Notes on Combinatorial Functors (Draft)

Marcelo Fiore*
Computer Laboratory
University of Cambridge

January 2001

Abstract

Taking a combinatorial view of presheaves, we relate the Schanuel topos, species of structure, analytic functors, and the object classifier topos.

Contents

1	Combinatorial presheaves in $\mathbf{Set}^{\mathbb{I}}$	2
2	The Schanuel topos	3
3	Species of structure	5
4	Analytic functors	6
5	Combinatorial presheaves in $\mathbf{Set}^{\mathbb{F}}$	8
6	An algebraic view	8

^{*}Research supported by an EPSRC Advanced Research Fellowship.

1 Combinatorial presheaves in Set^I

The identity

$$k^{n} = \sum_{i=0}^{n} S(n,i) \ i! \binom{k}{i} \tag{1}$$

where S(n, i), a Stirling number of the second kind, is the number of partitions of an n element set into i blocks is well-known (see, e.g., [Sta97]), and expresses the fact that, up to isomorphism, functions have a unique surjection-injection factorisation. Indeed, writing \mathbb{F} , \mathbb{S} and \mathbb{I} respectively for the categories of functions, surjective functions and injective functions between finite cardinals, this unique factorisation property amounts to the combinatorial bijection

$$\mathbb{F}(n,k) \cong \sum_{i} \mathbb{S}(n,i) \underset{\mathfrak{S}_{i}}{\otimes} \mathbb{I}(i,k)$$
 (2)

where $\mathbb{S}(n,i)$ is regarded as a right \mathfrak{S}_i -set (with action given by post-composition) and, dually, $\mathbb{I}(i,m)$ is a regarded as a left \mathfrak{S}_i -set (with action given by pre-composition), and their tensor product is the quotient

$$\underline{\hspace{0.1cm}} = : \mathbb{S}(n,i) \times \mathbb{I}(i,k) \xrightarrow{\hspace{0.1cm}} \mathbb{S}(n,i) \underset{\mathfrak{S}_{i}}{\otimes} \mathbb{I}(i,k)$$

under the equivalence relation that identifies $(\varepsilon \cdot \sigma, i)$ and $(\varepsilon, \sigma \cdot i)$ for all $\varepsilon \in \mathbb{S}(n, i)$, $\sigma \in \mathfrak{S}_i$ and $i \in \mathbb{I}(i, k)$. Hence, we have the identity

$$\# \mathbb{S}(n,i) \underset{\mathfrak{S}_i}{\otimes} \mathbb{I}(i,k) = \frac{1}{i!} \# \mathbb{S}(n,i) \# \mathbb{I}(i,k)$$
,

and (1) follows from the further well-known (again see, e.g., [Sta97]) identities

$$\#\mathbb{F}(n,k) = k^n$$
, $\#\mathbb{S}(n,i) = i!$ $S(n,i)$, $\#\mathbb{I}(i,k) = i!$ $\binom{k}{i}$.

The family of tensor products $\left\{\mathbb{S}(n,i)\underset{\mathfrak{S}_{i}}{\otimes}\mathbb{I}(i,k)\right\}_{k}$ admits a covariant action along injections as follows

$$\left(\mathbb{S}(n,i) \underset{\mathfrak{S}_{i}}{\otimes} \mathbb{I}(i,k) \right) \times \mathbb{I}(k,\ell) \longrightarrow \mathbb{S}(n,i) \underset{\mathfrak{S}_{i}}{\otimes} \mathbb{I}(k,\ell)$$

$$\varepsilon \otimes i , j \longmapsto \varepsilon \otimes (i \cdot j)$$

making the mapping $k \mapsto \sum_i \mathbb{S}(n,i) \underset{\mathfrak{S}_i}{\otimes} \mathbb{I}(i,k)$ into a presheaf in $\mathbf{Set}^{\mathbb{I}}$. Letting $N \in \mathbf{Set}^{\mathbb{I}}$ be the inclusion $\mathbb{I} \longrightarrow \mathbf{Set}$, the bijection (2) yields a natural isomorphism

$$N^n \cong \sum_i \mathbb{S}(n,i) \underset{\mathfrak{S}_i}{\otimes} \mathbf{y}_{\mathbb{I}}(i) \text{ in } \mathbf{Set}^{\mathbb{I}}$$

that provides a combinatorial representation of $N^n \in \mathbf{Set}^{\mathbb{I}}$ in terms of representables. More generally, we introduce the following notion of combinatorial presheaf.

Definition 1.1 A presheaf in $\mathbf{Set}^{\mathbb{I}}$ is combinatorial if it has a representation

$$A_{!\mathbb{I}} = \sum_i A_i \underset{\mathfrak{S}_i}{\otimes} \mathbf{y}_{\mathbb{I}}(i)$$

for a family $A = \{A_i \times \mathfrak{S}_i \longrightarrow A_i\}_i$ of representations of the finite symmetric groups.

As before, the elements of $A_!(k) = \sum_i A_i \otimes \mathbb{I}(i,k)$ are denoted $x \otimes i$ $(x \in A_i, i : i \longrightarrow k)$ and are subject to the identity $(x \cdot \sigma) \otimes i = x \otimes (\sigma \cdot i)$ for all $\sigma \in \mathfrak{S}_i$. Moreover, with this notation, the action $A_!(k) \times \mathbb{I}(k,\ell) \longrightarrow A_!(\ell)$ is given by $(x \otimes i) \cdot j \longmapsto x \otimes (i \cdot j)$.

For an example of combinatorial presheaf, note that for $x = (0, 1, 0, \dots, 0, \dots)$ in $\mathbf{Set}^{\mathbb{B}}$, we have that $x_! = N$ in $\mathbf{Set}^{\mathbb{I}}$.

Proposition 1.2 The series of coefficients of a combinatorial presheaf in $\mathbf{Set}^{\mathbb{I}}$ is unique (up to isomorphism).

PROOF: Consider, for example, the following situation

$$\varphi: \sum_i A_i \underset{\mathfrak{S}_i}{\otimes} \mathbf{y}_{\mathbb{I}}(i) \cong \sum_i B_i \underset{\mathfrak{S}_i}{\otimes} \mathbf{y}_{\mathbb{I}}(i) : \phi \quad \text{ in } \mathbf{Set}^{\mathbb{I}} .$$

For $a \in A_n$ let $\varphi(a \otimes \mathrm{id}_n) = b \otimes \jmath$ $(b \in B_m, \ \jmath : m > \longrightarrow n)$ and let $\phi(b \otimes \mathrm{id}_m) = a' \otimes \imath$ $(a' \in A_\ell, \iota : \ell > \longrightarrow m)$.

We have the following identities

$$a \otimes \mathrm{id}_m = \phi(b \otimes j) = \phi((b \otimes \mathrm{id}_m) \cdot j) = \phi(b \otimes \mathrm{id}_m) \cdot j$$

= $(a' \otimes i) \cdot j = a' \otimes (i \cdot j)$

from which it follows that $i \cdot j$ is a bijection. Thus, so are j and i, and $n = m = \ell$.

Finally, the assignment

$$A_i \longrightarrow B_i : a \longmapsto b \cdot \sigma$$
, where $\varphi(a \otimes id_i) = b \otimes \sigma \ (b \in B_i, \sigma \in \mathfrak{S}_i)$

yields a \mathfrak{S}_i -equivariant bijection.

2 The Schanuel topos

We investigate the structure of combinatorial presheaves.

Definition 2.1 (c.f. [Par99]) With respect to a presheaf $P \in \mathbf{Set}^{\mathbb{I}}$, an element $p \in P(n)$ is minimal whenever, for all $p' \in P(m)$ and $i : m > \to n$, if $p = p' \cdot_P i$ then i is bijective.

For an example, note that the minimal elements of a combinatorial presheaf are of the form $x \otimes id$. The subset of minimal elements in P(m) is denoted $\langle P \rangle_m$. As minimal elements are invariant under the action of a bijection, we have a family $\langle P \rangle = \{\langle P \rangle_i \times \mathfrak{S}_i \longrightarrow \langle P \rangle_i\}_i$ of representations of the finite symmetric groups. Further, the action of P induces the natural transformation

$$\epsilon_P: \langle P \rangle_1 \longrightarrow P: p \otimes i \longmapsto p \cdot i$$

in $\mathbf{Set}^{\mathbb{I}}$.

Proposition 2.2 The map ϵ_P is an epimorphism.

PROOF: We need show that, for every $p \in P(n)$ there exist a minimal $p_0 \in P(m)$ and an injection $i_0 : m \longrightarrow n$ such that $p = p_0 \cdot i_0$.

Given $p \in P(n)$, consider the non-empty set of pairs $(p', i') \in P(i) \times \mathbb{I}(i, n)$ such that $p' \cdot i' = p$ and chose $(p_0, i_0) \in P(i_0) \times \mathbb{I}(i_0, n)$ with minimal i_0 .

This proposition establishes that every presheaf in $\mathbf{Set}^{\mathbb{I}}$ is engendered by its minimal elements.

Definition 2.3 (c.f. [Joy86]) With respect to a presheaf $P \in \mathbf{Set}^{\mathbb{I}}$, an element $p \in P(i)$ is generic whenever, for all $i: i \longrightarrow k$, $\kappa: j \rightarrowtail k$ and $q \in P(j)$, if $p \cdot i = q \cdot \kappa$ then $j: i \subseteq \kappa$ and $q = p \cdot j$ $(j: i \rightarrowtail j)$.

Proposition 2.4 For any presheaf, generic elements are minimal.

Theorem 2.5 For $P \in \mathbf{Set}^{\mathbb{I}}$, the following are equivalent:

- 1. The map ϵ_P is a monomorphism.
- 2. The presheaf P is combinatorial.
- 3. Minimal elements in P are generic.
- 4. The discrete op-fibration $\int P \longrightarrow \mathbb{I}$ creates pullbacks.
- 5. The presheaf P preserves pullbacks.

PROOF:

- $(1) \Longrightarrow (2)$ Because, by Proposition 2.2, the map ϵ_P is an isomorphism.
- (2) \Longrightarrow (3) If $(x \otimes id) \cdot i = (z \otimes \kappa) \cdot j$ then $i = \sigma \cdot \kappa \cdot j$ and $z = x \cdot \sigma$ for some bijection σ . Hence, $\sigma \cdot \kappa : i \subseteq j$ and $(x \otimes id) \cdot (\sigma \cdot \kappa) = z \otimes \kappa$.
 - $(3) \Longrightarrow (4)$ We will consider the co-span

$$p \xrightarrow{i} p \cdot i = q \cdot j$$
 in $\int P$ (3)

above the pullback square

$$\begin{array}{ccc}
\ell & \xrightarrow{j'} & j \\
\downarrow_{i'} & & \downarrow_{j} & \text{in } \mathbb{I} \\
i & \xrightarrow{j} & k
\end{array} \tag{4}$$

(Note that if (3) has a pullback above (4) then it is unique.)

Every cone $p \stackrel{\alpha}{\longleftarrow} c \stackrel{\beta}{\longrightarrow} q$ in $\int P$ for (3) induces the following situation

where $[\alpha, \beta]$ is given by the universal property of pullbacks.

In particular, as every element in P is engendered by a minimal element (Proposition 2.2) and minimal elements are assumed to be generic, we have a morphism $i_0: p_0 \longrightarrow p$ in $\int P$ with p_0 generic inducing the following situation

where j_0 is given by the property of generic elements.

We show that (*) is a pullback. Indeed, in the situation (5), as p_0 is generic, we have a factorisation

and hence the identity $c \cdot [\alpha, \beta] = p_0 \cdot \alpha_0 \cdot [\alpha, \beta] = p_0 \cdot [\imath_0, \jmath_0]$.

- $(4) \Longrightarrow (5)$ Easy.
- (5) \Longrightarrow (1) Consider the pullback square (4) and let $p \cdot i = q \cdot j$ with $p \in \langle P \rangle_i$ and $q \in \langle P \rangle_i$.

As P preserves pullbacks, there exists a unique $o \in P(\ell)$ such that $o \cdot i' = p$ and $o \cdot j' = q$. Then, since p and q are minimal, it follows that i' and j' are bijections and hence that $p \otimes i = q \otimes j$. \square

Corollary 2.6 The category of combinatorial presheaves in $\mathbf{Set}^{\mathbb{I}}$ and natural transformations is equivalent to the Schanuel topos $\underline{\mathcal{S}ch}$.

3 Species of structure

The category of representations of the finite symmetric groups and equivariant maps is isomorphic to the category $\mathbf{Set}^{\mathbb{B}}$, for \mathbb{B} the category of finite cardinals and bijections, and equivalent to the category of *species of structure* [\mathbf{B} , \mathbf{Set}], where \mathbf{B} is the category of finite sets and bijections.

A natural transformation $f: A \longrightarrow B$ in $\mathbf{Set}^{\mathbb{B}}$ induces a natural transformation between the associated combinatorial presheaves as follows

$$f_!:A_! \longrightarrow B_!:a \otimes i \longmapsto f(a) \otimes i$$
.

This assignment $f \mapsto f_!$ defines an extension functor $(_)_! : \mathbf{Set}^{\mathbb{B}} \longrightarrow \mathbf{Set}^{\mathbb{I}}$ which is left adjoint to the forgetful functor $\mathbf{Set}^{\mathbb{I}} \longrightarrow \mathbf{Set}^{\mathbb{B}}$.

The extension functor $(_)_!: \mathbf{Set}^{\mathbb{B}} \longrightarrow \mathbf{Set}^{\mathbb{I}}$ is faithful and creates isomorphisms (Proposition 1.2). Thus, there is a bijective correspondence between isomorphisms $A \cong B$ in $\mathbf{Set}^{\mathbb{B}}$ and isomorphisms $A_! \cong B_!$ in $\mathbf{Set}^{\mathbb{I}}$. This result generalises as follows.

Theorem 3.1 The category of species of structure is equivalent to the category of combinatorial presheaves in $\mathbf{Set}^{\mathbb{I}}$ and cartesian natural transformations.

This theorem is a corollary of the following proposition about (quasi-)cartesian natural transformations (viz., natural transformations whose naturality squares are (quasi-)pullbacks).

Proposition 3.2 Let $\varphi: P \longrightarrow Q$ in $\mathbf{Set}^{\mathbb{I}}$.

- 1. If φ maps minimal elements to generic ones then it is quasi-cartesian.
- 2. If φ is quasi-cartesian then it preserves minimal and generic elements.
- 3. For P combinatorial, if φ is quasi-cartesian then it is cartesian.

PROOF:

(1) Let $p \in P(n)$ and $q \in Q(m)$ be such that $\varphi(p) = q \cdot i$ for $i : m \longrightarrow n$ in \mathbb{I} . As the elements of P are engendered by its minimal elements (Proposition 2.2) there is a morphism $i_0 : p_0 \rightarrowtail p$ in $\int P$ with p_0 minimal. Moreover, as φ is assumed to map minimal elements to generic ones, we have a factorisation

from which it follows that $(p_0 \cdot i') \cdot i = p$ and $\varphi(p_0 \cdot i') = q$. Thus φ is quasi-cartesian.

- (2) Easy.
- (3) Because the action of combinatorial presheaves is injective (Theorem 2.5).

Corollary 3.3 A natural transformation between combinatorial presheaves in $\mathbf{Set}^{\mathbb{I}}$ is cartesian iff it preserves minimal elements.

4 Analytic functors

Definition 4.1 ([Joy86]) A functor $F : \mathbf{Set} \longrightarrow \mathbf{Set}$ is analytic if it has a Taylor series development

$$F(X) = \sum_i F[i] \underset{\mathfrak{S}_i}{\otimes} X^i$$

for a family $F[] = \{F[i] \times \mathfrak{S}_i \longrightarrow F[i]\}_i$ of representations of the finite symmetric groups.

Every presheaf $P \in \mathbf{Set}^{\mathbb{I}}$ induces an analytic functor \widetilde{P} with $\widetilde{P}[i] = \langle P \rangle_i$. Moreover, for P combinatorial, we have the following situation

and thus we have an extension functor

$$(\widetilde{\underline{}}): \underline{\mathcal{S}ch} \longrightarrow \underline{\mathcal{A}na}$$

where \underline{Ana} denotes the category of analytic functors and natural transformations. In elementary terms,

$$\widetilde{\varphi}(p \otimes x) = q_0 \otimes (i \cdot x)$$
 where $\varphi(p) = q_0 \cdot i$ with q_0 minimal

for all φ in $\underline{\mathcal{S}ch}$.

Proposition 4.2 The extension functor $(\underline{\hspace{0.1cm}}):\underline{\mathcal{S}ch}\longrightarrow\underline{\mathcal{A}na}$ is essentially surjective and faithful.

- **Definition 4.3** 1. (c.f. [Joy86]) With respect to a functor $F : \mathbf{Set} \longrightarrow \mathbf{Set}$, an element $x \in F(X)$ is Egeneric whenever, for all $f : X \longrightarrow Z$, epimorphic $\varepsilon : Y \longrightarrow Z$ and $y \in F(Y)$, if $x \cdot_F f = y \cdot_F \varepsilon$ then there exists $f' : X \longrightarrow Y$ such that $f = f' \cdot_\varepsilon \varepsilon$ and $x \cdot_F f' = y$.
 - 2. A natural transformation $\phi: F \xrightarrow{} G$ is $\mathcal{E}(\text{quasi-})$ cartesian if for every epimorphism $\varepsilon: X \xrightarrow{} Y$ the naturality square

$$F(X) \xrightarrow{\phi_X} G(X)$$

$$\downarrow^{-\cdot_G \varepsilon}$$

$$F(Y) \xrightarrow{\phi_Y} G(Y)$$

is a (quasi-)pullback.

Proposition 4.4 The \mathcal{E} generic elements of an analytic functor are of the form $x \otimes i$ with i injective.

PROOF: If $x \otimes h$ $(h: n \longrightarrow X)$ is generic then, as $(x \otimes h) \cdot ! = (x \otimes \mathrm{id}_n) \cdot !$ $(!: X \longrightarrow 1)$, there exists $h': X \longrightarrow n$ such that $h \cdot h'$ is a bijection; hence h is an injection. Conversely, if $(x \otimes i) \cdot f = (y \otimes g) \cdot \varepsilon$ (i injective, ε surjective) then $x \cdot \sigma = y$ and $i \cdot f = \sigma \cdot g \cdot \varepsilon$ for some bijection σ , and a diagonal fill-in for the square

$$\sigma \cdot g \bigvee_{\varepsilon} \xrightarrow{\varepsilon} f$$

provides a map with the required factorisation property

in the category of elements.

Corollary 4.5 For every map $\varphi \in \mathcal{S}ch$, the induced map $\widetilde{\varphi} \in \mathcal{A}na$ preserves $\mathcal{E}generic$ elements.

Proposition 4.6 Let $\phi: F \longrightarrow G: \mathbf{Set} \longrightarrow \mathbf{Set}$.

- 1. For F analytic, if ϕ preserves \mathcal{E} generic elements then it is \mathcal{E} quasi-cartesian.
- 2. If ϕ is \mathcal{E} quasi-cartesian then it preserves \mathcal{E} generic elements.

Theorem 4.7 The Schanuel topos is equivalent to the category of analytic functors and Equasicartesian natural transformations.

PROOF: Follows from Proposition 4.2, Corollary 4.5, Proposition 4.6 (1) and the fact that for every \mathcal{E} quasi-cartesian natural transformation $\phi: F \longrightarrow G$ in $\underline{\mathcal{A}na}$, the natural transformation $\varphi: F[]_! \longrightarrow G[]_!$ in $\underline{\mathcal{S}ch}$ defined as $\varphi(a \otimes i) = b \otimes (j \cdot i)$ where $\varphi(a \otimes id) = b \otimes j$ (see Propositions 4.6 (2) and 4.4) is such that $\widetilde{\varphi} = \phi$.

5 Combinatorial presheaves in $\mathbf{Set}^{\mathbb{F}}$

Definition 5.1 A presheaf in $\mathbf{Set}^{\mathbb{F}}$ is combinatorial if it has a representation

$$\overline{S}(n) = \sum_i S_i \underset{\mathfrak{S}_i}{\otimes} \mathbb{I}(i,n)$$

with action

$$\overline{S}(n) \times \mathbb{F}(n,m) \longrightarrow \overline{S}(m)$$

$$s \otimes i \ , \ f \longmapsto (s \cdot \varepsilon) \otimes j \ where \ \varepsilon \cdot j \ is \ an \ epi-mono$$

$$factorisation \ of \ i \cdot f$$

for some $S \in \mathbf{Set}^{\mathbb{S}}$.

For examples, note that every $A_{!\mathbb{F}} = \sum_i A_i \underset{\mathfrak{S}_i}{\otimes} \mathbf{y}_{\mathbb{F}}(i) \in \mathbf{Set}^{\mathbb{F}} \ (A \in \mathbf{Set}^{\mathbb{B}})$ is combinatorial. Indeed, $A_{!\mathbb{F}} \cong \overline{A_{!\mathbb{S}}}$, where $A_{!\mathbb{S}} = \sum_i A_i \underset{\mathfrak{S}_i}{\otimes} \mathbf{y}_{\mathbb{S}}(i) \in \mathbf{Set}^{\mathbb{S}}$, as can be easily seen from the following calculation

$$\sum_i A_i \underset{\mathfrak{S}_i}{\otimes} \mathbb{F}(i,n) \cong \sum_i A_i \underset{\mathfrak{S}_i}{\otimes} \left(\sum_j \mathbb{S}(i,j) \underset{\mathfrak{S}_j}{\otimes} \mathbb{I}(j,n) \right) \cong \sum_j \left(\sum_i A_i \underset{\mathfrak{S}_i}{\otimes} \mathbb{S}(i,j) \right) \underset{\mathfrak{S}_j}{\otimes} \mathbb{I}(j,n)$$

using (2). In particular, for $\mathbf{x} = (0, 1, 0, \dots, 0, \dots)$ in $\mathbf{Set}^{\mathbb{B}}$, we have that $\mathbf{x}_{!\mathbb{F}}$ is the universal object in $\mathbf{Set}^{\mathbb{F}}$.

6 An algebraic view

Proposition 6.1 For every bijective on objects inclusion functor $A \longrightarrow B$ between small categories, the induced adjunction $\mathbf{Set}^A \xrightarrow{} \mathbf{Set}^B$ is monadic.

The inclusions

$$\mathbb{B} \longrightarrow \mathbb{S}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{I} \longrightarrow \mathbb{F}$$

induce the monadic adjunctions

$$\begin{array}{c} \mathbf{Set}^{\mathbb{B}} \xrightarrow{\top} \mathbf{Set}^{\mathbb{S}} \\ \downarrow^{\uparrow} & \downarrow^{\uparrow} \\ \mathbf{Set}^{\mathbb{I}} \xrightarrow{\top} \mathbf{Set}^{\mathbb{F}} \end{array}$$

Theorem 6.2 The Schanuel topos is equivalent to the Kleisli category of the monad on $\mathbf{Set}^{\mathbb{B}}$ induced by the adjunction $\mathbf{Set}^{\mathbb{B}} \xrightarrow{\longleftarrow} \mathbf{Set}^{\mathbb{I}}$.

Write \mathcal{I} and \mathcal{S} , respectively, for the monads on $\mathbf{Set}^{\mathbb{B}}$ induced by the adjunctions $\mathbf{Set}^{\mathbb{B}} \stackrel{\longleftarrow}{\longrightarrow} \mathbf{Set}^{\mathbb{S}}$ and $\mathbf{Set}^{\mathbb{B}} \stackrel{\longleftarrow}{\longleftarrow} \mathbf{Set}^{\mathbb{S}}$. We have a distributive law

$$SI \xrightarrow{\cdot} IS$$

given as follows

$$\sum_{j} \left(\sum_{i} A_{i} \underset{\mathfrak{S}_{i}}{\otimes} \mathbb{I}(i, j) \right) \underset{\mathfrak{S}_{j}}{\otimes} \mathbb{S}(j, n) \longrightarrow \sum_{\ell} \left(\sum_{k} A_{k} \underset{\mathfrak{S}_{k}}{\otimes} \mathbb{S}(k, \ell) \right) \underset{\mathfrak{S}_{\ell}}{\otimes} \mathbb{I}(\ell, n)$$

$$(x \otimes i) \otimes \varepsilon \longmapsto (x \otimes \varepsilon') \otimes i' \text{ where } \varepsilon' \cdot i' \text{ is an epi-mono factorisation of } i \cdot \varepsilon$$

Thus, the monad \mathcal{I} on $\mathbf{Set}^{\mathbb{B}}$ lifts to a monad $\overline{\mathcal{I}}$ on $\mathbf{Set}^{\mathbb{S}}$.

Proposition 6.3 The topos $\mathbf{Set}^{\mathbb{F}}$ is isomorphic to the category of Eilenberg-Moore algebras of the monad $\overline{\mathcal{I}}$ on $\mathbf{Set}^{\mathbb{S}}$.

Hence we have the following situation

and when I resume this work I will complete the picture.

References

- [Joy86] André Joyal. Foncteurs analytiques et espèces de structures. In *Proc. du Colloque de Combinatoire Enumérative*, volume 1234 of *Lecture Notes in Mathematics*, pages 126–159. Springer-Verlag, 1986.
- [Par99] Robert Paré. Contravariant functors on finite sets and Stirling numbers. Theory and Applications of Categories, 6(5):65-76, 1999.
- [Sta97] Richard P. Stanley. Enumerative Combinatorics I, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1997.