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Motivation 1

Research Programme

MATHEMATICAL THEORY OF SYNTAX

see Fiore, Plotkin & Turi [4], Fiore [5, 7, 8]

» Algebraic:

¢+ Initial algebra semantics
(= compositionality)

¢+ structural recursion
¢+ Induction principle

» Comprehensive:

¢+ variable binding, x-equivalence

¢+ capture-avoiding simultaneous and
single-variable substitution

¢ term meta-variables, meta-substitution

¢+ mono and multi sorting

¢ sort dependency

¢+ linear, cartesian, mixed contexts
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Research Programme

MATHEMATICAL FRAMEWORK FOR
EQUATIONAL AND REWRITING
LOGICAL FRAMEWORKS

see Fiore & Hur [9]
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Equational and Rewriting
Logical Framework
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Set

syntactic structure
= signature: £ ={ X, € Set |,y
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Example I

Set®

syntactic structure
= signature: & ={ X, € Set” Jocs-

NB: General method for the extension from
the mono-sorted to the multi-sorted case.



Example I

Multi-Sorted
Equational and Rewriting Logic
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NB: General method for the extension from
the mono-sorted to the multi-sorted case.
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= signature: ¥ ={ X, € Nom }cn
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Example Il

Synthetic Nominal

Equational and Rewriting Logic
see Fiore & Hur [9]

2-Alg
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A
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interpretation | | concretion

\ .
Syntactic structure s€¢ Clouston & Pitts [6] |
l

= signature: ~ ={X,, € Nom }nen /

I

arity co-arity
a1,...,am x4, o xnll] FEt=1
a1,...,am;x1[€1],...,xn[£n] -t >t

e.g. M) a,b;x[1] FAgxlal = Ay x[b]



Example IV

Second-Order
Equational and Rewriting Theories

From the mathematical theory of
second-order abstract syntax
developed in Part | of the paper




» The paradigmatic second-order theory:
2o,= 0@0 (application)
A(1) (abstraction)
() MI[1], N[O]
= A((x)M[[x]]) @N[] = M[N[]]
(M) MITEA((x) M[]e[x]) =M[]

compare Klop [1], Pigozzi & Salibra [2]



» The paradigmatic second-order theory:
2o,= 0@0 (application)
A(1) (abstraction)
() MI[1], N[O]
= A((x)M[[x]]) @N[] = M[N[]]
(M) MITEA((x) M[]e[x]) =M[]
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» The syntactic theory should account for:

¢+ variables and meta-variables
¢+ variable binding and «x-equivalence
¢+ capture-avoiding and meta substitution

¢+ mono and multi sorting



Second-Order
Abstract Syntax
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finite sets and functions
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Set
see Fiore, Plotkin & Turi [4]

)
XT (T € F)
F(I',A) — Set(XT, XA)
\

X € 8Set" is a functor ¢

E.g. the object of variables is VI' =T

syntactic structure =

» signature: L ={Z, € Set" }pen-
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» Substitution




Algebras with substitution

(X-monoids)
see Fiore, Plotkin & Turi [4]

» algebra structure:
X —5s X

» Substitution structure:

monoid V —= X <& XeX

_ T —= XI' =— XA x (XI)4
subject to the laws of substitution

subject to the compatibility condition:

S(X)eX —=T(XeX) T yX

= la

X o X — X




Thm:

1. General result:
Ms(X) =V 4+ XeMs(X) 4+ Z(MsX)



Thm:
1. General result:

Ms(X) =V 4+ XeMz(X) + X(MsX)

2. For X induced by a binding signature,
Ms Is a strong monad .

Rem: Need to develop a theory of strengths.



Thm:
1. General result:
Ms(X) =V 4+ XeMs(X) 4+ Z(MsX)

2. For X induced by a binding signature,
Ms Is a strong monad .

Rem: Need to develop a theory of strengths.
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Syntactic theory for variables, meta-variables,
variable binding, «-equivalence,
capture-avoiding substitution, meta-substitution.



Syntactic Theory (I)
» Syntax:

For X an object of meta-variables,

t e Mxs(X)r
= |x| (x €T)
M e X(¢)
| M[tq,  tol ( ti € (Ms=X)r )
(), (G ) (LGEZ((Q;%)M



Syntactic Theory (I)

» Syntax:
For X an object of meta-variables,
t e Mz(X)r
n= | x| (x €T)
M e X({)
Mitq,..., t
‘ [ 1y y ﬁ] ( ti c (MZX)F )

(), (X)) ( f.e 2 (...%i) | )

» Capture-avoiding substitution:
Mz (X) @ Mz (X) — Mg(X)
(= Ms(X)a x (Ms(X)r)* — Me(X)r)



Syntactic Theory (I)

» Syntax:
For X an object of meta-variables,
t e Mz(X)r
n= | x| (x €T)
M e X({)
Mitq,..., t
‘ [ 1y y ﬂ] ( ti c (MZX)F )

. . fe X e
‘ f((X])t], I (Xk)tk)) < tEE ((MZ;ZS?“" )

» Capture-avoiding substitution:
Mx(X) @ Mx(X) — Mz(X)
(= Ms(X)a x (Ms(X)r)* — Ms(X)r)
» Meta-substitution:
M (X) x (Mz(Y))™ — Ms(Y)
(E Mz(X)r X [ Loy X(£) = ((MZY)VE)F — MZ(Y)F)



Syntactic Theory (ll)

» Canonical specification and derived
correct definition of

¢

¢

¢

¢

variable renaming,

capture-avoiding simultaneous
substitution,

meta-variable renaming,

meta-substitution.

» Canonical algebraic model theory.



Dependently-Sorted
Abstract Syntax

Universe of discourse:

models

monoids
A\
. / o

\Mon Mod

dependently-sorted

. cateqgory of
signature Jory

contexts

» embodies sort dependency compare Makkai [3]

» Induces dependently-sorted substitution.



Some Further Directions

» Abstract syntax with sharing.
» Applications to rewriting theory.
» Second-order theory translations.

» Algebraic foundations for type theory.
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