitive re-
cursion. In: CSL ’04. LNCS, vol. 3210, pp. 190–204. Springer (2004)

[2] Abel, A., Matthes, R., Uustalu, T.: Iteration and coiteration schemes for
higher-order and nested datatypes. TCS 333(1-2), 3 – 66 (2005)

[3] Ahn, K.Y., Sheard, T.: A hierarchy of Mendler-style recursion combinators:
Taming inductive datatypes with negative occurrences. In: ICFP ’11. pp.
234–246. ACM (2011)

[4] Barras, B., Bernardo, B.: The implicit calculus of constructions as a pro-
gramming language with dependent types. In: FoSSaCS. LNCS, vol. 4962,
pp. 365–379. Springer (2008)

[5] Böhm, C., Berarducci, A.: Automatic synthesis of typed lambda-programs
on term algebras. TCS 39, 135–154 (1985)

[6] Brady, E., Hammond, K.: Correct-by-construction concurrency: Using de-
pendent types to verify implementations of effectful resource usage proto-
cols. Fundam. Inform 102(2), 145–176 (2010)

[7] Coquand, T., Huet, G.: The calculus of constructions. Rapport de Recherche
530, INRIA, Rocquencourt, France (May 1986)

[8] Crary, K., Weirich, S., Morrisett, G.: Intensional polymorphism in type-
erasure semantics. In: ICFP ’98. pp. 301–312. ACM (1998)

[9] Dagand, P.E., McBride, C.: Transporting functions across ornaments. In:
ICFP’98. pp. 103–114. ICFP ’12, ACM (2012)

[10] Garrigue, J., Normand, J.L.: Adding GADTs to OCaml: the direct ap-
proach. In: ML ’11. ACM (2011)

[11] Geuvers, H.: Induction is not derivable in second order dependent type
theory. pp. 166–181. TLCA’01, Springer-Verlag, Berlin, Heidelberg (2001)

[12] Giannini, P., Honsell, F., Rocca, S.R.D.: Type inference: Some results, some
problems. Fundam. Inform. 19(1/2), 87–125 (1993)

[13] Girard, J.-Y.: Interprétation Fonctionnelle et Élimination des Coupures de
l’Arithmétique d’Ordre Supérieur. Thèse de doctorat d’état, Université
Paris VII (Jun 1972)

[14] McBride, C.: homepage of the Strathclyde Haskell Enhancement (SHE)
(2009), http://personal.cis.strath.ac.uk/conor/pub/she/

[15] Miquel, A.: A model for impredicative type systems, universes, intersection
types and subtyping. In: LICS. pp. 18–29. IEEE Computer Society (2000)

[16] Miquel, A.: The implicit calculus of constructions. In: TLCA’01. pp. 344–
359 (2001)

[17] Mishra-Linger, N., Sheard, T.: Erasure and polymorphism in pure type
systems. In: FoSSaCS. LNCS, vol. 4962, pp. 350–364. Springer (2008)

[18] Sheard, T., Pašalić, E.: Meta-programming with built-in type equality. In:
LFM’04. pp. 106–124 (2004)

[19] Yorgey, B.A., Weirich, S., Cretin, J., Jones, S.L.P., Vytiniotis, D., Mag-
alhães, J.P.: Giving Haskell a promotion. In: TLDI. pp. 53–66. ACM (2012)

