Second-Order and Dependently-Sorted Abstract Syntax

Marcelo Fiore

COMPUTER LABORATORY
UNIVERSITY OF CAMBRIDGE

LICS 2008 24.VI.2008

Motivation I

Research Programme

MATHEMATICAL THEORY OF SYNTAX

see Fiore, Plotkin & Turi [4], Fiore [5, 7, 8]

- Algebraic:
 - initial algebra semantics
 (⇒ compositionality)
 - structural recursion
 - induction principle
- Comprehensive:
 - variable binding, α-equivalence
 - capture-avoiding simultaneous and single-variable substitution
 - term meta-variables, meta-substitution
 - mono and multi sorting
 - sort dependency
 - linear, cartesian, mixed contexts

Motivation II

Research Programme

MATHEMATICAL FRAMEWORK FOR EQUATIONAL AND REWRITING LOGICAL FRAMEWORKS

see Fiore & Hur [9]

Motivation II

Research Programme

MATHEMATICAL FRAMEWORK FOR EQUATIONAL AND REWRITING LOGICAL FRAMEWORKS

see Fiore & Hur [9]

Idea (II)

Idea (II)

sound for a canonical algebraic model theory
+
framework for completeness

Idea (III)

sound for a canonical algebraic model theory
+
framework for completeness

syntactic structure

Idea (III)

sound for a canonical algebraic model theory
+
framework for completeness

syntactic structure

Equational and Rewriting Logical Framework

$$\mathcal{A}, \mathcal{R} \rhd \Gamma \vdash t \equiv t'$$

 $\mathcal{A}, \mathcal{R} \rhd \Gamma \vdash t > t'$

Example I

Set

syntactic structure

= signature: $\Sigma = \{ \Sigma_n \in \mathbf{Set} \}_{n \in \mathbb{N}}$

Example I

Equational and Rewriting Logic

$$\mathsf{T}_\Sigma(X) \;\cong\; X + \textstyle\coprod_{n \in \mathbb{N}} \Sigma_n \times (\mathsf{T}_\Sigma X)^n$$
 interpretation ,

syntactic structure

= signature: $\Sigma = \{ \Sigma_n \in \mathbf{Set} \}_{n \in \mathbb{N}}$

Example II

$$Set^{S}$$

syntactic structure

= signature:
$$\Sigma = \{ \Sigma_{\sigma} \in \mathbf{Set}^{S} \}_{\sigma \in S^*}$$

NB: General method for the extension from the mono-sorted to the multi-sorted case.

Example II

Multi-Sorted Equational and Rewriting Logic

$$\begin{array}{l} (T_{\Sigma}X)_s \;\cong\; X_s + \coprod_{\sigma = (s_1 \ldots s_n) \in S^*} \Sigma_{\sigma,s} \times \prod_{i=1}^n (T_{\Sigma}X)_{s_i} \\ \\ \text{interpretation}_{/} \end{array}$$

syntactic structure

= signature:
$$\Sigma = \{ \Sigma_{\sigma} \in \mathbf{Set}^{S} \}_{\sigma \in S^{*}}$$

NB: General method for the extension from the mono-sorted to the multi-sorted case.

Example III

see Fiore & Hur [9]

Nom

syntactic structure see Clouston & Pitts [6]

= signature: $\Sigma = \{ \Sigma_n \in \mathbb{N}om \}_{n \in \mathbb{N}}$

Example III

see Fiore & Hur [9]

interpretation |

syntactic structure see Clouston & Pitts [6]

= signature: $\Sigma = \{ \Sigma_n \in \mathbb{N}om \}_{n \in \mathbb{N}}$

Example III

Synthetic Nominal Equational and Rewriting Logic

Example IV

Second-Order Equational and Rewriting Theories

From the mathematical theory of second-order abstract syntax developed in Part I of the paper

► The paradigmatic second-order theory:

$$\begin{split} \Sigma_{\lambda} &= \ 0 \ 0 \ \text{(application)} \\ & \lambda(1) \ \text{(abstraction)} \\ & (\beta) \ M[1], N[0] \\ & \vdash \lambda \big((x) M[\lfloor x \rfloor] \big) \ @ \ N[\] = M[\ N[\]] \\ & (\eta) \ M[\] \vdash \lambda \big((x) \ M[\] \ @ \ \lfloor x \rfloor \big) = M[\] \end{split}$$

compare Klop [1], Pigozzi & Salibra [2]

► The paradigmatic second-order theory:

$$\begin{split} \Sigma_{\lambda} &= \ 0 \ @ \ 0 \ \ \text{(application)} \\ & \lambda(1) \ \ \text{(abstraction)} \\ & (\beta) \ \ M[1], N[0] \\ & \quad \vdash \lambda \big((x) M[\lfloor x \rfloor] \big) \ @ \ N[\] = M \big[N[\] \big] \\ & (\eta) \ \ M[\] \vdash \lambda \big((x) \ M[\] \ @ \ \lfloor x \rfloor \big) = M[\] \\ & \quad \text{compare Klop [1], Pigozzi & Salibra [2]} \end{split}$$

- The syntactic theory should account for:
 - variables and meta-variables
 - variable binding and α-equivalence
 - capture-avoiding and meta substitution
 - mono and multi sorting

Second-Order Abstract Syntax

Model

finite sets and functions $\mathbf{Set}^{\mathbb{F}}$

see Fiore, Plotkin & Turi [4]

$$\mathbf{X} \in \mathbf{Set}^{\mathbb{F}} \text{ is a functor } \left\{ egin{array}{l} \mathbf{X}\Gamma \ (\Gamma \in \mathbb{F}) \\ \mathbb{F}(\Gamma, \Delta)
ightarrow \mathbf{Set}(\mathbf{X}\Gamma, \mathbf{X}\Delta) \end{array}
ight.$$

E.g. the object of variables is $V\Gamma = \Gamma$

syntactic structure =

▶ signature: $\Sigma = \{ \Sigma_n \in \mathbf{Set}^{\mathbb{F}} \}_{n \in \mathbb{N}^*}$

Second-Order Abstract Syntax

Model

$$\begin{split} \Sigma(X) &= \coprod_{n=(n_1...n_k) \in \mathbb{N}^*} \Sigma_n \times \prod_{i=1}^k X^{V^n_i} \\ X \in \mathcal{S}\!\mathit{et}^{\mathbb{F}} \text{ is a functor } \left\{ \begin{array}{l} X\Gamma \ (\Gamma \in \mathbb{F}) \\ \mathbb{F}(\Gamma, \Delta) \to \mathcal{S}\!\mathit{et}(X\Gamma, X\Delta) \end{array} \right. \end{split}$$

E.g. the object of variables is $V\Gamma = \Gamma$

syntactic structure =

▶ signature: $\Sigma = \{ \Sigma_n \in \mathbf{Set}^{\mathbb{F}} \}_{n \in \mathbb{N}^*}$

Second-Order Abstract Syntax

Model

$$\begin{split} \Sigma(X) &= \coprod_{n=(n_1...n_k) \in \mathbb{N}^*} \Sigma_n \times \prod_{i=1}^k X^{V^{n_i}} \\ X &\in Set^{\mathbb{F}} \text{ is a functor } \begin{cases} & X\Gamma \ (\Gamma \in \mathbb{F}) \\ & \mathbb{F}(\Gamma, \Delta) \to Set(X\Gamma, X\Delta) \end{cases} \end{split}$$

E.g. the object of variables is $V\Gamma = \Gamma$

syntactic structure =

- ▶ signature: $\Sigma = \{ \Sigma_n \in \mathbf{Set}^{\mathbb{F}} \}_{n \in \mathbb{N}^*}$
- substitution

Algebras with substitution

 $(\Sigma$ -monoids)

see Fiore, Plotkin & Turi [4]

algebra structure:

$$\Sigma X \xrightarrow{\xi} X$$

substitution structure:

monoid
$$V \xrightarrow{e} X \xleftarrow{m} X \bullet X$$

$$\left(\equiv \begin{array}{c} \Gamma \longrightarrow X\Gamma \longleftarrow X\Delta \times (X\Gamma)^{\Delta} \\ \text{subject to the laws of substitution} \end{array} \right)$$

subject to the compatibility condition:

$$\begin{array}{cccc}
\Sigma(X) \bullet X & \longrightarrow & \Sigma(X \bullet X) & \xrightarrow{\Sigma m} & \Sigma X \\
\xi \bullet X & & & & & & & & & & & & \\
X \bullet X & & & & & & & & & & & \\
\end{array}$$

Model

Thm:

1. General result:

$$\mathfrak{M}_{\Sigma}(X) \cong \mathrm{V} + X \bullet \mathfrak{M}_{\Sigma}(X) + \Sigma(\mathfrak{M}_{\Sigma}X)$$

Model

Thm:

1. General result:

$$\mathcal{M}_{\Sigma}(X) \cong \mathrm{V} + X \bullet \mathcal{M}_{\Sigma}(X) + \Sigma(\mathcal{M}_{\Sigma}X)$$

2. For Σ induced by a binding signature, \mathcal{M}_{Σ} is a strong monad .

Rem: Need to develop a theory of strengths.

Model

Thm:

1. General result:

$$\mathcal{M}_{\Sigma}(X) \cong V + X \bullet \mathcal{M}_{\Sigma}(X) + \Sigma(\mathcal{M}_{\Sigma}X)$$

2. For Σ induced by a binding signature, \mathcal{M}_{Σ} is a strong monad.

Rem: Need to develop a theory of strengths.

```
/ concretion
```

Syntactic theory for variables, meta-variables, variable binding, α -equivalence, capture-avoiding substitution, meta-substitution.

Syntactic Theory (I)

Syntax:

For X an object of meta-variables,

$$\begin{split} \mathbf{t} &\in \mathbb{M}_{\Sigma}(X)_{\Gamma} \\ &::= \lfloor x \rfloor & (x \in \Gamma) \\ &\mid \ \ \mathbf{M}[t_1, \dots, t_{\ell}] & \left(\begin{array}{c} \mathbf{M} \in X(\ell) \\ t_i \in (M_{\Sigma}X)_{\Gamma} \end{array} \right) \\ &\mid \ \ f((\vec{x_1})t_1, \dots, (\vec{x_k})t_k)) & \left(\begin{array}{c} f \in \Sigma_{(|\vec{x_1}| \dots |\vec{x_k}|)} \\ t_i \in (M_{\Sigma}X)_{\Gamma, \vec{x_i}} \end{array} \right) \end{split}$$

Syntactic Theory (I)

Syntax:

For X an object of meta-variables,

$$\begin{split} &t \in \mathcal{M}_{\Sigma}(X)_{\Gamma} \\ &::= \lfloor x \rfloor \qquad (x \in \Gamma) \\ &\mid \ M[t_1, \dots, t_{\ell}] \qquad \left(\begin{array}{c} M \in X(\ell) \\ t_i \in (M_{\Sigma}X)_{\Gamma} \end{array} \right) \\ &\mid \ f \big((\vec{x_1}) t_1, \dots, (\vec{x_k}) t_k \big) \big) \qquad \left(\begin{array}{c} f \in \Sigma_{(|\vec{x_1}| \dots |\vec{x_k}|)} \\ t_i \in (M_{\Sigma}X)_{\Gamma, \vec{x_i}} \end{array} \right) \end{split}$$

Capture-avoiding substitution:

$$\mathcal{M}_{\Sigma}(X) \bullet \mathcal{M}_{\Sigma}(X) \longrightarrow \mathcal{M}_{\Sigma}(X)$$

$$\left(\equiv \mathcal{M}_{\Sigma}(X)_{\Delta} \times \left(\mathcal{M}_{\Sigma}(X)_{\Gamma} \right)^{\Delta} \longrightarrow \mathcal{M}_{\Sigma}(X)_{\Gamma} \right)$$

Syntactic Theory (I)

Syntax:

For X an object of meta-variables,

$$\begin{split} \mathbf{t} &\in \mathcal{M}_{\Sigma}(X)_{\Gamma} \\ &::= \left \lfloor x \right \rfloor & (x \in \Gamma) \\ &\mid \ \, \mathsf{M}[t_1, \dots, t_{\ell}] & \left(\begin{array}{c} \mathsf{M} \in \mathsf{X}(\ell) \\ t_i \in (\mathsf{M}_{\Sigma}X)_{\Gamma} \end{array} \right) \\ &\mid \ \, \mathsf{f}\big((\vec{x_1})t_1, \dots, (\vec{x_k})t_k)\big) & \left(\begin{array}{c} \mathsf{f} \in \Sigma_{(|\vec{x_1}| \dots |\vec{x_k}|)} \\ t_i \in (\mathsf{M}_{\Sigma}X)_{\Gamma, \vec{x_i}} \end{array} \right) \end{split}$$

Capture-avoiding substitution:

$$\mathcal{M}_{\Sigma}(X) \bullet \mathcal{M}_{\Sigma}(X) \longrightarrow \mathcal{M}_{\Sigma}(X)$$

$$\left(\equiv \mathcal{M}_{\Sigma}(X)_{\Delta} \times \left(\mathcal{M}_{\Sigma}(X)_{\Gamma} \right)^{\Delta} \longrightarrow \mathcal{M}_{\Sigma}(X)_{\Gamma} \right)$$

Meta-substitution:

$$\begin{split} \mathcal{M}_{\Sigma}(X) \times \left(\mathcal{M}_{\Sigma}(Y) \right)^{X} &\longrightarrow \mathcal{M}_{\Sigma}(Y) \\ \left(\equiv \mathcal{M}_{\Sigma}(X)_{\Gamma} \times \prod_{\ell \in \mathbb{N}} X(\ell) \Rightarrow \left((\mathcal{M}_{\Sigma}Y)^{\mathrm{V}^{\ell}} \right)_{\Gamma} \to \mathcal{M}_{\Sigma}(Y)_{\Gamma} \right) \end{split}$$

Syntactic Theory (II)

- Canonical specification and derived correct definition of
 - variable renaming,
 - capture-avoiding simultaneous substitution,
 - meta-variable renaming,
 - meta-substitution.
- Canonical algebraic model theory.

Dependently-Sorted Abstract Syntax

Universe of discourse:

- embodies sort dependency compare Makkai [3]
- ▶ induces *dependently-sorted substitution*.

Some Further Directions

- Abstract syntax with sharing.
- Applications to rewriting theory.
- Second-order theory translations.
- Algebraic foundations for type theory.

References

- [1] J. W. Klop. *Combinatory Reduction Systems.* Ph.D. thesis, Mathematical Centre Tracts 127, CWI, Amsterdam (1980).
- [2] D. Pigozzi and A Salibra. The abstract variable-binding calculus. Studia Logica, Volume 55, Number 1, 1995.
- [3] M. Makkai. First-order logic with dependent sorts, with applications to category theory. Preprint, 1997.
- [4] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In *14th Annual IEEE Symposium on Logic in Computer Science (LICS'99)*, pages 193–202, 1999.
- [5] M. Fiore. On the structure of substitution. Invited address for the 22nd Mathematical Foundations of Programming Semantics Conference (MFPS XXII), DISI, University of Genova, 2006. (Available from http://www.cl.cam.ac.uk/~mpf23/).

- [6] R. Clouston and A. Pitts. Nominal Equational Logic. Electronic Notes in Theoretical Computer Science 172 (2007), pages 223–257.
- [7] M. Fiore. A mathematical theory of substitution and its applications to syntax and semantics. Invited tutorial for the *Workshop on Mathematical Theories of Abstraction, Substitution and Naming in Computer Science*, International Centre for Mathematical Sciences (ICMS), 2007. (Available from http://www.cl.cam.ac.uk/~mpf23/).
- [8] M. Fiore. Towards a mathematical theory of substitution. Invited talk for the *Annual International Conference on Category Theory*, Carvoeiro, Algarve (Portugal), 2007. (Available from http://www.cl.cam.ac.uk/~mpf23/).
- [9] M. Fiore and C.-K. Hur. Term equational systems and logics. In XXIV Conference on the Mathematical Foundations of Programming Semantics. Electronic Notes in Theoretical Computer Science, 2008.