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Abstract. The general aim of this talk is to advocate a combinatorial perspective,
together with its methods, in the investigation and study of models of computa-
tion structures. This, of course, should be taken in conjunction with the well-
established views and methods stemming from algebra, category theory, domain
theory, logic, type theory, etc. In support of this proposal I will show how such an
approach leads to interesting connections between various areas of computer sci-
ence and mathematics; concentrating on one such example in some detail. Specif-
ically, I will consider the line of my research involving denotational models of
the pi calculus and algebraic theories with variable-binding operators, indicating
how the abstract mathematical structure underlying these models fits with that
of Joyal’s combinatorial species of structures. This analysis suggests both the
unification and generalisation of models, and in the latter vein I will introduce
generalised species of structures and their calculus. These generalised species
encompass and generalise various of the notions of species used in combina-
torics. Furthermore, they have a rich mathematical structure (akin to models of
Girard’s linear logic) that can be described purely within Lawvere’s generalised
logic. Indeed, I will present and treat the cartesian closed structure, the linear
structure, the differential structure, etc. of generalised species axiomatically in
this mathematical framework. As an upshot, I will observe that the setting allows
for interpretations of computational calculi (like the lambda calculus, both typed
and untyped; the recently introduced differential lambda calculus of Ehrhard and
Regnier; etc.) that can be directly seen as translations into a more basic elemen-
tary calculus of interacting agents that compute by communicating and operating
upon structured data.
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Prologue

The process of understanding often unveils structure; and this, in turn, entails deeper
understanding. In formal investigations, structure is articulated in mathematical terms.
Mathematical structure typically plays a clarifying organisational role providing new
insight and leading to new results. Ultimately theories are built; and then specialised,
generalised, or unified. It is to this general context that the present work belongs. From
a specific viewpoint, however, it is part of a research programme approaching computa-
tion structure from a combinatorial perspective. By this I broadly mean the transport of
ideas, methodology, techniques, questions, etc. between combinatorics and computer
science; in particular, in regarding data type structure as combinatorial structure, and
vice versa.

As an example of what such a combinatorial view intends, I will show what the
notion of bijective proof of combinatorial identities entails on data type structure. A
bijective proof of A = B consists in presenting combinatorial structures A and B that
are respectively counted by A and by B together with a bijection A ∼= B. The no-
tion of bijective proof thus is nothing but that of isomorphism of structure, which in
this view is given a fundamental role (as it is the case in many other areas of math-
ematics). In transporting this to the context of computation theory, for instance, one
may be interested in bijections that are computable, primitive recursive, feasible, etc.
In the context of type (or programming language) theory, the notion corresponds to
the equivalence of data type structure up to isomorphism as prescribed by terms of
the type theory (or programs of the programming language). Such a study has already
been considered, though for entirely different reasons, under the broad heading of type
isomorphism; see, e.g., [9]. Besides applications in computer science, one interest in
this subject lies in its connections to various areas of mathematics. Indeed, it is re-
lated to Tarski’s high school algebra problem in mathematical logic [15], to the word
problem in quotient polynomial semirings in computational algebra [16, 14], and to
Thompson’s groups in group theory [forthcoming joint work with Tom Leinster].

The rest of the paper provides another example of the fruitfulness of the approach
advocated here. Specifically, I will first briefly review three diverse mathematical mod-
els —respectively suited for modelling name generation, combinatorial structure, and
variable binding— highlighting how the various structures in each of them arise in es-
sentially the same manner (Sect. 1). With this basis, I will then present a generalisation
of the second model, putting it in the light of models of computation structures (Sect. 2).
This yields connections to other areas of computer science and mathematics, and opens
new perspectives for research (Sect. 3).

1 Some Computational and Combinatorial Structures

In this section I discuss in retrospective three mathematical models of computation
structures in the chronological order in which I got familiar with them during my re-
search. These are: denotational models of the pi calculus [17, 19] (Subsect. 1.1), Joyal’s
combinatorial species of structures [25, 26] (Subsect. 1.2), and algebraic models of



equational theories with variable-binding operators [18, 19, 13] (Subsect. 1.3).1 My in-
tention here is not to treat any of them in full detail, but rather to give an outline of the
most relevant structures present in each model in such a way as to make explicit and
apparent the similarities that run through them all.

1.1 Denotational Models of the Pi Calculus

The main ingredient leading to the construction of denotational models of the pi cal-
culus [17, 47] was recognising that its feature allowing for the dynamic generation of
names required the traditional denotational models to be indexed (or parameterised) by
the set of the known names of a process. Naturally, and in the vein of previous models
of store [45, 42] (see also [39, § 4.1.4]), this was formalised by considering models in
functor categories; that is, mathematical universes SV of V-variable S-objects (func-
tors V // S) and V-variable S-maps (natural transformations) between them. In this
context, S provides a basic model of denotations; whilst V gives an appropriate model
of variation (see, e.g., [30]). In the example at hand, S is a suitable category of do-
mains (or simply the category of sets, if considering the finite pi calculus) and V is the
category I of finite sets (or finite subsets of a fixed infinite countable set of names) and
injections. Thus, a model P ∈ S I consists of a series of actions

[ ] : P(U)× I(U,V) // P(V) (U,V ∈ I)

for which p[idU] = p and p[ı][] = p[ı · ] for all p ∈ P(U) and ı : U // // V ,
 : V // // W in I. These actions allow us to regard denotations p parameterised by a
set of names U as denotations p[ı] parameterised by a set of names V with respect to
any injective renaming of names ı : U // // V in a consistent manner.

The question arises as to why the model of variation given by the category I in
this context is the appropriate one. It was already pointed out in [17] that what it is
important about I is its structure; namely, that it is equivalent to the free symmetric
(strict) monoidal category with an initial unit on one generator. In this light, the genera-
tor stands for a generic name, whilst the tensor product allows for the creation of a new
disjoint batch of generic names from two old ones. The role of the symmetry is roughly
to render batches of generic names into sets, and the condition on the unit being initial
allows for the ability of generating new names. This intuitive view is consistent with
that of Needham’s pure names [41] (see also [37]); viz., those that can only be tested
for equality with other ones, and indeed one can also formally recast the category I in
these terms.

The fundamental mathematical structure of S I required for modelling the pi calculus
can be now seen to arise in abstract generality. I will show this for S the category Set
of sets and functions, but similar arguments can be made for other suitable categories.

Let I[n] be the free symmetric strict monoidal category with tensor product ⊕ and
initial unit O on the (name) generator n; it can be explicitly described as the category
of finite cardinals and injections (with tensor product given by addition, initial unit by

1 Readers not familiar with the pi calculus [38] can safely skip Subsect. 1.1, or read it after Sub-
sect. 1.3. Readers only interested in the combinatorial aspects can safely restrict their attention
to Subsect. 1.2.



the empty set, and generator by the singleton). Through the Yoneda embedding, the
generator provides an object of names N = y(n) in SetI[n] and, by Day’s tensor con-
struction [8, 23], the symmetric tensor product provides a (multiplication) symmetric
tensor product ⊕̂ on SetI[n] given by

P⊕̂Q =
∫U1,U2∈I[n]

P(U1)×Q(U2)× I[n] (U1 ⊕U2, )
(
P,Q ∈ SetI[n]

)

with y(O) as unit. (Note that the translation of this tensor product to SetI has the fol-
lowing simple description

(P⊕̂Q)(U) =
∑

(U1,U2)∈SD(U) P(U1)×Q(U2)
(
P,Q ∈ SetI, U ∈ I

)

where the disjoint sum is taken over the set SD(U) of sub-decompositions ofU; i.e., pairs
(U1, U2) such that U1 ∪U2 ⊆ U andU1 ∩U2 = ∅.) More importantly for the current
discussion, we have the following situation (consult App. A)

I[n]
◦

Lan
∼=

� � y //

⊕n
��

SetI[n]�
⊕N

�� ��
a a

I[n]
◦ � �

y
// SetI[n]

δn

OO

which yields a name generation operator δn = ( ⊕ n)∗, arising as closed structure
(since ( ⊕ n)!

∼= ⊕̂N) and simply given by

δnP = P( ⊕ n) (P ∈ SetI[n]) .

Thus, a denotation in δnP is nothing but a denotation in P parameterised by a new
generic name.

With the aid of the cartesian closed structure of SetI[n] one can then model the
behavioural actions of pi calculus processes: input is modelled by the exponential ( )N,
free output by the product N× ( ), and bound output by the name generator δn( ). For
details on both the late and early behaviours consult [19].

1.2 Combinatorial Species of Structures

The theory of combinatorial species was introduced by Joyal in [25]. One of its impor-
tant features is to provide a mathematical framework in which arguments in enumerative
combinatorics based on generating functions acquire structural combinatorial meaning
leading to bijective proofs of combinatorial identities. For instance, in [26, Chap. 2],
Joyal presents a calculus of species in which structural operations on them (together
with their laws) exactly correspond, modulo the process of counting, to the operations
in algebras of formal power series; see also [5, Chap. 1 and 2].

The basic notion of species of structures is given by a functor B // Set, for B the
category of finite sets and bijections. Naturally, the category of species is taken to be
the category SetB. Species P can be equivalently given by a series of symmetric-group
actions

[ ] : P[n]×Sn // P[n] (n ∈ N)



for which p[id] = p and p[σ][τ] = p[σ · τ] for all p ∈ P[n] and σ, τ ∈ Sn.
Intuitively, for a species P, the set P(U) consists of the structures of type P that

can be put on the set of tokens U; the action provides the abstract rule of transport of
structures, which serves for describing structural equivalence (i.e., when structures are
the same except for a permutation of the tokens that constitute them). For instance, the
species End with structures on a set of tokens U given by the endofunctions on U and
action by conjugation is defined as

End(U) = Set (U,U) (U ∈ B)

End(σ)(f) = σ f σ−1
(
f ∈ End(U,U), σ ∈ B(U,V)

)
.

Two endofunctions are structurally equivalent if they are conjugate to each other.
I will now present a repertoire of operations on species: addition, multiplication,

differentiation, and composition. In doing so, I will be placing emphasis in how they re-
late to the other structures of the paper; rather than following the standard combinatorial
presentation. Nonetheless this approach is certainly known to experts.

It is important first to focus on the structure of B. It was already pointed out in [25,
Subsect. 7.3] that it is equivalent to the free symmetric (strict) monoidal category on one
generator, and we will henceforth consider it in this vein. Let B[x] be the free symmetric
strict monoidal category with tensor product ⊕ and unit O on the (token) generator x;
it can be explicitly described as the category of finite cardinals and permutations (with
tensor product given by addition, unit by the empty set, and generator by the singleton).

Addition. The addition P + Q of combinatorial species P and Q is given by their
categorical coproduct:

(P +Q)(U) = P(U) +Q(U) (P,Q ∈ SetB, U ∈ B) .

Thus, a structure of type P+Q is either a structure of type P or one of typeQ together
with the information of which type of structure it is.

Multiplication. By Day’s tensor construction [8, 23], the symmetric tensor product on
B[x] provides a multiplication symmetric tensor product · on SetB[x] given by

P ·Q =
∫U1,U2∈B[x]

P(U1)×Q(U2)× B[x] (U1 ⊕U2, ) (P,Q ∈ SetB[x])

with unit y(O). (Note that the translation of this tensor product to SetB has the following
simple description

(P ·Q)(U) ∼=
∑

(U1,U2)∈D(U) P(U1)×Q(U2) (P,Q ∈ SetB, U ∈ B)

where the disjoint sum is taken over the set D(U) of decompositions of U; i.e., pairs
(U1, U2) such that U1 ∪U2 = U andU1 ∩U2 = ∅.)

Thus, to construct a structure of type P ·Q on a set of tokens U is to decomposeU
in sets of tokensU1 andU2, and put a structure of type P onU1 and a structure of type
Q onU2.



Differentiation. We have the following situation (see, e.g., [44])

B[x]
◦

Lan
∼=

� � y //

⊕x
��

SetB[x]

·X
�� ��
a a

B[x]
◦ � �

y
// SetB[x]

d/dx

OO

which yields a differentiation operator d/dx = ( ⊕ x)∗, arising as closed structure(
since ( ⊕ x)!

∼= · X for X = y(x)
)

and simply given by

(d/dx)P = P( ⊕ x) (P ∈ SetB[x]) .

It follows that a structure of type (d/dx)P over a set of tokens is nothing but a structure
of type P over the set of tokens enlarged with a new generic one.

Composition. Using the universal properties of both B[x] and SetB[x], we obtain the
following situation (consult App. A)

1
∼=

x //

P
((RRRRRRRRRRRRRRR B[x]

◦
Lan
∼=P•( )

��

� � y // SetB[x]

◦P

uukkkkkkkkkkkkkkk

a

SetB[x]

55kkkkkkkkkkkkkkk

where

P•(

n times︷ ︸︸ ︷
x⊕ · · · ⊕ x) = P · . . . · P︸ ︷︷ ︸

n times

(P ∈ SetB[x])

and

(Q ◦ P)(U) =
∫T∈B[x]

Q(T)× P•T (U) (Q,P ∈ SetB[x]) .

This so-called composition (or substitution) operation ◦ on species yields a (highly non-
symmetric) monoidal closed structure on SetB[x] with unit X = y(x) (see also [27]).
Translating it to SetB we obtain, whenever P(∅) = ∅, that

(Q ◦ P)(U) ∼=
∑
U∈Part(U)Q(U)×∏u∈U P(u) (Q,P ∈ SetB, U ∈ B)

where the disjoint sum is taken over the set Part(U) of partitions ofU. In words, a struc-
ture q[u1

� // p1, . . . , un
� // pn] in (Q◦P)(U) consists of a partition U = {u1, . . . , un }

of the set of (input) tokens U, together with a structure q of type Q over the set U of
n (place-holder) tokens for the structures pi (1 ≤ i ≤ n) in P(ui). Monoids for this
composition tensor product are known as (symmetric) operads (see, e.g., [48]).

An important part of the theory of species (on which I can only refer the reader
to [25] here) is that they can be equivalently seen as analytic endofunctors on Set (of
which species are the coefficients) that embody the structure of the formal exponential
power series induced by counting. From this point of view, the terminology of com-
position for the above operation is justified by the fact that it corresponds to the usual
composition of functors.



1.3 Algebraic Theories with Variable-Binding Operators

The key to the algebraic treatment of abstract syntax with variable binding is to shift
attention away from raw terms and focus on terms in context (or term judgements). This
requires taking contexts seriously; considering the operations allowed on them and the
structural rules that term judgements have, and building categories of contexts that re-
flect them. The categories of contexts so obtained provide then models of variation
whose structure induces, in the associated universe of variable sets, further structure
allowing for algebraic theories with variable-binding operators. These general remarks
will become clear after reading the rest of the section, where the approach is exempli-
fied.

The original approach of [18] was conceived for the framework of binding alge-
bras [1] (see also [50]), where term judgements are subject to the admissible rules of
weakening, contraction, and permutation. Thus, the natural notion of morphism be-
tween contexts is that provided by any renaming of variables. Below I will concentrate
on the multi-sorted case where, of course, variable renamings should in addition be
well-typed; see [13, Sect. II.1] for further details and a discussion of the syntax and
semantics of the simply typed lambda calculus.

Abstractly, the category of contexts is then the free cocartesian category over the
set of types. As other such free constructions, it can be explicitly described in two
stages. First one considers the category F of mono-sorted (or untyped) contexts given
by the free cocartesian category on one generator (with coproduct +, initial object 0, and
generator 1); i.e., the category of finite cardinals and functions (with coproduct given by
addition, initial object by the empty set, and generator by the singleton). Then, for a set
of types T , the category of T -sorted contexts is given by the comma construction F↓T
(whose objects are maps Γ : |Γ | // T with |Γ | ∈ F and whose morphisms ρ : Γ // Γ ′

are maps ρ : |Γ | // |Γ ′ | in F such that Γ = Γ ′ρ). The initial object (0 // T) in F↓T
is the empty context, whilst the coproduct

(|Γ |
Γ // T) + (|Γ ′ |

Γ ′ // T) = (|Γ | + |Γ ′ |
[Γ,Γ ′] // T)

in F↓T amounts to the operation of context extension.
It is convenient to define F[T ] = (F↓T)◦ and identify τ ∈ T with its image 1 τ // T

in F[T ] under the universal embedding T // F[T ] exhibiting F[T ] as the free cartesian
category on T .

The mathematical universe in which to consider algebraic theories is then the cat-

egory F̂[T ]
T

. Informally, for P ∈ F̂[T ]
T

, one thinks of the sets {Pτ(Γ) }τ∈T,Γ∈F[T ] as
the τ-sorted P-elements in context Γ . As an example consider the object of variables
V = { Vτ }τ∈T given by Vτ = y(τ); so that

Vτ(Γ) ∼= { x ∈ |Γ | | Γ(x) = τ } (τ ∈ T, Γ ∈ F↓T) .

Crucially, noting that ( ×τ)!
∼= ×Vτ, the operation of context extension induces

the situation below



F[T ]

Lan
∼=

� � y //

×τ
��

F̂[T ]

×Vτ
�� ��
a a

F[T ]
� �

y
// F̂[T ]

OO
(τ ∈ T)

from which it follows that

XVτ ∼= ( × τ)∗(X) = X( + τ) (X ∈ F̂[T ], τ ∈ T) .

Thus, the object of variables provides suitable arities for binding operators. Indeed, an
operator of arity

(
τ

(1)
1 , . . . , τ(1)

n1

)
τ1, . . . ,

(
τ

(k)
1 , . . . , τ(k)

nk

)
τk // (σ1, . . . , σm)σ

that binds variables of type τ(i)
1 , . . . , τ

(i)
ni in terms of type τi (1 ≤ i ≤ k) yielding a

term of type σ that binds variables of type σj (1 ≤ j ≤ m) corresponds to a morphism

∏
1≤i≤k Pτi

�
1≤j≤ni

V
τ

(i)
j // Pσ

�
1≤`≤m Vσ`

(
P ∈ F̂[T ]

T)

in F̂[T ], that further corresponds to a natural family

∏
1≤i≤k Pτi

(
+ 〈τ(i)

1 , . . . , τ
(i)
ni 〉
)

// Pσ( + 〈σ1, . . . , σm〉)
(
P ∈ F̂[T ]

T)

associating a tuple of elements of type τi (1 ≤ i ≤ k) in a context extended by new
generic variables of type τ(i)

j (1 ≤ j ≤ ni) with an element of type σ in a context
extended by new generic variables of type σ` (1 ≤ ` ≤ m).

The framework also allows for the axiomatisation of substitution via an equational
theory whose algebras correspond to Lawvere theories (see [18]). In App. B, I briefly
discuss single-variable substitution in the context of algebraic theories for binding sig-
natures. Here, as it is of direct concern to us, I will concentrate on the notion of simul-
taneous substitution, which arises in the same manner as operads do with respect to the
composition of species. Indeed, using the universal properties of both F[T ] and F̂[T ],
we have the following situation

T
∼=

//

P
((PPPPPPPPPPPPPPP F[T ]

Lan
∼=P×( )

��

� � y // F̂[T ]
•P

vvmmmmmmmmmmmmmmm

a

F̂[T ]

66mmmmmmmmmmmmmmm

where

P×∆ =
∏
x∈|∆| P∆(x)

(
P ∈ F̂[T ]

T

, ∆ ∈ F[T ]
)

and

(X • P)(Γ) =
∫∆∈F[T ]

X(∆)× P×∆(Γ)
(
X ∈ F̂[T ], P ∈ F̂[T ]

T

, Γ ∈ F↓T
)
.



We obtain thus a (highly non-symmetric) composition monoidal closed structure ◦ on

F̂[T ]
T

given by

(Q ◦ P)τ = Qτ • P
(
Q,P ∈ F̂[T ]

T

, τ ∈ T
)

with unit the object of variables V.
Monoids for this composition tensor product correspond to multi-sorted Lawvere

theories, and embody the structure of simultaneous substitution. To see this consider
the axioms for a multiplication operation P ◦ P // P noting that, in elementary terms,
(Q ◦ P)τ(Γ) consists of equivalence classes of pairs given by q ∈ Qτ〈τ1, . . . , τn〉
together with an assignment 〈τ1 � // p1, . . . , τn

� // pn〉 with pi ∈ Pτi(Γ) (1 ≤ i ≤ n)
under the identification

q[ρ]〈τ1 � // p1, . . . , τm
� // pm〉 = q〈σ1 � // pρ1, . . . , σm

� // pρm〉

for all renamings ρ : 〈σ1, . . . , σm〉 // 〈τ1, . . . , τn〉 in F ↓ T , q ∈ Qτ〈σ1, . . . , σm〉,
and pi ∈ Pτi(Γ) (1 ≤ i ≤ n), where q[ρ] = Qτ(ρ)(q) ∈ Qτ〈τ1, . . . , τn〉.

Finally, note that one can also consider heterogeneous notions of substitution (for
which see [19]) and variations on the theme.

2 The Calculus of Generalised Species of Structures

This is the main section of the paper. In Subsect. 2.1, the notion of generalised species
of structures is motivated and introduced. Afterwards, some of the structure of gen-
eralised species is presented: addition and multiplication in Subsect. 2.2; differential
structure in Subsect. 2.3 and 2.6; identities and composition in Subsect. 2.4; and, the
cartesian closed structure in Subsect. 2.5. Finally, Subsect. 2.7 outlines the calculus of
these operations.

Somehow following the tradition in combinatorics, my emphasis here is to present
generalised species as a calculus; including graphical representations that will hope-
fully convey the idea behind the various constructions on structures. On the other hand,
however, I depart from the traditional combinatorial treatment in that the calculus is
axiomatically built on top of the mathematical framework of Lawvere’s generalised
logic [28] (see Fig. 1 in Subsect. 2.7 for an example). This yields new algebraic proofs,
even for the restriction of generalised species to their basic form recalled in Subsect. 1.2.
In passing, I will remark on the relationship between the structures of this section and
those of the previous one.

Generalised species have other roots in ideas of Martin Hyland and Glynn Winskel;
and there is a general abstract theory, that we have developed with them and Nicola
Gambino, that accounts for their bicategorical (Subsect. 2.4) and cartesian closed (Sub-
sect. 2.5) structures. This perspective is important, for it further organises the sub-
ject (placing it, e.g., in the context of models of Girard’s linear logic) and guides its
development.



2.1 Generalised Species

Recall that the basic notion of species of structures is given by a functor B // Set, for
B the category of finite sets and bijections [25, 26]. Recall also that B is equivalent to
the free symmetric (strict) monoidal category on one generator. Thus, writing ! for the
free symmetric (strict) monoidal completion, species can be equivalently presented as
functors !1 // Set. In the spirit of Subsect. 1.3, it makes sense to consider T -sorted
species, for T a set of sorts, as functors !T // Set; and, even more generally, for a small
category T of sorts and maps between them, define T-sorted species of structures (or
simply T-species) as functors !T // Set.

To be able to visualise these structures we will analyse them in some detail. First, as
I have already mentioned, the free symmetric strict monoidal category on one generator
!1 (with tensor +, unit 0, and generator 1) can be described as the category B of finite
cardinals and permutations (with tensor product given by addition, unit by the empty
set, and generator by the singleton). This category, as it happens with other such free
constructions, induces the free symmetric strict monoidal completion !T of a category
T by the comma construction B⇓T whose objects are maps T : |T | // T with |T | ∈ B
and whose morphisms are pairs (σ, ~σ) as on the left below

|T |
~σ +3

σ //

T ��>>>>>
|T ′ |

T ′��������

T

(i ∈ |T |) · · · Ti
~σi��

· · · · · · Ti

~τσi~σi

��

· · · (i ∈ |T |)

(j ∈ |T ′ |) · · · T ′σi · · · T ′j
~τj

�����
· · · =

· · · T ′′τj · · · · · · T ′′τσi · · ·

with σ : |T | // |T ′ | in B and ~σ : T +3 T ′σ in TT . Morphisms and their composition
can be drawn as on the right above. The tensor product in !T is given by T ⊕ T ′ =
[T, T ′] : |T | + |T ′ | // T; that is, roughly as
{[
· · · Ti · · · | i ∈ |T |

]}
⊕
{[
· · · T ′j · · · | j ∈ |T ′ |

]}
=
{[
· · · Ti · · · T ′j · · · | i ∈ |T |, j ∈ |T ′ |

]}
,

with unitO = (0 // T). (Note as a remark that for what follows, and in keeping closer
to the combinatorial spirit, one can equivalently take !T to be B⇓T.)

Henceforth, let ��� � � : T // !T be the universal embedding exhibiting !T as the
free symmetric strict monoidal category on T.

It follows that a T-species P : !T // Set describes the structures P(T) of type P that
can be put on bags T of tokens in T (given by objects in !T) together with compatible
rules of transport of structure along T-tagged permutations (given by maps in !T) in the
form of actions

[ ] : P(T)× !T(T, T ′) // P(T ′) (P : !T // Set, T, T ′ ∈ !T)

for which p[idT ] = p and p[σ][τ] = p[σ · τ] for all p ∈ P(T) and σ : T // T ′,
τ : T ′ // T ′′ in !T.

Examples of generalised species in combinatorics abound: permutationals [25, 4]
are CP-species for CP the groupoid of finite cyclic permutations, partitionals [40] are



B∗-species for B∗ the groupoid of non-empty finite sets. Further examples are coloured
permutationals [34], and species on graphs and digraphs [33].

A fundamental property of the free symmetric (strict) monoidal completion is that
it comes equipped with canonical natural coherent equivalences as shown below.

1 O

∼=
// !0 , !C1 × !C2

⊗
'

// !(C1 + C2) : (C1, C2)
� // !q1(C1)⊕ !q2(C2)

Thus T -species !T // Set are equivalent to functors BT // Set, which is the notion of
T -sorted species originally introduced by Joyal [25].

Finally, it is important to generalise further; allowing for variable sets of structures.
For small categories A and B, an (A,B)-species of structures is defined as a functor
!A // B̂. The notation P : A ! // B indicates that P is an (A,B)-species. As before,
for such a species P, we have the intuitive reading that P(A) is the B◦-variable set of
structures of type P on the bag A of tokens in A. However, the definition introduces
an asymmetry that naturally leads to think of structures in P(A)(b)
as those of type P over a bag A of input tokens (or ports) in A and
(parameterised on) an output token (or port) b in B◦. As we will see
in Subsect. 2.4 this interpretation is technically correct, and under it
structures will be pictorially represented as on the right.

A

b
P

Remark. Below I will be exploiting the fact that species P : !A // B̂ are in duality
with co-species P⊥ : B◦ // !̂A◦ defined as P⊥(b)(A) = P(A)(b) (b ∈ B◦, A ∈ !A).

2.2 Commutative Rig Structure: Addition and Multiplication

The zero species 0 : A ! // B and the addition P + Q : A ! // B of the species
P,Q : A ! // B are defined by

0(A)(b) = ∅ , (P +Q)(A)(b) = P(A)(b) +Q(A)(b) (A ∈ !A, b ∈ B◦) .
Representations of structures of addition and multiplication type follow. Compare

them with the informal description of the addition and multiplication of structures of
species given in Subsect. 1.2.

P+Q

A

b

P
P+Q

A

b

Q

Addition

A1

P Q

A2

b

A

P ·Q

Multiplication

As in the previous section, Day’s tensor construction [8, 23], provides a multiplica-
tion symmetric tensor product induced by the free symmetric strict monoidal structure.
The one species 1 : A ! // B and the multiplication P · Q : A ! // B of the species
P,Q : A ! // B are defined as



1(A)(b) = !A(O,A)

(P ·Q)(A)(b)

=
∫A1,A2∈!A

P(A1)(b)×Q(A2)(b)× !A(A1 ⊕A2, A)

(A ∈ !A, b ∈ B◦) .

Remark. More succinctly, we have that P + Q = + 〈P,Q〉 and that (P · Q)⊥ =
⊕̂
〈
P⊥, Q⊥

〉
.

2.3 Differential Structure: Partial Derivatives

For a ∈ A, the partial derivative ∂
∂a
P : A ! // B of the species P : A ! // B is defined

as

(
∂
∂a
P
)
(A)(b) = P(A⊕ ��� a 	 
 )(b) (A ∈ !A, b ∈ B◦) .

Structures of partial-derivative type may be represented as on the left below.

A

P

b

a

∂
∂a
P

Partial Derivative

!A◦
Lan
∼=

� � y //

⊕ �
� a � �
��

Set!A�
⊕y ��� a � �

�� ��
a a

!A◦ �
�

y
// Set!A

d/da

OO

Remark. As in the previous section, the construction of partial derivatives arises from
the situation on the right above. Indeed, we have that ( ∂

∂a
P)⊥ = (d/da)P⊥.

2.4 Bicategorical Structure: Identities and Composition

The identity species IC : C ! // C is defined as

IC(C)(c) = !C
( ��� c 	 
 , C) (C ∈ !C, c ∈ C◦) .

For species P : A ! // B and Q : B ! // C, the compositionQ ◦ P : A ! // C is defined
as

(Q ◦ P)(A)(c) =
∫B∈!B

Q(B)(c) × P#(A)(B) (A ∈ !A, c ∈ C◦)

where

P#(A)(B)

=
∫X∈(!A)|B| (∏

k∈|B| P(Xk)(Bk)
)
× !A

(⊕
k∈|B|Xk, A

) (A ∈ !A, B ∈ !B◦) .



One may visualise identities and composition as follows.

c
I

C

�
� • � �

Identity

· · ·
Q

. . . . . .

c

b

P

Ab

Q ◦ P

A

· · ·

Composition

Remark. Using the universal properties of both !( ) and (̂ ), we obtain the following
situation

B◦
∼=

�
� � � //

F
''PPPPPPPPPPPPPPP !B◦

Lan
∼=F⊕( )

��

� � y // Set!B
•F

vvmmmmmmmmmmmmmmm

a

Set!A

66mmmmmmmmmmmmmmm

where F⊕B = ⊕̂k∈|B|F(Bk). We have that (Q ◦ P)⊥ is obtained as ( • P⊥)Q⊥.

2.5 Cartesian Closed Structure: Product and Exponentiation

The cartesian closed structure of generalised species is presented.

There is exactly one species C ! // > for > = 0. More generally, for a family
Pi : C ! // Ci (i ∈ I), the pairing 〈Pi〉i∈I : C ! // ui∈ICi, where ui∈ICi =

∑
i∈I Ci,

is defined as

〈Pi〉i∈I (C)(c)

=
∑
i∈I
∫z∈Ci Pi(C)(z) × (ui∈ICi)

(
c,qi(z)

) (C ∈ !C, c ∈ ui∈ICi◦) .

For i ∈ I, the projection πi : ui∈ICi ! // Ci is defined as

πi(C)(c) = !(ui∈ICi)
( ���
qi(c) ��� , C) (C ∈ !(ui∈ICi), c ∈ Ci◦) .

From the logical point of view, and using relational notation, C
[
〈Pi〉i∈I

]
c is the

extent to which there exists i ∈ I and ci ∈ Ci such that C [Pi] ci and c approximates
qi(ci); whilst C [πi] c is the extent to which

���
qi(c) ��� approximates C.



Pairing and projection may be depicted as follows.

C

q1(•) q2(•)
c1
P1 P2

c2

〈P1, P2〉
c

Pairing

C

c

���qi(•)  �!
πi

Projection

For P : C u A ! // B, the abstraction

λAP : C ! // hom(A,B) where hom(A,B) = !A◦ × B

is defined as

(λAP)(C)(A, b) = P(C⊗A)(b) (C ∈ !C, A ∈ !A, b ∈ B◦) ,

where recall from Subsect. 2.1 that C⊗A = !q1C⊕ !q2A. The evaluation

εA,B : hom(A,B) u A ! // B

is defined as

εA,B(M)(b) (M ∈ !(hom(A,B) u A), b ∈ B◦)
=
∫F∈!hom(A,B),A∈!A

!hom(A,B)(
���
(A, b)  ! , F )× !

(
hom(A,B) u A

)
(F⊗A,M) .

Again from the logical point of view, and using relational notation, we have that
C [λAP] (A, b) iff (C⊗A) [P]b; whilstM [εA,B]b is the extent to which the (step) func-
tion

���
(A, b)  ! approximates F, where M = F ⊗ A consists of a function F and an

argumentA.
Schematically, we have the following.

A

P
λP

C

b

Abstraction

b

AF

M

• ⊗ •

���
(•, •)  !

ε

Evaluation



2.6 Higher-Order Differential Structure: Differentiation Operator

For a thorough treatment of differentiation one needs to introduce linear homs. In the
current setting they are naturally given by

`in(A,B) = A◦ × B .

With this in place, I can introduce an operator that internalises partial derivatives (and
differential application) and satisfies all the basic properties of differentiation.

The differentiation operator

DA,B : hom(A,B) ! // hom(A, `in(A,B))

is given by

DA,B(F)(A,a, b) = !hom(A,B)
({[

(A⊕ "�# a$ % , b)]}, F ) (F ∈ !hom(A,B),
A ∈ !A, a ∈ A, b ∈ B◦) .

2.7 Outline of the Calculus

Elsewhere I will give a formal presentation of the calculus of generalised species of
structures and indicate how it is justified within the mathematical framework of gener-
alised logic [28]. Here I will just offer an outline.

Identities and composition come with canonical natural coherent isomorphisms es-
tablishing the unit laws of identities and the associativity of composition. Addition and
multiplication yield a commutative rig structure, and commute with pre-composition.

The usual laws of pairing and projection, and of abstraction and evaluation are sat-
isfied up to isomorphism (see Fig. 1 for a proof outline of the beta isomorphism). Thus,
the closed structure hom comes equipped with internal identities and composition. Also
the linear homs `in come equipped with internal identities and compositions, that actu-
ally embed in the closed structure.

Partial derivatives commute between themselves, addition, and multiplication by
scalars. Moreover, they satisfy both the Leibniz (or product) and chain rules. For in-
stance, the central reason for which the former holds is that the canonical map

(†)

∫A ′1∈!A
!A
(
A1, A

′
1 ⊕ "�# a $ % )× !A(A ′1 ⊕A2, A)

+
∫A ′2∈!A

!A
(
A2, A

′
2 ⊕ "�# a $�% )× !A(A1 ⊕A ′2, A)

∼= // !A
(
A1 ⊕A2, A⊕ "�# a$�% )

(A1, A2 ∈ !A◦,
A ∈ !A, a ∈ A)

(given by tensoring and composing) is a natural isomorphism. Indeed, the definitions of
multiplication and partial derivation yield
(
∂
∂a

(P ·Q)
)
(A)(b) (a ∈ A, P,Q : A ! // B, A ∈ !A, b ∈ B◦)

=
∫A1,A2∈!A

P(A1)(b)×Q(A2)(b)× !A
(
A1 ⊕A2, A⊕ "�# a $ % )

which by (†) above, using various distributivity and commutativity laws, and the density
formula, is natural isomorphic to



&('
◦ 〈 )+*-,/. ◦ 02143�0+5 〉 67*-89.:*<;=. *-8 ∈ ><*@? u AB.C3�; ∈ D ◦ .E 1GFHIKJML ∈ N E hom

EPOCQ R F u O F ' *�ST.:*<;U. × 〈 )+*-,/. ◦ 021V3�0W5 〉# *-89.:*�ST.E 54FHI ∫ L ∈ N E hom
EPOCQ R F u O F ∫ X ∈ N hom

EPOCQ R F QZY ∈ N O> hom *[AB3\D=. &^]�_ *<`a3�;=.<b�cd3fe46 × >@* hom *[Ag3hD/. u AB.=*f>q 1\e ⊕ >q 5i`j3hSk.
×〈 )+*-,/. ◦ 021l3�0W5 〉# *-89.:*�ST.E�m FHIKJ Y ∈ N O 〈 )+*-,/. ◦ 0 1 3f0 5 〉# *-89.:*f>q 1 ]�_ *<`j3�;U.<b c ⊕ >q 5 `n.Epo FHI ∫ Y ∈ N O ∫ q 1 Q q 2∈ N E�r u O F〈 )+*-,/. ◦ 0 1 3�0 5 〉# *-8 1 .:*f>q 1 ]�_ *<`j3�;U.<b cs. × 〈 )+*-,/. ◦ 0 1 3�0 5 〉# *-8 5 .:*f>q 5 `n.

× >@*@? u AB.U*-8t1 ⊕ 8u5v3(89.E�w FHIKJ Y ∈ N O J q 1 Q q 2∈ N Epr u O F *<)+*-,/. ◦ 0214. # *-891i. ]�_ *<`j3�;U.<b c × 0+5 # *-8u5x.:*<`y.
× ><*@? u AB./*-8 1 ⊕ 8 5 3(89.E[z FHIKJ Y ∈ N O J q 1 Q q 2∈ N Epr u O F *<)+*-,/. ◦ 0 1 .:*-8 1 .:*<`a3�;=. × ><*@? u AB./*�>q 5 `j3:8 5 .
× ><*@? u AB./*-891 ⊕ 8y5x3(89.E[{ FHIKJ Y ∈ N O J q 1∈ N Epr u O F J}| ∈ N r *<)~,/.:*f��.:*<`a3@;U. × 021 # *-891i.:*f�g. × ><*@? u AB./*@8t1 ⊕ >q 5�`a3�89.E�� FHI J Y ∈ N O J q 1∈ N Epr u O F J | ∈ N r ,2*f>q 1G� ⊕ >q 5�`n.:*<;=. × ><*@? u AB./*f>q 1���3(8914.

× ><*@? u AB.=*-8 1 ⊕ >q 5 `j3:8a.E�� FHIKJ Y ∈ N O J�| ∈ N r ,2*f>q 1 � ⊕ >q 5 `n.:*<;=. × ><*@? u AB./*�>q 1 � ⊕ >q 5 `a3(89.E 1:�iFHI ,2*-89.:*<;=.
Fig. 1. An equational proof of the beta isomorphism

'
◦ 〈 )+*-,/. ◦ 0�143�0+5 〉 HI ,��i? u A N // D .

(1) Definition of composition. (2) Definition of evaluation. (3) Density formula. (4) Law of ex-
tensions. (5) Law of extensions and definition of pairing. (6) Law of extensions and definition of
projection. (7) Density formula and definition of composition. (8) Law of extensions and defini-
tions of projection and abstraction. (9–10) Density formula and properties of the free symmetric
(strict) monoidal completion.



∫A2,A ′1∈!A
P(A ′1 ⊕ ��� a � � )(b)×Q(A2)(b) × !A(A ′1 ⊕A2, A)

+
∫A1,A ′2∈!A

P(A1)(b)×Q(A ′2 ⊕ ��� a � � )(b)× !A(A1 ⊕A ′2, A)

=
(
∂
∂a

(P) ·Q+ P · ∂
∂a

(Q)
)
(A)(b) .

Further, the differentiation operator, which internalises partial derivation, is a linear
operator that is constant on linear maps.

Interestingly, a certain commutation law between abstraction and linear applica-
tion (used on differentiation) entails the beta rule of the differential lambda calculus of
Ehrhard and Regnier [10] as an isomorphism.

3 Concluding Remarks and Research Perspectives

I have drawn a line of investigation concerning models of computational and combina-
torial structures. The general common theme of these models is that they live in math-
ematical universes of variable sets. My presentation here aimed at making explicit and
apparent the commonalities amongst the models. In particular, I have placed emphasis
in considering the various models of variation as universal constructions; showing how
their structure induces relevant further structure on the associated universe of variable
sets.

The models touched upon in Sect. 1 and their applications should not be considered
in isolation for they are closely related. In this respect, there is a submodel of SetI,
the so-called Schanuel topos (see, e.g., [32, 24]), that occupies an interesting place.
Indeed, it has been used both for giving denotational models of dynamically generated
names [46, 47] and for modelling and reasoning about abstract syntax with variable
binding [20]. Further, it is closely related to the category of species SetB [11, 35], which
in turn has also been considered as a model of abstract syntax with linear variable-
binding [49]. These models are by no means the only relevant for applications, and a
fully systematic theory providing, for instance, constructions of models of variation that
are guaranteed to properly model specific (classes of) computation structures is not yet
in place.

The analysis of Sect. 1 suggests both the unification and generalisation of models,
and in the latter vein I motivated and introduced generalised species of structures; see [2,
36, 7] for relevant related work. These generalised species extend various of the no-
tions of species used in combinatorics and also their respective calculi. Indeed, they
come equipped with an (heterogeneous) notion of substitution (composition) structur-
ing them into a bicategory, which arises as from models of linear logic by a co-Kleisli
construction (see [7, Sect. 9]) and supports linear and cartesian closed structure allow-
ing for a full development of the differential calculus. Further, the setting also provides
graph-like models of the lambda calculus, fixed-point operators, etc.

As it is the case for the basic notion of species (see [26]), generalised species of
structures can be equivalently seen as generalised analytic functors (of which gener-
alised species are the coefficients) between categories of variable sets. From this point
of view, the identities and composition defined in Subsect. 2.4 respectively correspond
to the usual identities and composition of functors. Interestingly, restricting attention



to groupoids (which is the situation considered in combinatorics) there is an intrinsic
characterisation of generalised analytic functors that places them in the context of cat-
egorical stable domain theory.

It would be important if the aforementioned structure of generalised species gave
new applications in combinatorics, or could be used to tackle combinatorial problems.

I have emphasised that the calculus of generalised species can be axiomatically built
on top of the mathematical framework of generalised logic. This, besides yielding new
algebraic proofs, provides connections with other areas of mathematics and suggests a
calculus of enriched generalised species of structures. In particular, enriching over the
Sierpinski space places the subject in the context of domain theory.

As for other perspectives, motivated by a conversation with Prakash Panangaden,
I was lead to consider the free symmetric (strict) monoidal completion as a symmetric
Fock-space construction (see, e.g., [21, Chap. 21]); and indeed, one can introduce the
operators of creation and annihilation of particles in the quantum systems that these
spaces model and establish their commutation laws. In this line of thought and further
motivated by [6, 3], I was considering Feynman diagrams in the context of generalised
species when a computational interpretation of my previous calculations became ap-
parent. The outcome of these investigations will be reported elsewhere. Here however
I would like to conclude the paper with an informal presentation of three illustrative
examples.

1. The density formula

∫c∈C
P(c)× C (d, c) ∼= P(d) (P ∈ Ĉ, d ∈ C◦)

amounts to the basic form of action

(
c : C

)[
[P]c〉 , 〈c[C]d〉

]
≈ [P]d〉

with the following data flow reading: the agent P with local port c of sort C bound
to the datum d results in the agent P with the datum d.

2. The isomorphism

!(A u B)(A ′ ⊗ B ′, A⊗ B) ∼= !A(A ′, A)× !B(B ′, B)
(A,A ′ ∈ !A,
B, B ′ ∈ !B)

amounts to having the law of data flow

〈A⊗ B [!(A u B)]A ′ ⊗ B ′ 〉 ≈ 〈A [!A]A ′ 〉 , 〈B [!B]B ′ 〉

establishing that a link betweenA⊗ B andA ′ ⊗ B ′ of type !(A u B) amounts to a
link of type !A betweenA and A ′ and one of type !B between B and B ′.

3. The computational interpretation of the beta isomorphism in Fig. 1, translated into
the informal syntax of agents used in the above two examples, is given in Fig. 2.



〈 �T��� ◦ 〈 �<�~�/� ◦ �2�V���+� 〉 ��� 〉 �-� �7¡<�@¢ u £B�C�(���i¢ u £¥¤ // ¦ �G��� ¦ ◦ �§ �G
≈̈ ©�ª«�7¡@� hom �[£g� ¦ � u £B�-¬­

〈 �T� 〈 �<�~�/� ◦ �2�V���+� 〉# �®ª 〉 � 〈 ª¯���:�i� 〉 °§ �4
≈̈ ©�ª«�7¡@� hom �[£g� ¦ � u £B�-¬±

〈 �T� 〈 �<�~�/� ◦ �2�V���+� 〉# �®ª 〉 ��@²³�7¡ hom �[£g� ¦ �:�G´k�7¡Z£B�­
〈 ª¯�P¡@� hom �[£g� ¦ � u £B�f�7¡q �^² ⊕ ¡q ��´ 〉 � 〈 ²µ�P¡ hom �[£g� ¦ �¶�x· ­ �<´j���U�<° ¸ 〉 °=¹§
º

≈̈ �<´k�7¡�£��­
〈 �T� 〈 �<�~�/� ◦ �2�V���+� 〉# �7¡q �l· ­ �<´a�f�U�<° ¸ ⊕ ¡q ��´ 〉 °§�»

≈̈ �<´k�7¡�£����9�V�(�u�¼�7¡<�@¢ u £B���­
〈 �T�½¡<�@¢ u £B�¶�4�9� ⊕ �y� 〉 �
〈 �t�2� 〈 �<�~�/� ◦ �2�4���+� 〉# �7¡q �4· ­ �<´j���U�<° ¸ 〉 � 〈 �y��� 〈 �<�~�/� ◦ �2�V���W� 〉# �7¡q ��´ 〉 °§
¾

≈̈ �<´k�7¡�£���� � �(� � �7¡<�@¢ u £B���­
〈 �T�½¡<�@¢ u £B�¶�4� � ⊕ � � 〉 � 〈 � � �p�(�<�~�/� ◦ � � � # � · ­ �<´j���U� ° ¸ 〉 � 〈 � � � � � # ��´ 〉 °§À¿

≈̈ �<´k�7¡�£���� � �(� � �7¡<�@¢ u £B���­
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〈 �T�½¡<�@¢ u £B�¶�7¡q � Â ⊕ ¡q � ´ 〉 � 〈 ¡q � Â ⊕ ¡q � ´Ç���~�G� 〉 °§ �:Êi¨

≈ 〈 �T���~��� 〉
Fig. 2. A computational interpretation of the beta isomorphism.

(1) Definition of composition. (2) Definition of evaluation. (3) Laws of data flow. (4) Law of
extensions. (5) Law of extensions and definition of pairing. (6) Law of extensions and definition
of projection. (7) Law of data flow and definition of composition. (8) Law of extensions and
definitions of projection and abstraction. (9–10) Laws of data flow.



A Fundamental Adjunctions Between Categories of Variable Sets

As it is customary, I write V̂ for the functor category SetV
◦

of so-called V◦-variable
sets (or presheaves). Recall that there is a universal Yoneda embedding y : V � � // V̂
given by y(v) = V( , v).

For small categories V and W, we have the following important adjoint situations
(see, e.g., [29, 12])

V
Lan
∼=

F ##HHHHHHHHH
� � y // V̂

F#

{{vvvvvvvvv

a

Ŵ
F∗

;;vvvvvvvvv

V
Lan
∼=

� � y //

f

��

V̂
f!

�� ��
a a

W � �

y
// Ŵ

f∗
OO

obtained by left Kan extension, where

F#(P) =
∫v∈V

P(v)× Fv( ) , F∗(Q) = Ŵ (F ,Q) (P ∈ V̂, Q ∈ Ŵ)

and

f!(P) =
∫v∈V

P(v)×W ( , fv) , f∗(Q) = Q(f ) (P ∈ V̂, Q ∈ Ŵ) .

(See, e.g., [31, Chap. IX] for the above notion
∫

of coend.)

B Substitution Algebras and Algebraic Theories

A substitution algebra structure on P = {Pτ }τ∈T in F̂[T ]
T

is given by operators

ητ : // (τ)τ , στ,τ ′ : (τ)τ ′, τ // τ ′ (τ, τ ′ ∈ T) ,
giving rise to morphisms

ητ : 1 // Pτ
Vτ , στ,τ ′ : Pτ ′

Vτ × Pτ // Pτ ′ (τ, τ ′ ∈ T)

in F̂[T ], subject to the following axioms, where we write t[xτ � // u]τ ′ as a shorthand
for στ,τ ′(λλx : Vτ.t, u):

ητ(x)[x
τ � // u]τ = u (u : Pτ) ,

t[xτ
� // u]τ ′ = t (t : Pτ ′) ,

t(x, y)[yτ
� // ητ(x)]τ ′ = t(x, x) (t : Pτ ′

Vτ×Vτ , x : Vτ) ,
(
t(y, x)

[
yτ
′ � // u(x)

]
τ ′′

)
[xτ

� // v]τ ′′

=
(
t(y, x)

[
xτ

� // v
]
τ ′′

)[
yτ
′ � // u(x)[xτ

� // v]τ ′
]
τ ′′

(t : Pτ ′′
Vτ ′×Vτ ,

u : Pτ ′
Vτ , v : Pτ) .

These substitution structures can be incorporated to algebraic theories; see [18] for
details. For instance, for the simply typed lambda calculus (see also [13]), where the set
of types T is the closure under the arrow type constructor => of a set of base types, this
yields substitution algebras (P, var, sub) with binding operators



(Application) appτ,τ ′ : τ=>τ ′, τ // τ ′

(Abstraction) absτ,τ ′ : (τ)τ ′ // τ=>τ ′
(τ, τ ′ ∈ T)

that are required to be compatible in the sense of satisfying the following axioms
(
appτ ′,τ ′′

(
t(x), u(x)

))
[xτ

� // u]τ ′

= appτ ′,τ ′′
(
t(x)[xτ

� // u]τ ′=>τ ′′ , u(x)[xτ
� // u]τ ′

) (t : Pτ ′=>τ ′′
Vτ , u : Pτ)

(
absτ ′,τ ′′

(
λλy : Vτ ′ .t(y, x)

))
[xτ

� // u]τ ′=>τ ′′

= absτ ′,τ ′′
(
λλy : Vτ ′ .t(y, x)[xτ

� // u]τ ′′
) (t : Pτ ′′

Vτ ′×Vτ , u : Pτ)

where t[xτ � // u]τ ′ stands for subτ,τ ′(λλx : Vτ.t, u).
The initial algebra for this theory can be, of course, described as the simply typed

lambda terms (modulo alpha conversion) with the usual capture-avoiding single-variable
substitution operation (which in this setting can be shown to arise by structural recur-
sion; again see [18] for details).

Further, beta and eta equality can be easily incorporated as the following axioms:

(beta) appτ,τ ′
(
absτ,τ ′(t), u

)
= subτ,τ ′(t, u) (t : Pτ ′

Vτ , u : Pτ)

(eta) absτ,τ ′
(
λλx : Vτ.appτ,τ ′(t, varτ(x))

)
= t (t : Pτ=>τ ′) .

(Note that the metatheory accounts for the usual side condition required in the eta equal-
ity axiom, as in higher-order abstract syntax [43] (see also [22]).)
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