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Abstract

Taking a combinatorial view of presheaves, we relate the Schanuel topos, species of structure,
analytic functors, and the object classifier topos.
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1 Combinatorial presheaves in Set’

['he identity
= k
n N o
k" = ZE_O S(n,1) ! (z) (1)

where S(n,4), a Stirling number of the second kind, is the number of partitions of an n element
set into ¢ blocks is well-known (see, e.g., [Sta97]), and expresses the fact that, up to isomorphism,
functions have a unique surjection-injection factorisation. Indeed, writing I, S and I respectively
for the categories of functions, surjective functions and injective functions between finite cardinals,
this unique factorisation property amounts to the combinatorial bijection

F(n, k) = ZS(n,z’) ® 1(i, k) (2)

where S(n,1) is regarded as a right &;-set (with action given by post-composition) and, dually,
I(7,m) is a regarded as a left G;-set (with action given by pre-composition), and their tensor product
is the quotient

—o—:S(n,6) X 1(i, k) —=5(n,i) ® 1(i,})

under the equivalence relation that identifies (¢ - 0,1) and (g,0 -12) for all € € S(n,i), 0 € &; and
1 € I(4, k). Hence, we have the identity

# 8(n,0) © 1,K) = 5 #5 (i) #16,K)

and (1) follows from the further well-known (again see, e.g., [Sta97]) identities

HE(n k) = K", #S(n,i) =i S(n,i) , #1(ik) = i! (’:)

The family of tensor products {S(n,z’) ® I(s, k)} admits a covariant action along injections
S; k

as follows
(S(n,z’) g ]I(z',k)) x [(k,0) — S(n,1i) g I(k,£)
z E®1, ] > 5@(1-])Z
making the mapping k — ). S(n, 1) g I(i,k) into a presheaf in Set’. Letting N € Set! be the
inclusion I — Set, the bijection (2) yields a natural isomorphism
N" = 3. S(n, 1) % y1(i) in Set!
that provides a combinatorial representation of N” € Set' in terms of representables.

More generally, we introduce the following notion of combinatorial presheaf.

Definition 1.1 A presheaf in Set! is combinatorial if it has a representation
A=) A ® yi()
i i

for a family A = {A; x &; — A;}, of representations of the finite symmetric groups.



As before, the elements of Ai(k) = >, A; ® I(4,k) are denoted z @1 (z € A;, ¢+ : ¢ > k) and are
G.

subject to the identity (z- o) @1 =z (0-1) forall o € &;. Moreover, with this notation, the action
Ay(k) x I(k,£) — Ay(£) is given by (z 1) - j—z& (1- 7).

For an example of combinatorial presheaf, note that for x = (0,1,0,--,0,---) in Set®, we have
that X, = N in Set!.

Proposition 1.2 The series of coefficients of a combinatorial presheaf in Set' is unique (up to
isomorphism,).

PRrOOF: Consider, for example, the following situation
0y A g vi(i) =23, B; g yi(i) : ¢ in Set!.

For a € A, let p(awid,) = bej (b € By, 7: m > n) and let ¢(boid,) = o' (a' € Ay,
1:4>—m).
We have the following identities

agidn, = ¢(bey) = ¢((beidy)-g) = ¢beidy)-7
= (a'®1)-3 = d'a(1-))

from which it follows that z - 7 is a bijection. Thus, so are 5 and z, and n = m = £.
Finally, the assignment

A;j— B; :ar=b- o, where p(agid;) =bzoo (b€ B;, 0 € &;)

yields a &;-equivariant bijection. O

2 The Schanuel topos
We investigate the structure of combinatorial presheaves.

Definition 2.1 (c.f. [Par99]) With respect to a presheaf P € Set', an element p € P(n) is minimal
whenever, for all p' € P(m) and 1: m>—n, if p=p' -p1 then 1 is bijective.

For an example, note that the minimal elements of a combinatorial presheaf are of the form z & id.

The subset of minimal elements in P(m) is denoted (P),,. As minimal elements are invariant
under the action of a bijection, we have a family (P) = {(P); x &; — (P);}, of representations of
the finite symmetric groups. Further, the action of P induces the natural transformation

ep: (Py—P:poi—p-1
in Set!.
Proposition 2.2 The map ep is an epimorphism.

PROOF: We need show that, for every p € P(n) there exist a minimal pg € P(m) and an injection
19 : m>—n such that p = pg - 1.

Given p € P(n), consider the non-empty set of pairs (p',1') € P(i) x I(i,n) such that p'-+' =p
and chose (pg,29) € P(ig) X I(ig,n) with minimal 4. O



This proposition establishes that every presheaf in Set! is engendered by its minimal elements.

Definition 2.3 (c.f. [Joy86]) With respect to a presheaf P € Set!, an element p € P(i) is generic
whenever, for allv:i>—=k, k:j>=k and g € P(j), if p-1=q-k thenj:1 Ck and g=1p-}
(7:i=—=j).

Proposition 2.4 For any presheaf, generic elements are minimal.
Theorem 2.5 For P € Set!, the following are equivalent:

1. The map ep is a monomorphism.

2. The presheaf P is combinatorial.

3. Minimal elements in P are generic.

4. The discrete op-fibration [ P —1 creates pullbacks.

5. The presheaf P preserves pullbacks.

PROOF:

(1) => (2) Because, by Proposition 2.2, the map ep is an isomorphism.

(2) = 3) If (zr@id)-2 =(29¢k)-j7thens=0-k-j7and z = z- o for some bijection o. Hence,
oc-k:2Cjand (z®id)- (0 k) =2z8k.

(3) = (4) We will consider the co-span

above the pullback square

(Note that if (3) has a pullback above (4) then it is unique.)

Every cone p < ¢ e g in [ P for (3) induces the following situation

v

where [a, (] is given by the universal property of pullbacks.



In particular, as every element in P is engendered by a minimal element (Proposition 2.2) and
minimal elements are assumed to be generic, we have a morphism 4 : pg = p in [ P with p
generic inducing the following situation

where 79 is given by the property of generic elements.
We show that (x) is a pullback. Indeed, in the situation (5), as pg is generic, we have a

factorisation
Nl mlP

and hence the identity c- [, 8] = po- ao - [, B] = po - [20, Jo]-

(4) = (5) Easy.

(5) => (1) Consider the pullback square (4) and let p-1 = g- 7 with p € (P); and q € (P),.

As P preserves pullbacks, there exists a unique o € P(£) such that 0-4' = p and 0- 7' = ¢q. Then,
since p and ¢ are minimal, it follows that 2’ and ;' are bijections and hence that pg1 = g®J. a

Corollary 2.6 The category of combinatorial presheaves in Set' and natural transformations is
equivalent to the Schanuel topos Sch.

3 Species of structure

The category of representations of the finite symmetric groups and equivariant maps is isomorphic
to the category Set®, for B the category of finite cardinals and bijections, and equivalent to the
category of species of structure [B, Set], where B is the category of finite sets and bijections.

A natural transformation f : A — B in Set® induces a natural transformation between the
associated combinatorial presheaves as follows

fi:Al—Bi:aoi— f(a) o1

This assignment f — f, defines an eztension functor (_), : Set® — Set! which is left adjoint to
the forgetful functor Set! — Set®.

The extension functor (_); : Set” — Set' is faithful and creates isomorphisms (Proposition 1.2).
Thus, there is a bijective correspondence between isomorphisms A = B in Set® and isomorphisms
A, = By in Set!. This result generalises as follows.

Theorem 3.1 The category of species of structure is equivalent to the category of combinatorial
presheaves in Set' and cartesian natural transformations.

This theorem is a corollary of the following proposition about (quasi-)cartesian natural transfor-
mations (viz., natural transformations whose naturality squares are (quasi-)pullbacks).



Proposition 3.2 Let ¢ : P — Q in Set'.
1. If ¢ maps minimal elements to generic ones then it is quasi-cartesian.
2. If v is quasi-cartesian then it preserves minimal and generic elements.

3. For P combinatorial, if @ is quasi-cartesian then it is cartesian.

PROOF:

(1) Let p € P(n) and g € Q(m) be such that ¢(p) = ¢g-1 for 2 : m >—=n in I. As the elements
of P are engendered by its minimal elements (Proposition 2.2) there is a morphism 19 : pg > p
in [ P with py minimal. Moreover, as ¢ is assumed to map minimal elements to generic ones, we
have a factorisation

from which it follows that (pg-2')-2 =p and ¢(po-2') = ¢. Thus ¢ is quasi-cartesian.
(2) Easy.
(3) Because the action of combinatorial presheaves is injective (Theorem 2.5). O

Corollary 3.3 A natural transformation between combinatorial presheaves in Set! is cartesian iff
it preserves minimal elements.

4 Analytic functors

Definition 4.1 ([Joy86]) A functor F : Set — Set is analytic if it has a Taylor series develop-
ment

F(X) = ZF[fi] ® X?

for a family F[] = {F[i] x &; — Fi]},

; of representations of the finite symmetric groups.

Every presheaf P € Set! induces an analytic functor P with Is[z] = (P);. Moreover, for P
combinatorial, we have the following situation

P(n) — 32 (P)i g n' [— > Set
v Lan

p — po®1 wherep=py-1 x:f lls

with pg minimal Set

and thus we have an extension functor

(L) : Sch — Ana

where Ana denotes the category of analytic functors and natural transformations. In elementary
terms,

P(peox) =qo® (1 x) where p(p) = qo -2 with gy minimal



for all ¢ in Sch.

Proposition 4.2 The extension functor (_) : Sch — Ana is essentially surjective and faithful.

Definition 4.3 1. (c.f. [Joy86]) With respect to a functor F : Set — Set, an element z €
F(X) is Egeneric whenever, for all f : X — Z, epimorphice:Y —=Z andy € F(Y), if
z-p f =vy-pe then there exists f': X —Y such that f = f'-e and z-p f' = y.

2. A natural transformation ¢ : F —= G is E(quasi-)cartesian if for every epimorphism ¢ :
X —=Y the naturality square

F(X) 2 g(x)

is a (quasi-)pullback.
Proposition 4.4 The Egeneric elements of an analytic functor are of the form x @1 with 1 injective.

PrOOF: If z@h (h : n — X) is generic then, as (zoh)-! = (z®id,) ! (! : X — 1), there exists
h' : X — n such that h-h' is a bijection; hence h is an injection. Conversely, if (z®1) - f = (yog)-€
(2 injective, ¢ surjective) then -0 =y and 2- f = o g- ¢ for some bijection o, and a diagonal fill-in

for the square

3
.

|

€

provides a map with the required factorisation property

ze(-f)=ye(g-€)
in the category of elements. O
Corollary 4.5 For every map ¢ € Sch, the induced map ¢ € Ana preserves € generic elements.
Proposition 4.6 Let ¢ : F — G : Set — Set.
1. For F analytic, if ¢ preserves € generic elements then it is £ quasi-cartesian.
2. If ¢ is € quasi-cartesian then it preserves € generic elements.

Theorem 4.7 The Schanuel topos is equivalent to the category of analytic functors and & quasi-
cartesian natural tranformations.

PROOF: Follows from Proposition 4.2, Corollary 4.5, Proposition 4.6 (1) and the fact that for
every £quasi-cartesian natural transformation ¢ : FF — G in Ana, the natural transformation
@ : F[]i — G[]1 in Sch defined as p(a®1) = be (3-2) where ¢(a®id) = b (see Propositions 4.6 (2)
and 4.4) is such that ¢ = ¢. O



5 Combinatorial presheaves in Set”

Definition 5.1 A presheaf in Set” is combinatorial if it has a representation
= S; ® I(2,n
2.5 g en

with action . B
S(n) x F(n,m) — S(m)
sot, f = (s-€)ey where €7 is an epi-mono
factorisation of 1 - f

for some S € Set®.

For examples, note that every Ay = ), A; ® yr(i) € Set™ (A € Set®) is combinatorial. Indeed,

A =2 A, where Aig =, A; ® ys(i) € SetS as can be easily seen from the following calculation

ZA ® F(i,n) ZA ® D>_8(i:4) @ 1(j,n) %Z(Zm gS(z’,j)> ® I(3:n)

using (2). In particular, for X = (0,1,0,...,0,...) in Set®, we have that Xy is the universal object
in Set".

6 An algebraic view

Proposition 6.1 For every bijective on objects inclusion functor A — B between small categories,
the induced adjunction Set® ~T _ SetB is monadic.

The inclusions

B——
I
Set®? ~T _ SetS

i}

Se’c]I Set™

H<—W

_

induce the monadic adjunctions

Theorem 6.2 The Schanuel topos is equivalent to the Kleisli category of the monad on Set®
induced by the adjunction Set® =T _ Set!.

Write Z and S, respectively, for the monads on Set® induced by the adjunctions Set® T Set!
and Set® =T Set®. We have a distributive law

ST =18



given as follows

T, (S8 16.0)) @ 8in) ——~ £ (The 8 510 @ Tt

(z@1)ee +=> (zoe)od where ¢ -4 is an epi-mono
factorisation of 1 - ¢

Thus, the monad Z on Set® lifts to a monad Z on Set®.

Proposition 6.3 The topos Set” is isomorphic to the category of Eilenberg-Moore algebras of the
monad T on Set®.

Hence we have the following situation
S 7
() O
(/§et T T _SetS~S-Alg
N A

T-Alg ~ Set! “T _ Set” ~T-Alg
z N
T-Kl ~ Sch T 7Kl

and when I resume this work I will complete the picture.
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