
Second-Order and Dependently-Sorted Abstract Syntax
(Extended Abstract)

Marcelo Fiore
Computer Laboratory

University of Cambridge

Abstract

The paper develops a mathematical theory in the spirit
of categorical algebra that provides a model theory for
second-order and dependently-sorted syntax. The theory
embodies notions such as α-equivalence, variable binding,
capture-avoiding simultaneous substitution, term metavari-
able, meta-substitution, mono and multi sorting, and sort
dependency. As a matter of illustration, a model is used to
extract a second-order syntactic theory, which is thus guar-
anteed to be correct by construction.

Introduction

The algebraic foundations for syntactic structures as
needed in computer science are still under development.
Such foundations are to provide a mathematical theory in
which models are given by algebraic structures, and should
reflect the various syntactic notions in a conceptual manner.
In particular, free algebraic models are to provide an ab-
stract notion of syntax; so that syntax is formalised in terms
of its structure, which, being characterised by a universal
property, is thus devoid of inessential details. Such a de-
velopment is well-known for first-order syntax, and it has
more recently been extended to incorporate variable bind-
ing [11, 12]. The work presented here goes a step further
in this direction. Specifically, I provide algebraic founda-
tions for second-order and dependently-sorted syntax. Thus
advancing the research programme of developing algebraic
foundations for type theory.

The conceptual framework for the developments of the
paper follows.

In the traditional case of mono-sorted first-order syntax,
one considers a universe of discourse given by a cartesian
category C on which syntactic structure manifests itself as
an endofunctor Σ on C . The associated notion of algebraic
structure is given by that of an algebra for an endofunctor.

One requires that free Σ-algebras

X // SX oo Σ(SX)

exist, obtaining a monad of syntax S on C . The monad
structure provides substitution structure.

The category C is typically cartesian closed, and the
endofunctor Σ internalises as a family of maps

Σ(X) × Y X // Σ(Y) in C

arising from a cartesian strength

Σ(X) × Y
. // Σ(X × Y) : C × C // C .

It follows that the monad S acquires a cartesian strength

S(X) × Y
. // S(X × Y) : C × C // C

and hence that it also internalises. Importantly, this pro-
vides an internal substitution operation as a family of maps

S(X) × (SY)X // S(Y) in C .

The generalisation to multi-sorted syntax considers the
category C S , for S a set of sorts, together with a signature
endofunctor Σ on it equipped with a strength

Σ(X) � C
. // Σ(X � C) : C

S × C // C
S , (1)

where the action (−) � (=) : C S × C // C S is given
pointwise by setting (X � C)s = Xs × C for all s ∈ S.
This leads to an internal substitution operation

S(X) � [X,S(Y)] // S(Y) in C S ,

where C is assumed to have S-indexed products and,
for A, B ∈ C S , the C -internal hom [A, B] is defined as∏

s∈S Bs
As .

The treatment of syntax with variable binding of Fiore,
Plotkin and Turi [11] required further considerations. First,
the universe of discourse is equipped with a monoidal
closed structure (V, •), respectively modelling the types
of variables and explicit substitutions. Second, the notion
of algebraic structure is generalised to Σ-algebras with
substitution structure. These are Σ-algebras equipped
with a compatible (V, •)-monoid structure (modelling

1

capture-avoiding simultaneous substitution), the definition
of which depends on a strength

sX,(P,$) : Σ(X) • P
. // Σ(X • P) . (2)

The extra structure on the parameter P above, in the form
of a point $: V // P , reflects the need of fresh variables
in the definition of substitution for binding operators.

Free algebras with substitution structure in the model of
Fiore, Plotkin and Turi [11] have already been considered
by Hamana [13] as algebraic models for second-order syn-
tax. The work presented here, however, goes a step further
in this direction. Indeed, I give a general result describing
free Σ-algebras with substitution structure

X
))SSSSSS Σ(MX)

tthhhhhh
MX

V

55kkkkkk
M(X) •M(X)

jjVVVV

and develop a theory of strengths from which the monad
substitution structure is seen to internalise as a family of
maps

M(X) × (MY)X // M(Y) .

These structures arise by initial universal properties from
which a syntactic theory for second-order syntax may be ex-
tracted. This I work out in some detail, exhibiting notions
such as α-equivalence, variable binding, capture-avoiding
simultaneous substitution, term metavariable, and meta-
substitution. All these notions arise from the mathematical
model, and are thus guaranteed to be correct by construc-
tion. Overall, the theory provides the foundational syntac-
tic core for second-order multi-sorted equational theories,
which are to be dealt with according to the mathematical
theory of [10] in a subsequent paper in collaboration with
Chung-Kil Hur.

With the model theory of first/second-order mono/multi-
sorted syntax in place, I further initiate the development of
a mathematical theory for dependently-sorted abstract syn-
tax. The first obstacle in this respect has been that of find-
ing an appropriate universe of discourse, embodying the no-
tion of sort dependency and its associated substitution oper-
ation. In this respect, using ideas of Makkai [18] for mod-
elling simple sort dependency, I first show how to extend the
mono-sorted model of Fiore, Plotkin and Turi [11] (and its
multi-sorted version) to encompass simple dependent sorts.
Subsequently, I outline a further extension for the general
case of sort dependency in the framework of Ehresmann’s
theory of sketches.

I. Second-order abstract syntax

This first part of the paper develops a mathematical the-

ory for second-order syntax. The development is presented
in three sections, respectively addressing categorical (Sec-
tion I.1), model-theoretic (Section I.2), and syntactic (Sec-
tion I.3) aspects of the theory.

I.1. Categorical theory

The purpose of this section is to provide some general
abstract definitions (Sections I.1.1–I.1.3) and results (Sec-
tions I.1.4 and I.1.5) that are needed in the development of
the model theory of second-order syntax.

I.1.1. Algebras

Parameterised algebras. For a functor F : D × C // C ,
an F -algebra consists of a carrier object (D, C) ∈ D × C

together with a structure map F (D, C) // C in C . An
F -algebra homomorphism

(
(D, C), ϕ

)
//
(
(D′, C ′), ϕ′

)

is a map (g, f) : (D, C) // (D′, C ′) in D × C such that
f ◦ ϕ = ϕ′ ◦ F (g, f). I will write F -Alg for the category
of F -algebras and homomorphisms. Note that the tradi-
tional notions of algebra and homomorphism for an end-
ofunctor are obtained as a special case (viz., when D = 1).

Parameterised initial-algebra functors. For a func-
tor F : D × C // C , let (µF (D), µD) be an initial alge-
bra of the endofunctor F (D,−) on C for each D ∈ D .
Then, the mapping D

� // µF (D) extends to a functor
µF : D // C where, for all g : D // D′ in D , the map
µF (g) : µF (D) // µF (D′) in C is uniquely characterised
by the fact that

(
g, µF (g)

)
is an F -algebra homomorphism(

(D, µF (D)), µD

)
//
(
(D′, µF (D′)), µD′

)
.

I.1.2. Actions and strengths

We need a broad generalisation of the notion of
strength [15] (see (1) and (2) above) as a map of actions.

Actions. A V -action for a monoidal category (V , I,⊗)
consists of a category A together with a func-
tor � : A × V // A and natural isomorphisms
A � I ∼= // A and (A � X) � Y ∼= // A � (X ⊗ Y)
such that

(A � I) � X ∼= //

∼=
KK

%%KK
A � (I ⊗ X)
∼=

ss
yyss

A � X

((A � X) � Y) � Z

∼=
nnn

wwnnn
∼=

PPP

((PPP

(A � (X ⊗ Y)) � Z

∼=
��

(A � X) � (Y ⊗ Z)

∼=
��

A � ((X ⊗ Y) ⊗ Z) ∼= // A � (X ⊗ (Y ⊗ Z))

2

for all A ∈ A and X, Y, Z ∈ V . Such a V -action is said
to be closed if the endofunctor (−) � X on A has a right
adjoint for all X ∈ V .

Every monoidal (closed) category V canonically in-
duces a (closed) V -action on V n, for n ∈ N, by point-
wise tensor product. More generally, every strong monoidal
functor U : V // A induces a V -action on A given by
A, X

� // A ⊗ UX. In particular, we will later consider
the (I/V)-action on V induced by this construction for U
the forgetful functor I/V // V , where I/V is equipped
with the obvious monoidal structure for which U is strong
monoidal.

Further, an important class of V -actions arises from
V -enriched categories, for V symmetric monoidal closed,
with tensors and powers (see [14]).

Strengths. Let (A ,�) and (A ′,�′) be (V , I,⊗)-actions.
A V -strength of type (A ,�) // (A ′,�′) for a functor
F : A // A ′ is a natural transformation

ϕA,X : F (A) �′ X
. // F (A � X) : A × V // A ′

such that

F (A) �′ I
∼=

SS
))SS

ϕA,I
// F (A � I)

∼=
ll

uull
F (A)

F (A) �′ (X ⊗ Y)
ϕA,X⊗Y

//

∼=
��

F (A � (X ⊗ Y))

(F (A) �′ X) �′ Y

ϕA,X�
′Y ((RRRRRRRR

F ((A � X) � Y)

∼=

OO

F (A � X) �′ Y

ϕA�X,Y

66mmmmmmmm

for all A ∈ A and X, Y ∈ V .
Note that the usual notion of strength for an endofunctor

on a monoidal category (C , I,⊗) is recovered as that of
C -strength of type (C ,⊗) // (C ,⊗). Natural examples of
the above more general notion are part of the development
of the paper.

I.1.3. Algebras with monoid structure

Following [11], I introduce a general notion of alge-
bra with monoid structure. This definition will be used
in the context of substitution monoidal structures (see Sec-
tion I.2.2), and thus aims at formalising the notion of alge-
bra with substitution structure.

Definition 1. Let (C , I,⊗) be a monoidal category. For
an endofunctor Σ on C with an (I/C)-strength s, let
(Σ, s)-Mon be the category of (Σ, s)-monoids given by
Σ-algebras (a : ΣA // A) equipped with a monoid struc-
ture (e : I // A oo A ⊗ A : m) subject to the following
compatibility condition

Σ(A) ⊗ A
sA,(A,e)

//

a⊗id
��

Σ(A ⊗ A)
Σm // ΣA

a

��

A ⊗ A
m

// A

Morphisms between (Σ, s)-monoids are maps between the
underlying objects that are both Σ-algebra and monoid ho-
momorphisms.

I.1.4. Free algebras with monoid structure

I proceed to give an analysis of free algebras with
monoid structure suitable for extracting explicit syntactic
descriptions in applications. The reader is advised to study
this section and interpret its results in the context of Sec-
tion I.2.2.

Theorem 2 ([6]). Let (C , I,⊗) be a monoidal closed cat-
egory with binary coproducts (+), and let Σ be an endo-
functor on C with an (I/C)-strength s. For all X ∈ C , an
initial (Σ+ I +X⊗)-algebra carries the structure of a free
(Σ, s)-monoid on X .

Proof (outline). For an initial (Σ + I + X⊗)-algebra MX
with structure

[τX , εX , αX] : ΣMX + I + X ⊗MX ∼= // MX

there is a unique map ςX : MX ⊗MX // MX such that

Σ(MX) ⊗MX
sMX,(MX,εX)

//

τX⊗MX

��

Σ(MX ⊗MX)
ΣςX // ΣMX

τX

��

MX ⊗MX
ςX

// MX

I ⊗MX

∼=
NNN

N

''NN
NNεX⊗MX

��

MX ⊗MX
ςX

// MX

(X ⊗MX) ⊗MX

αX⊗MX

��

∼= X ⊗ (MX ⊗MX)
X⊗ςX // X ⊗MX

αX

��

MX ⊗MX
ςX

// MX

One then shows that the structure (τX , εX , ςX) on MX
is a free (Σ, s)-monoid on X , with universal map given by
(X ∼= X ⊗ I X⊗εX

// X ⊗MX αX // MX).

Note that the three conditions in the above proof out-
line amount to a specification of the monoid multiplica-
tion ςX by parameterised structural recursion on the initial
(Σ + I + X⊗)-algebra.

Lemma 3. Let (C , I,⊗) be a monoidal closed category
with binary coproducts (+), and let Σ be an endofunctor

3

on C with an (I/C)-strength s. Assume further that an
initial (Σ + I + X⊗)-algebra exists for all X ∈ C .

Then, the forgetful functor (Σ, s)-Mon // C has a
left adjoint, and the induced monad on C has under-
lying functor M = µF for F : C × C // C given by
(X, Y) � // ΣY + I + X ⊗ Y .

The unit of the monad η : Id
. // M is given by

the universal maps X // MX and its multiplication
σ : MM

. // M by the unique maps σX such that

ΣMMX

τMX

��

ΣσX // ΣMX

τX

��

MMX σX

// MX

I
εX

&&LL
LLL

LL
εMX

wwppppppp

MMX σX

// MX

MX ⊗MMX
MX⊗σX //

αMX

��

MX ⊗MX

ςX

��

MMX σX

// MX

These three conditions amount to a specification of σX by
structural recursion on the initial (Σ + I + X⊗)-algebra in
terms of the free (Σ, s)-monoid structure on X .

The following result provides a general form of initial-
algebra semantics suitable for applications.
Corollary 4. Let (C , I,⊗) be a monoidal closed cat-
egory with finite coproducts and colimits of ω-chains,
and let Σ be an ω-cocontinuous endofunctor on C

with an (I/C)-strength s. Then, the forgetful func-
tor (Σ, s)-Mon // C has a left adjoint, and the initial
(Σ + I)-algebra carries an initial (Σ, s)-monoid structure.

I.1.5. Strengths for parameterised initial-algebra
functors

A general result for inducing strengths on parameterised
initial-algebra functors is given. The reader is advised to
consider it in the context of Section I.2.3.
Theorem 5. Let C be a closed V -action and let D be
a V -action for a monoidal category (V , I,⊗). Further-
more, for functors F, G : D × C // C , let φ((D,C),g),X :

F (D, C)�X
. // F (D �X, C �X) : G-Alg × V // C ,

γD,C,X : G(D, C) � X
. // G(D � X, C � X) :

D × C × V // C , and η : G
. // F : D × C // C be

natural transformations such that

G(D, C) � X
γD,C,X

//

ηD,C�X
��

G(D � X, C � X)

ηD�X,C�X

��

F (D, C) � X
φ((D,C),g),X

// F (D � X, C � X)

for all ((D, C), g) ∈ G-Alg and X ∈ V .
Then, for every D ∈ D and X ∈ V , there exists a

unique map σD,X : µF (D) � X // µF (D � X) in C

such that

F (D � X, µF (D) � X)

F (D�X,σD,X)
((RRRRRRRR

F (D, µF (D)) � X

µD�X
��

φMF (D),X

77ooooooo
F (D � X, µF (D � X))

µD�X

��

µF (D) � X
σD,X

// µF (D � X)

where MF (D) is the G-algebra with carrier
(
D, µF (D)

)

and structure map

G
`

D, µF (D)
´

ηD,µF (D)
// F

`

D, µF (D)
´ µD // µF (D) .

Moreover, σ = {σD,X }D∈D,X∈V is a natural transfor-
mation µF (D) � X

. // µF (D � X) : D × V // C , and
if, for all D ∈ D ,

F (D, µF (D)) � I
φMF (D),I

//

∼=
TT

**TT
F (D � I, µF (D) � I)
∼=

hhh
tthh

F (D, µF (D))

and, for all D ∈ D and X, Y ∈ V ,

F (D, µF (D)) � (X ⊗ Y)
φMF (D),X⊗Y

**UUUUUUUUUU

∼=

��

F
`

D � (X ⊗ Y), µF (D) � (X ⊗ Y)
´

∼=

��

`

F (D, µF (D)) � X
´

� Y

φMF (D),X�Y

��

F
`

(D � X) � Y, (µF (D) � X) � Y
´

F ((D�X)�Y,σD,X�Y)

��

F (D � X, µF (D) � X) � Y

F (D�X,σD,X)�Y

��

F
`

(D � X) � Y, µF (D � X) � Y
´

F
`

D � X, µF (D � X)
´

� Y

φMF (D�X),Y

44jjjjjjjjjj

then σ is a V -strength for µF : D // C .

Corollary 6. For a functor F : D × C // C , every closed
action on C , action on D , and strength for F induce a
strength for µF : D // C .

I.2. Model theory

This section gives a model-theoretic treatment of second-
order syntax as presented in the Introduction. The devel-
opment is carried out in the context of mono-sorted syntax.

4

However, it directly generalises to the multi-sorted case (for
which see [4, 5, 19, 22]).

After briefly reviewing the mathematical model of [11]
supporting the algebraic treatment of variable binding
and substitution (Sections I.2.1 and I.2.2), I consider
operations of meta-renaming (Section I.2.3) and meta-
substitution (Section I.2.4).

I.2.1. Variable binding

Recall that the model of [11] is given by the functor cat-
egory F = Set

F for F the category of finite sets (over a
fixed countably infinite set of variables) and functions be-
tween them. For P ∈ F and Γ ∈ F, it is convenient to
write Γ ` p : P for p ∈ P (Γ), and think of p as an ele-
ment of type P in context Γ. For every such element,
then, and context renaming ρ : Γ // Γ′ in F, it is further-
more convenient to write p[ρ] for Pρ(p); so that we have
that Γ′ ` p[ρ] : P and can express the functoriality of P
by the equations p[idΓ] = p and p[ρ][ρ′] = p[ρ; ρ′] for all
ρ : Γ // Γ′ and ρ′ : Γ′ // Γ′′ in F.

The crucial ingredient in the model F for interpreting
variable binding is the presence of the object V of variables,
given by the embedding F

�

�

// Set , that provides an arity
for variable binding. Indeed, for P ∈ F , one can describe
the exponential P V as P V (Γ) = { [(v)p]≈ | Γ, v ` p : P }
where the α-equivalence relation ≈ is defined by setting
(v)p ≈ (v′)p′ iff p[idΓ, v � // v′] = p′ (see [7]).

I.2.2. Substitution

The main structure for interpreting (simultaneous) sub-
stitution is given by a substitution tensor product (see [6,
8, 22]). In the model F , this is explicitly defined, for
P, Q ∈ F , as

(P • Q)(Γ) =
∫ ∆∈F

P (∆) × (QΓ)∆

and consists of equivalence classes of triples

(∆ ∈ F , ∆ ` p : P , (Γ ` qv : Q)v∈∆)

under the equivalence relation generated by identify-
ing (∆, p, (qρv)v∈∆) and (∆′, p[ρ], (qv′)v′∈∆′) for all
ρ : ∆′ // ∆ in F. The substitution tensor product is closed
and has the object V of variables as unit.

A monoid structure for the substitution tensor product
on an object P ∈ F amounts to giving functions

Γ // P (Γ) : v
� // $v

and

P (∆) × (PΓ)∆ // P (Γ) : p, σ � // p[σ]

for all Γ, ∆ ∈ F, such that

v ∈ Γ, ρ ∈ F(Γ, Γ′) ` $v[ρ] = $ρv

w ∈ ∆, σ ∈ (PΓ)∆ ` $w[σ] = σw

p ∈ P∆ ` p[$] = p

p ∈ P∆, ρ ∈ F(∆, ∆′), σ ∈ (PΓ)∆
′

` p[ρ][σ] = p[σρ]

p ∈ P∆, σ ∈ (PΓ)∆, ρ ∈ F(Γ, Γ′) ` p[σ][ρ] = p[v � // σv [ρ]]

p ∈ P∆, σ ∈ (PΓ)∆, ς ∈ (PΓ′)Γ ` p[σ][ς] = p[v � // σv[ς]]

(See [7] for details.)
The specification of substitution for algebras of an end-

ofunctor as axiomatised in Definition 1 requires that of a
strength. In the model F , we have basic strengths for the
substitution tensor product as follows:

1. F-strengths
∐

i∈I (Pi) • Q
.∼= //

∐
i∈I(Pi • Q) for

∐

and (P ×P ′)•Q
.∼= //(P •Q)× (P ′ •Q) for × of type

F
2 // F ,

2. a (V/F)-strength sP,(Q,$) : (P)V • Q
. // (P • Q)V

for (−)V of type F // F .

It is instructive to analyse the last strength. In elementary
terms, it is induced by the mapping

(ν)p ; (qv)v∈∆

� // (ν′)
(
p[id∆, ν � // ν′] ; (qv [Γ �

�

// (Γ, ν′)])v∈∆, q′
)

,

for ∆, ν ` p : P and Γ ` qv : Q, where q′ is the image of ν′

under the pointed structure $: (Γ, ν ′) // Q(Γ, ν′) of Q.
Thus, one sees that the effect of the strength is intuitively
to push the explicit substitution (qv)v∈∆ within the scope
of the binder in the abstraction (ν)p, by possibly renaming
it to an abstraction with a fresh binder ν ′ to avoid capturing
free variables, suitably renaming p and the qv and extending
the explicit substitution with a suitable assignment q′ for
ν′. A similar, though syntactic, mechanism is employed
in the definition of substitution in the presence of binding
constructs.

Corollary 7. Every endofunctor Σ on F built by com-
position from Id,

∐
, ×, (−)V comes equipped with a

canonical (V/F)-strength s for which the forgetful func-
tor (Σ, s)-Mon // F has a left adjoint, with the functor
underlying the induced monad being given by M = µF for
F : F

2 // F : (P, Q)
� // ΣQ + V + P • Q.

In particular, this result applies to every endofunctor aris-
ing from an algebraic binding signature (see [11] and Sec-
tion I.3). Moreover, one can use the theory of [9] to show
that the forgetful functor (Σ, s)-Mon // F is monadic, but
I will not dwell on this here.

I.2.3. Meta-renaming

Let Σ be an endofunctor on F , and let M = µF for
F : F

2 // F : (P, Q)
� // ΣQ + V + P • Q. The oper-

5

ation of meta-renaming for M internalises its functorial
action and, as such (see [15]), it arises from a cartesian
strength

M(P) × Q
. // M(P × Q) .

Here, and in the light of Section I.1.4, I show how ev-
ery cartesian strength on Σ induces one on M. The crucial
construction for achieving this is the law for distributing the
categorical product over the substitution tensor product of
the following proposition.
Proposition 8. The family of maps dP,(P ′,$),Q :
(P •P ′)×Q // (P×Q)•(P ′×Q) : F×(V/F)×F // F

induced by the mapping
(∆ ; p ; (p′v)v∈∆) , q

� // Γ, ∆ ;(
p[∆ �

�

// (Γ, ∆)], q[Γ �

�

// (Γ, ∆)]
)
;

($Γ(v), q)v∈Γ, (p′v, q)v∈∆

where p ∈ P (∆), p′v ∈ P ′(Γ), q ∈ Q(Γ), defines a natural
transformation such that

(P • P ′) × 1
∼=

TT
**TT

dP,(P ′,$),1
// (P × 1) • (P ′ × 1)

∼=hhh
sshhh

P • P ′

and

(P • P ′) × (Q × Q′)

∼=

��

dP,(P ′,$),Q×Q′

WWW
++WWW

(P × (Q × Q′)) • (P ′ × (Q × Q′))

∼=

��

((P • P ′) × Q) × Q′

dP,(P ′,$),Q×Q′

��

((P × Q) × Q′) • ((P ′ × Q) × Q′)

((P×Q)×Q′)•(h×Q′)

��

((P × Q) • (P ′ × Q)) × Q′

((P×Q)•h)×Q′

��

((P × Q) × Q′) • (P ′′ × Q′)

((P × Q) • P ′′) × Q′

dP×Q,(P ′′,$′),Q′ggg
33ggg

for all h : P ′ × Q // P ′′ in F for which

V × Q
π1 //

$×Q
��

V

$′

��

P ′ × Q
h

// P ′′

The next two results provide evidence of the fundamental
character of the above construction.
Proposition 9. The canonical tensorial (V/F)-strength
sP,(Q,$) : P V • Q

. // (P • Q)V is the exponential trans-
pose of the composite

(P V • Q) × V
d

P V ,(Q,$),V
// (P V × V) • (Q × V)

εP,V •π1
// P • Q .

Theorem 10. For R ∈ F , the exponential transpose of the
family of natural transformations

(P R • Q) × R
. //

d
P R,(Q,$),R **VVVVVVVVV

P • Q

(P R × R) • (Q × R)

εP,R•π1

55jjjjjjjjjj

yields a tensorial (V/F)-strength for the endofunctor (−)R

of type F // F .

Proposition 8, used in the context of Theorem 5, yields
the following.

Corollary 11. For an endofunctor Σ on F let M = µF
for F : F

2 // F : (P, Q)
� // ΣQ + V + P • Q. Then,

every cartesian strength c for Σ induces a carte-
sian strength c̃ for M given by the unique maps
c̃P,Q : M(P) × Q // M(P × Q) such that

Σ(MP) × Q

τP ×Q

��

cMP,Q
// Σ(M(P) × Q)

Σ(ecP,Q)
// ΣM(P × Q)

τP×Q

��

M(P) × Q
ecP,Q

// M(P × Q)

V × Q

εP ×Q

��

π1 // V

εP×Q

��

M(P) × Q
ecP,Q

// M(P × Q)

(P × Q) • (M(P) × Q)

(P×Q)•ecP,Q

**TTTTTTTTTT

(P •MP) × Q

αP ×Q
��

dP,(MP,εP),Q

55kkkkkkkkk
(P × Q) •M(P × Q)

αP×Q

��

M(P) × Q
ecP,Q

// M(P × Q)

Thus, whenever Σ has a cartesian strength c, it follows that
M acquires an internal meta-renaming structure (see [7]):

Q
ηQ

// M(Q) M(P) × QP
ρP,Q

oo

ec
P,QP

ttiiiiiii

M(P × QP)
M(εP,Q)

iiTTTTTTTT

for all P, Q ∈ F .

I.2.4. Meta-substitution

Let Σ be an endofunctor on F , and let M = µF for
F : F

2 // F : (P, Q) � // ΣQ + V + P • Q. We have just
seen that a cartesian strength for Σ induces a meta-renaming
structure for M. We have also seen in Section I.1.4 that a
tensorial (V/F)-strength equips M with a monad structure

6

arising from substitution. I show next that when the carte-
sian and tensorial strengths are compatible, then so are the
meta-renaming and monad structures; in which case, one
further obtains a meta-substitution structure.

Definition 12. A cartesian strength c and a tensorial
(V/F)-strength s for Σ are said to be compatible when-
ever

(Σ(P) •MQ) × R

dΣP,(MQ,εQ),R

��

sP,(MQ,εQ)×R

**UUUUUUUUUUUUUUUU

(Σ(P) × R) • (M(Q) × R)

cP,R•ecQ,R

��

Σ(P •MQ) × R

cP•MQ,R

��

Σ
`

(P •MQ) × R
´

Σ(dP,(MQ,εQ),R)

��

Σ(P × R) •M(Q × R)

sP×R,(M(Q×R),εQ×R)

��

Σ
`

(P × R) • (M(Q) × R)
´

Σ((P×R)•ecQ,R)
ttiiiiiiiiiiiiiii

Σ
`

(P × R) •M(Q × R)
´

for all P, Q, R ∈ F .

This definition is justified by the following result.

Theorem 13. For every compatible cartesian strength c
and tensorial (V/F)-strength s for Σ, the induced
cartesian strength c̃ for M is compatible with the free
(Σ, s)-monoid monad structure. That is,

P × Q
ηP ×Q

xxrrr
rrr

r ηP×Q

&&MMMMMM

M(P) × Q
ecP,Q

// M(P × Q)

M(MP) × Q

σP ×Q
��

ecMP,Q
// M(M(P) × Q)

M(ecP,Q)
// MM(P × Q)

σP×Q

��

M(P) × Q
ecP,Q

// M(P × Q)

for all P, Q ∈ F .

In the situation of the theorem, thus, M comes equipped
with a meta-substitution structure (see [7]):

Q
ηQ

// M(Q) M(P) × (MQ)P
mP,Q

oo

ρP,MQuukkkkkkkkk

M(MQ)

σQ

ggOOOOOOOO

for all P, Q ∈ F .
The meta-substitution operation mP,Q is universally

characterised as the unique map such that

Σ
`

M(P) × (MQ)P
´

Σ(mP,Q)

''OOOOOOOO

Σ(MP) × (MQ)P

τP ×(MQ)P

��

c
M(P),(MQ)P

55kkkkkkkkk
Σ(MQ)

τQ

��

M(P) × (MQ)P
mP,Q

// M(Q)

V × (MQ)P

εP ×(MQ)P

��

π1 // V

εQ

��

M(P) × (MQ)P
mP,Q

// M(Q)

(P × (MQ)P) • (M(P) × (MQ)P)

εP,M(Q)•mP,Q

((QQQQQQQQ

`

P •M(P)
´

× (MQ)P

d
P,(M(P),εP),(MQ)P

55jjjjjjjjj

αP ×(MQ)P

��

M(Q) •M(Q)

ςQ

��

M(P) × (MQ)P
mP,Q

// M(Q)

These three conditions amount to a specification of
mP,Q by parameterised structural recursion on the initial
(Σ + V + P•)-algebra in terms of the free (Σ, s)-monoid
structure on Q.

Main examples of meta-substitution structure arise from
the following result.

Theorem 14. Every endofunctor Σ on F built by composi-
tion from Id,

∐
, ×, (−)V comes equipped with a canonical

cartesian strength c that is compatible with the canonical
tensorial (V/F)-strength s.

Proof (outline). One shows that, for all P, R ∈ F and
(Q, $), (Q′, $′) ∈ V/F ,

(Σ(P) • Q) × R

dΣP,(Q,$),R

��

sP,(Q,$)×R

**UUUUUUUUUUUUUU

(Σ(P) × R) • (Q × R)

cP,R•h

��

Σ(P • Q) × R

cP•Q,R

��

Σ
`

(P • Q) × R
´

Σ(dP,(Q,$),R)

��

Σ(P × R) • Q′

sP×R,(Q′,$′)

��

Σ
`

(P × R) • (Q × R)
´

Σ((P×R)•h)
ttjjjjjjjjjjjjj

Σ
`

(P × R) • Q′
´

for all h : Q × R // Q′ in F for which

V × R
π1 //

$×R
��

V

$′

��

Q × R
h

// Q′

7

I.3. Syntactic theory

I will now proceed to synthesise syntactic structure from
the preceding model theory. To this end, I consider a class
of syntactic signatures that induce signature endofunctors
for which the monad of free algebras with substitution em-
bodies second-order abstract syntax (see also [13]). Indeed,
we will see that: (i) syntactic terms with variable binding
(subject to α-equivalence) and built from term metavari-
ables arise as free algebras with substitution; (ii) the model-
theoretic substitution structure amounts to the syntactic
operation of simultaneous capture-avoiding substitution;
(iii) the model-theoretic meta-substitution structure pro-
vides a syntactic operation of substitution for term metavari-
ables.

Binding signatures. A binding signature (see, e.g., [1])
Σ is given by a family of sets {Σ(n) }n∈N∗ . Every such
induces the signature endofunctor

Σ(P) =
∐

n∈N∗ Σ(n) ×
∏

i∈|n| P
V ni

on F .
By Corollary 7 and Theorems 14 and 13, signature end-

ofunctors admit free algebras with both substitution and
meta-substitution structures.

Syntax. For a signature endofunctor Σ, the car-
rier M(X) ∈ F of the free Σ-algebra with substitution
structure on X ∈ F is constructed as the colimit of the
ω-chain 〈FX

n(0)〉n∈ω for FX(Y) = ΣY + V + X • Y .
We wish to consider terms in term-metavariable con-

texts. Such contexts are defined as families X ∈ Set
N,

where one interprets X(n) as the set of term metavariables
of valence n. Every term-metavariable context X freely
induces a term-metavariable object

X =
∐

n∈N
X(n) × V n

in F . It follows that M(X) can be syntactically presented
by the following rules:

Γ ` bxc : M(X)
(x ∈ Γ)

Γ, x
(i)
1 , . . . , x

(i)
ni ` ti : M(X) (i = 1, . . . , |n |)

Γ ` f
(
. . . , (x

(i)
1 , . . . , x

(i)
ni)ti, . . .

)
: M(X)

(
n ∈ N

∗

f ∈ Σ(n)

)

Γ ` ti : M(X) (i = 1, . . . , n)

Γ ` M[t1, . . . , tn] : M(X)

(
n ∈ N, M ∈ X(n)

)

where terms are identified by α-equivalence according to
the convention that in f

(
. . . , (x

(i)
1 , . . . , x

(i)
ni)ti, . . .

)
the

x
(i)
j are bound in ti.

Substitution. The operation of substitution

M(X) •M(X) // M(X)

provides functions

M(X)∆ × (M(X)Γ)∆ // M(X)Γ (Γ, ∆ ∈ F)

mapping

∆ ` t : M(X) and {Γ ` uz : M(X) }z∈∆

to
Γ ` t{uz }z∈∆ : M(X)

given by:
• bxc{uz }z = ux .

• f(. . . , (x
(i)
1 , . . . , x

(i)
ni)ti, . . .) {uz }z∈∆

= f
(
. . . , (y

(i)
1 , . . . , y

(i)
ni) ti{u′

z }z∈(∆,x
(i)
1 ,...,x

(i)
ni

)
, . . .

)

with y
(i)
j 6∈ Γ and where u′

z is by(i)
j c if z = x

(i)
j and uz

otherwise.

• M[. . . , ti, . . .] {uz }z = M[. . . , ti{uz }z, . . .] .

Meta-substitution. The operation of meta-substitution

M(X) ×
(
M(X′)

)X
// M(X′)

yields functions

M(X)Γ ×
∏

n∈N,M∈X(n)

(
M(X′)V n)

Γ
// M(X′)Γ

mapping
Γ ` t : M(X)

and{
(x

(M)
1 , ..., x

(M)
n)tM | Γ, x

(M)
1 , ..., x

(M)
n ` tM : M(X′)

}
n ∈ N

M ∈ X(n)

to

Γ ` t
{

(x
(M)
1 , . . . , x

(M)
n)tM

}
n∈N,M∈X(n)

: M(X′)

given by:
• bxc

{
(~x(M))tM

}
M

= bxc.

• f
(
. . . , (~x)t, . . .

) {
(~x(M))tM

}
M

= f
(
. . . , (~x) t

{
(~x(M))tM

}
M

, . . .
)
.

• N[t1, . . . , tn]
{

(~x(M))tM
}

M
= tN{uz }z∈(Γ,~x(N))

where uz is ti
{

(~x(M))tM
}

M
if z = x

(N)
i and bzc other-

wise.
Of course, the facts that substitution and meta-

substitution are well-defined (in that they respect their cor-
responding typing) and satisfy their specifications (in that
they satisfy their respective monoid laws) is a direct conse-
quence of the mathematical theory.

As a final remark, I note that the characterisation of free
algebras with substitution as initial algebras leads to an in-
duction proof principle [17] for reasoning about second-
order syntax (see [7], and also [21]).

8

II. Dependently-sorted abstract syntax
This second part of the paper initiates the development

of algebraic models for dependently-sorted syntax (though
see also [6, 8]).

As a matter of motivation and illustration, in this ex-
tended abstract I mainly focus on algebraic models with
substitution in the context of simple dependent sorts (Sec-
tions II.1–II.3), and only sketch the general case (Sec-
tion II.4). In the same vein, I also restrict attention to the
case of first-order syntax. However, the models (which gen-
eralise that of [11]) embody enough structure (in the form
of suitable arity objects) to accommodate binding operators.
Details of the overall development will appear elsewhere.

II.1. Simple dependent sorts

The first ingredient needed to provide a treatment of
dependently-sorted syntax is a mathematical formulation of
system of dependent sorts.

Simple sort dependency. The approach to dependent
sorts of this section stems from the work of Makkai [18].
I motivate it here by considering the example of the
system of dependent sorts needed for the specification of
2-dimensional graphs, where there is a sort N of nodes, a
sort E of edges depending on the sort N of nodes by means
of domain/codomain dependencies, and a sort C of 2-cells
depending on the sorts N of nodes and E of edges by means
of suitably compatible domain/codomain and source/target
dependencies. Syntactically, this may be expressed by sort
judgements along the following lines (see, e.g., [3]):

` N sort
d, c : N ` E(d, c) sort

d, c : N, s, t : E(d, c) ` C(d, c, s, t) sort

Such syntactic representations do not directly reflect
the mathematical structure of dependent sorts and, to
this end, it is better to consider graphical representations.
These turn out to be certain simple categories [18, §1];
viz., one-way [16], skeletal, with finite fan-out [20]. For
instance, the graphical representation of the above system
of dependent sorts is the simple category

S = N E
doo

coo Ctoo
soo

c
kk

dss
d ◦ s = d ◦ t = d
c ◦ s = c ◦ t = c

Contexts. The graphical view of systems of dependent
sorts as simple categories S leads to a straightforward
notion of context for them; viz., finite functors S // Set ,
see [18, §4]. For example, the syntactic context

x, y : N, f, g : E(x, y), α : C(x, y, f, g) (3)
amounts to the finite functor S // Set with elements

x, y, f, g, α depicted by the following graphic

x f
�

doo ;
c{{

}}{{
{{ α�

sXXXXXX
llXXXXXX

,
tll

vvll
y g�coo �dWWW

WWWWWW

kkWWWWWWWWWW

N E C

Note that the variations of the context (3) obtained by per-
muting x and y and/or f and g have the same graphical
representation.

The full subcategory of Set
S consisting of the finite

functors is denoted Fin[S, Set]. Here I take the category of
elements E(Γ) of a functor Γ : S // Set to have set of ob-
jects E(Γ) = { (x : S) | S ∈ S, x ∈ Γ(S) } and morphisms
s : (x : S) // (Γ(s)(x) : S′) in E(Γ) for all s : S // S′

in S, and say that the functor Γ is finite whenever its set of
elements E(Γ) is.

Simple dependent sorts. A simple system of de-
pendent sorts is defined to be a countable sequence(
Γi ` Si

)
i≥1

such that (i) Si 6= Sj for all i 6= j and
(ii) Γi ∈ Fin[Si−1, Set] for all i ≥ 1, where the sequence
of simple categories (Si)i≥0 is inductively defined by set-
ting S0 to be the empty category and Si, for i ≥ 1, to be
the category obtained from Si−1 by adding the object Si to-
gether with morphisms x : Si

// S for all (x : S) ∈ E(Γi)
subject to the following dependency compatibility condi-
tion:

s ◦ x = x′ : Si
// S′ in Si

for all s : (x : S) // (x′ : S′) in E(Γi). Of course, the sim-
ple category associated to a simple system of dependent
sorts

(
Γi ` Si

)
i≥1

is given by
⋃

i≥0 Si.
Simple systems of dependent sorts are simple in two re-

spects: (i) they correspond to countable simple categories
and (ii) coincide up to isomorphism with the syntactic sort
structures of Cartmell [3] without operators.

II.2. Algebraic models

I now show how signatures are to be interpreted alge-
braically. I will do this in the context of the dependently-
sorted algebraic theories of Cartmell [3], familiarity with
which is assumed.

A simple dependently-sorted signature is given by:
(i) a countable sequence of introductory sort judge-
ments (Γi ` Si)i≥1 such that every (Γn+1 ` Sn+1)
is derivable from (Γ1 ` S1, . . . , Γn ` Sn); and (ii) a
countable sequence of introductory operator judgements
(∆i ` Fi)i≥1 such that every (∆n+1 ` Fn+1) is derivable
from (Γi ` Si)i≥1 and (∆1 ` F1, . . . , ∆n ` Fn).

Example 15. An illustrative fragment of a simple signature

9

for lists follows.{
` A sort , ` N sort , x : N ` L(x) sort

n : N ` succ(n) : N

x : A, n : N, ` : L(n) ` cons(x, n, `) : L(succ(n))
n : N, ` : L(succ(n)) ` tail(n, `) : L(n)

Note that I use the formal, rather than informal, syntax
of [3].

The interpretation of a simple dependently-sorted
signature takes place in a category with finite limits
and an initial object, say C , and is given in stages as
follows. First, one obtains a simple category S from the
system of dependent sorts as explained in the previous
section, and considers C S as universe of discourse. Then,
the operator judgement (∆1 ` F1) provides a signa-
ture endofunctor Σ1 on C S together with a category of
algebraic models Σ1-Mod

�

�

// Σ1-Alg. More gener-
ally, each (∆n+1 ` Fn+1) provides a signature functor
Σn+1 : Σn-Mod // C S together with a category of
algebraic models Σn+1-Mod

�

�

// Σn+1-Alg equipped
with a forgetful functor Σn+1-Mod // Σn-Mod. Finally,
the model of the signature is the limit of

C S Σ1-Modoo · · ·oo Σn-Modoo · · ·oo

As a notational convention, let Σ0-Mod = C S and let
X be the object of C S underlying an algebraic model
X ∈ Σn−1-Mod. The signature functor Σn induced by an
operator judgement

(
∆ ` f(. . .) : S(t1, . . . , tk)

)
has action

given by setting:

• (ΣnX)s = [[ti]]X : [[∆]]X
// XSi

for all non-identity
maps s : S // Si;

• (ΣnX)s = Xs for all non-identity maps s in the image
of the forgetful functor S/S // S; and

• (ΣnX)s = id0 for all other non-identity maps.

Here the empty context is interpreted as the terminal object
and a context

(
∆′, x : S′(. . . , t′i, . . .)

)
as the limit of the di-

agram
[[∆′]]

X

[[t′i]]X
$$JJ

JJJ
XS′

Xsi
{{www

ww

XS′
i

ranging over the non-identity maps si : S′ // S′
i in S.

Terms are interpreted as expected.
A Σn-algebra is an object X ∈ Σn−1-Mod together

with a map ΣnX // X in C S. A Σn-model is a Σn-algebra
(X, ξ) such that ξS′ = idX

S′
for all S′ 6= S in the image of

the forgetful functor S/S // S. Free models may be con-
structed according to the theory of free constructions for
equational systems of [9].

Example 16. The universe of discourse associated to the
signature of Example 15 is given by the category C × C

//,
and the signature functors and associated models are as fol-
lows:

• Σ1(A, L // N) = (0, 0 // N) and thus Σ1-models are
structures

(
(A, L // N), N // N

)
.

• Σ2

(
(A, L ` // N), N s // N

)

=
(
0, A × L π2 // L ` // N s // N

)

and thus Σ2-models are structures(
(A, L ` // N), N s // N, A × L c // L

)

such that ` ◦ c = s ◦ ` ◦ π2 : A × L // N .

• Σ3

(
(A, L ` // N), N s // N, A × L c // L

)

= (0, s∗L s∗` // N),
where s∗` : s∗L // N is the pullback of ` : L // N
along s : N // N , and thus Σ3-models are structures(

(A, L ` // N), N s // N, A × L c // L, s∗L t // L
)

such that ` ◦ c = s ◦ ` ◦ π2 : A × L // N and
` ◦ t = s∗` : s∗L // N .

II.3. Substitution

In view of the previous two sections, one is lead to con-
sider the universe of discourse for dependently-sorted ab-
stract syntax given by

(
Set

Fin[S,Set]
)S , for simple categories S . (4)

The intuitive idea behind this construction being that, for
a variable set X ∈

(
Set

Fin[S,Set]
)S, an S-sort S, and an

S-context Γ, the set XS(Γ) consists of the elements in X
of sort S in context Γ. (Note that in the absence of depen-
dency between sorts the simple category under considera-
tion is discrete and one recovers the model for multi-sorted
abstract syntax with variable binding, see [4, 5, 19, 22].)

As already emphasised in the paper, the crucial notion
for treating substitution is that of substitution tensor prod-
uct. To be able to introduce it in a conceptual manner I need
recall the following universal characterisation of categories
of contexts due to Makkai [18, §4]: for S a simple category,
the category Fin[S, Set]op is the free finite-limit comple-
tion of S.

Writing L[C] for the free finite-limit completion of a
small category C (viz., the opposite of the full subcategory
of finitely presentable objects of Set

C), I will more
generally introduce a canonical substitution monoidal
structure (V, •) on models

F [C]C , where F [C] = Set
L[C]op ,

for C an arbitrary small category. This monoidal structure

10

is given by the following construction

C

P
��

�

����
�

P•Q

rr

C
�

�

//
+

�

V

''

Q

**

∼=

L[C]

Q#

BBB

BBB

�

�

//

Lan
∼=

F [C]

(−)•Q
}}

}

~~}}}

F [C]

(5)

so that
VC(Γ) = L[C](Γ, C)

and
(P • Q)C(Γ)

=
(
(PC) • Q

)
(Γ)

=
∫ ∆∈L[C]

PC(∆) × lim(x :D)∈E(∆) QD(Γ)

where, for ∆ ∈ L[C], the category of elements E(∆) has
objects (x : D) with D ∈ C and x : ∆ // D in L[C], and
morphisms δ : (x : D) // (δ ◦ x : D′) for all δ : D // D′

in C.
(I note in passing that this monoidal structure can be gen-

eralised to a Kleisli composition operation (see [8]). In fact,
it can also be recast in the categorical setting of Power and
Tanaka (see, e.g., [22]). However, the instantiation of their
abstract notion of typed binding signature is not relevant to
dependently-sorted syntax.)

It is instructive to see how the above substitution
monoidal structure accounts for the heavy dependency
present in the operation of substitution in the context of de-
pendent sorts. To this end, for P ∈ (Set

Fin[S, Set])S with S

a simple category, visualise each p ∈ PS(Γ), for S an S-sort
and Γ an S-context, as a dependent judgement

Γ ` p : S(. . . , pi, . . .)

where pi = Psi
(Γ)(p) for si : S // Si an S-dependency.

Then, a natural transformation P • P // P provides com-
patible mappings of the form

∆ ` p : S(. . . , pi, . . .) ;
(

Γ ` qj : Sj(. . .)
)
(

xj :Sj(...)
)
∈∆

� // Γ ` p[. . . , qj , . . .] : S(. . . , pi[. . . , qj , . . .], . . .)

where Γ ` qj : Sj(. . . , qk, . . .) if xj : Sj(. . . , xk, . . .). It
follows that the notion of monoid with respect to the sub-
stitution monoidal structure abstractly specifies the substi-
tution operation in the context of dependent sorts.

I now show how the algebraic models for simple
dependently-sorted signatures of the previous section are
to be extended to incorporate substitution. The inductive
step of the construction to follow is based on the fact that,
since the endofunctor (−) • Q on F [C] preserves finite
limits and the substitution tensor product (P • Q)C is
given pointwise as (PC) • Q, there is a canonical action on

Σn-models and tensorial strength as follows

(Σn+1 M) • Q ∼= Σn+1(M • Q) .

• A Σ0-model with substitution is a monoid (P, $, ς)

in
(
Set

Fin[S,Set]
)S with respect to the substitution

monoidal structure.

• A Σn+1-model with substitution (P , $, ς) is given
by a Σn+1-model P = (|P |, Σn+1|P | // P) and
a Σn-model with substitution (|P |, $, ς) such
that ς : P • P // P is a Σn+1-homomorphism
P • P // P ; that is, such that

(Σn+1 |P |) • P

��

∼= Σn+1(|P | • P)
Σn+1(ς)

// Σn+1|P |

��

P • P ς
// P

Example 17. As a follow up of Examples 15 and 16, note
that a model with substitution for the signature of Exam-
ple 15 is given by an underlying object P ∈

(
Set

F
S)S,

for S = A L // N , equipped with a Σ3-model structure
(s : PN

// PN, c : PA × PL
// PL, t : s∗PL

// PL) on
(PA, PL

// PN) as in Example 16 together with a monoid
structure ($, ς) on P subject to the following compatibility
conditions

PN • P
ςN //

s•P
��

PN

s
��

PN • P
ςN

// PN

(PA × PL) • P

c•P
��

∼= (PA • P) × (PL • P)
ςA×ςL // PA × PL

c
��

PL • P
ςL

// PL

(s∗PL) • P

t•P
��

∼= s∗(PL • P)
s∗ςL // s∗PL

t
��

PL • P
ςL

// PL

II.4. Sketches

The main virtue of the universes of discourse of (4) is
their simplicity; and indeed this is what is needed in cer-
tain applications (see, e.g., [18]). However, these models
carry an inherent limitation: the restriction to simple de-
pendency (in contexts and signatures).

I will now sketch how the approach is to be extended to
include more general notions of context and signature. The
main idea here is to consider graphical representations of
dependently-sorted signatures, with sorts together with their
dependencies and operators. This is naturally provided by
Ehresmann’s concept of sketch; more specifically, by that of
(certain kind of) finite limit sketch. (For the general theory

11

of sketches, the reader may consult [2] and, for their spe-
cific application to dependently-sorted algebra, the work of
Taylor [23, Chapter VIII].)

Every sketch gives rise to a theory (or classifying cat-
egory) containing a universal model. For the sketch of a
dependently-sorted signature, the theory provides the cate-
gory of contexts, with the class of models under considera-
tion determining the kind of contexts that one is interested
in. For instance, the category of contexts with equality types
arises as the theory of the universal model amongst those in
categories with finite limits (see, e.g., [23, Section 8.3]).

For a dependently-sorted signature (sketch) S, let C[S]
be its associated category of contexts (theory). Generalis-
ing the construction of (5), the category

ModS

(
Ĉ[S]

)

of models of S in Ĉ[S] = Set
C[S]op acquires a substitution

monoidal structure. One is thus led to consider the universe
of discourse

Mon
(
ModS

(
Ĉ[S]

))

of models with monoid structure, and indeed its free objects
embody dependently-sorted abstract syntax with substitu-
tion structure.

Acknowledgements. I am grateful to Chung-Kil Hur for
discussions on the subject of the paper and related matters.

References

[1] P. Aczel. A general Church-Rosser theorem. Typescript,
1978.

[2] M. Barr and C. Wells. Category Theory for Computing Sci-
ence. Centre de Recherches Mathématiques, third edition,
1999.

[3] J. Cartmell. Generalised algebraic theories and contextual
categories. Annals of Pure and Applied Logic, 32:209–243,
1986.

[4] M. Fiore. Semantic analysis of normalisation by evalua-
tion for typed lambda calculus. In 4th International Con-
ference on Principles and Practice of Declarative Program-
ming (PPDP 2002), pages 26–37, 2002.

[5] M. Fiore. Mathematical models of computational and com-
binatorial structures. In Foundations of Software Science
and Computation Structures (FOSSACS 2005), volume 3441
of Lecture Notes in Computer Science, pages 25–46, 2005.

[6] M. Fiore. On the structure of substitution. Invited address
for the 22nd Mathematical Foundations of Programming Se-
mantics Conference (MFPS XXII), DISI, University of Gen-
ova, 2006. (Available from http://www.cl.cam.ac.
uk/∼mpf23/).

[7] M. Fiore. A mathematical theory of substitution and its ap-
plications to syntax and semantics. Invited tutorial for the
Workshop on Mathematical Theories of Abstraction, Substi-
tution and Naming in Computer Science, International Cen-
tre for Mathematical Sciences (ICMS), 2007. (Available
from http://www.cl.cam.ac.uk/∼mpf23/).

[8] M. Fiore. Towards a mathematical theory of substitution.
Invited talk for the Annual International Conference on Cat-
egory Theory, Carvoeiro, Algarve (Portugal), 2007. (Avail-
able from http://www.cl.cam.ac.uk/∼mpf23/).

[9] M. Fiore and C.-K. Hur. Equational systems and free con-
structions. In International Colloquium on Automata, Lan-
guage and Programming (ICALP 2007), volume 4596 of
Lecture Notes in Computer Science, pages 607–619, 2007.

[10] M. Fiore and C.-K. Hur. Term equational systems and log-
ics. To appear in XXIV Conference on the Mathematical
Foundations of Programming Semantics, 2008.

[11] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and vari-
able binding. In 14th Annual IEEE Symposium on Logic in
Computer Science (LICS’99), pages 193–202, 1999.

[12] M. Gabbay and A. Pitts. A new approach to abstract syn-
tax with variable binding. Formal Aspects of Computing,
13:341–363, 2002.

[13] M. Hamana. Free Σ-monoids: A higher-order syntax with
metavariables. In 2nd Asian Symposium on Programming
Languages and Systems (APLAS 2004), volume 3202 of
Lecture Notes in Computer Science, pages 348–363, 2005.

[14] G. Janelidze and G. Kelly. A note on actions of a monoidal
category. Theory and Applications of Categories, 9(4):61–
91, 2001.

[15] A. Kock. Strong functors and monoidal monads. Archiv der
Mathematik, XIII:113–120, 1972.

[16] F. W. Lawvere. More on graphic toposes. Cah. de Top. et
Geom. Diff., 32:5–10, 1991.

[17] D. Lehmann and M. Smyth. Algebraic specification of data
types: A synthetic approach. Math. Systems Theory, 14:97–
139, 1981.

[18] M. Makkai. First-order logic with dependent sorts, with ap-
plications to category theory. Preprint, 1997.

[19] M. Miculan and I. Scagnetto. A framework for typed HOAS
and semantics. In 5th International Conference on Prin-
ciples and Practice of Declarative Programming (PPDP
2003), pages 184–194, 2003.

[20] J. Otto. Complexity doctrines. PhD thesis, Department of
Mathematics and Statistics, McGill University, 1995.

[21] A. M. Pitts. Alpha-structural recursion and induction. Jour-
nal of the ACM, 53:459–506, 2006.

[22] M. Tanaka and A. J. Power. A unified category-theoretic
formulation of typed binding signatures. In 3rd ACM SIG-
PLAN workshop on Mechanized reasoning about languages
with variable binding, pages 13–24, 2005.

[23] P. Taylor. Practical Foundations of Mathematics, volume 59
of Cambridge studies in advanced mathematics. Cambridge
University Press, 1999.

12

