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Abstract

We introduce a mathematical structural operational se-
mantics that yields a congruence result for bisimilarity and
is suitable for investigating rule formats for name-passing
systems. Indeed, we instantiate this general abstract model
theory in a framework of nominal sets and extract from it
a GSOS-like rule format for name-passing process calculi
for which the associated notion of behavioural equivalence
— given by a form of open bisimilarity — is a congruence.

Introduction
A significant strand of research in semantics concerns

defining and establishing properties of formats for opera-
tional rules [2]. By moving away from a particular syntax
and semantics one can simultaneously study a whole class
of calculi, becoming instead concerned with the intrinsic na-
ture of the kinds of system that the formats allow.

In this vein, the present work provides an analysis of the
congruence properties of bisimilarity for name-passing sys-
tems, with the π-calculus [13] being the paradigmatic ex-
ample. Specifically we ask: What is a name-passing pro-
cess calculus, and when is its behavioural equivalence a con-
gruence? As we proceed to explain, we tackle these ques-
tions from a model-theoretic perspective, merging a series
of strands in semantics research.
Background. A starting point for models of the
π-calculus is the work of Fiore, Moggi and Sangiorgi [6]
and of Stark [18], where a domain equation is solved in a
functor category DI, for a category of domains D. The cru-
cial ingredient of this semantic universe is that it is parame-
terised by finite sets of names (intuitively those available to
a process at any one time) subject to the mode of variation

given by injective renamings, so that the model embodies
the well-known invariance property of bisimilarity under in-
jective renaming.

An abstract treatment of the GSOS rule format and of
bisimilarity congruences was later provided by the math-
ematical operational semantics of Turi and Plotkin [20].
Given a model (M, Σ, B) as follows
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where M is a category with binary products, Σ is a sig-
nature endofunctor with free term monad T and B is a
behaviour endofunctor, they introduced natural transforma-
tions of the form

Σ
(
(−)×B(−)

)
=⇒ BT (−) :M→M (2)

as an abstract notion of operational rule, explaining how
such rules induce liftings of the monad T to the category
of B-coalgebras by structural recursion and giving condi-
tions under which this yields a compositional semantics. In
particular, when the monad T is freely generated by an al-
gebraic signature Σ on the universe of sets, they established
that a family of rules in the GSOS format [4] for a first-order
process calculus corresponds to a natural transformation as
in (2) where B(−) = Pf(−)A, for Pf the covariant finite
powerset functor and A a set of actions.

The first step needed to put name-passing systems within
this framework was to give an algebraic treatment of bind-
ing operators. This, amongst other things, was achieved by
Fiore, Plotkin and Turi [7] by shifting from the universe of
sets to the universe SetF of sets parameterised by finite sets
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of variables (intuitively those that may be free in a term) sub-
ject to the mode of variation given by arbitrary variable re-
namings, so that the model embodies the well-known prop-
erties of substitution.

Thus in this model-theoretic study of name-passing pro-
cess calculi two different, but closely related, natural seman-
tic universes arise: a category M = SetI for behaviour,
that supports a behaviour endofunctor B, and another cat-
egory S = SetF for syntax, that supports algebraic signa-
tures Σ for binding operators inducing free term monads
T on S. The aforementioned framework of mathematical
operational semantics is thus not directly applicable. Impor-
tantly, however, as Fiore and Turi [9] realised, the two uni-
verses are related by an adjunction, leading to the following
situation
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where B̃ is obtained by shifting B from M to S by pre
and post composition with the left and right adjoints re-
spectively. Intuitively, B̃ is a version of B for behaviour
embodying the extra structure imposed by the category S,
which in the case under consideration amounts to closure
under arbitrary renamings. It follows that abstract rules for
the model (S, Σ, B̃), given by natural transformations

Σ((−)× B̃(−)) =⇒ B̃T (−) : S → S , (4)

induce a semantics for which B̃-bisimulation is a congru-
ence.

The notion of B̃-bisimulation that arises amounts to what
we call wide-open bisimulation; viz., the version of open
bisimulation that does not take account of distinctions [16,
Sec. 3], and so is less discriminating than open bisimilar-
ity [16, Sec. 7]. Wide-open bisimilarity has been considered
by various authors, under different names; e.g. [14, 5, 9, 8].
Contributions. In the present work, we continue this line
of investigation.

In aiming to extract a concrete rule format from the ab-
stract rules (4) one faces the problem of devising syntax for
the shifted-behaviour endofunctor—a difficult task due to
the nature of the right adjoint. Rather than following this
direction here, our first step is to instead develop a model
theory that lies in between that of (1–2) and (3–4). Indeed,
we consider models of the following kind
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where T is a lifting of T , and develop a mathematical oper-
ational semantics for abstract rules of the form

Σ
(
U(−)×BU(−)

)
=⇒ BTU(−) : S →M (6)

The way to think about this framework is as a model of syn-
tax and behaviour in which the syntax, and consequently the
rules, carry extra structure. In the context of this paper, the
extra structure amounts to an operation of name substitution
which is essential for modelling name communication.

The framework (5–6) clearly extends (1–2). More-
over, (5) fits within (3) whenever Σ and T restrict from S
toM and, in this case, if U preserves binary products, the
abstract rules (6) can actually be regarded as a subclass of
the abstract rules (4), all of which happens in our example.

Our next step is to move away from semantic universes
based on functor (more specifically, presheaf) categories (in
which stages are explicitly indexed) and instead work in
more convenient (sheaf) subcategories. Indeed, we take (5)
with M the universe Nom of nominal sets and S a uni-
verse NomSub of nominal substitutions over it. Nomi-
nal sets have been championed by Gabbay, Pitts and oth-
ers (e.g. [10]) as a convenient setting in which to handle var-
ious aspects of syntax with variable binding. Nominal sub-
stitutions are a novel contribution of this paper; they provide
a natural extension of nominal sets, supporting the operation
of name substitution. Thus, we explore the abstract GSOS
rule format (6) from a practical, concrete point of view for
the case S = NomSub andM = Nom. In this context,
signature endofunctors will arise from algebraic binding sig-
natures. As for behaviour, a key observation is that for re-
lations that are closed under name substitutions, the usual
notions of early, late, and ground (as in [17]) bisimulation
coincide. Hence we are able to work with ground bisimula-
tion, which admits a reasonably simple behavioural model.

In order to give a concrete representation to abstract rules
of the form (6), we introduce a syntactic notion of rule struc-
ture. This can be seen as the same concrete notion of rule
that has been used, though in a slightly informal fashion, to
define systems such as the π-calculus (e.g. as in [13]). Sub-
sequently, we provide conditions on rule structures leading
to a GSOS-like format that gives rise to abstract rules. For
name-passing process calculi defined using rule structures
satisfying our conditions, wide-open bisimilarity is a con-
gruence.
Related work. Our work is novel in that we extract a con-
crete rule format from a model theory for name-passing.
However, several authors have tackled congruence formats
for name passing from an operational point of view. Weber
and Bloom [21] introduced a rule format for name passing
where they take a restriction operator and a structural con-
gruence as primitive. Bernstein [3] has encoded the π-cal-
culus rules within her framework, but the bisimilarity there
is unusual in that it does not contain α-equivalence. More



recently, and relevant, Ziegler, Miller and Palamidessi [22]
have reformulated the tyft/tyxt format within a formal sys-
tem (fold-nabla [12]) with a special quantifier for new
names, introduced a notion of congruence in that setting,
and established a congruence result for open bisimilarity.
Future research. In this paper we give an interpretation
of rule structures in terms of abstract rules in the model,
but it might be worthwhile to interpret rule structures in a
formal system, such as nominal logic [15] and/or the logic
fold-nabla [12].

Concerning the possibilities on rule formats that this
work opens up, it would be interesting to investigate exten-
sions to our concrete format that are complete with respect
to the model theory (that is, where every abstract rule arises
from a family of concrete ones), and to further provide con-
crete formats for abstract rules of the form (4).

An immediate problem for achieving completeness is
that the concrete format that we present here involves
only positive premises, whereas Turi and Plotkin [20] have
shown that abstract rules (2) over Set account for rules with
both positive and negative premises. We have found that by
restricting attention to natural transformations that are suit-
ably monotone one is able to capture the positive nature of
the rules. Even for this restricted model, it seems that, for a
completeness result, our concrete format needs to be further
extended to allow rules equipped with suitable freshness as-
sumptions on names.

It would also be interesting to adapt the model to account
for open bisimulation and/or to see how the framework of
Klin [11], which accounts for equivalences other than bisim-
ilarity, extends to the name-passing case. More specula-
tively, we would like to extend the model theory, and the
rule format, to be relevant for data-passing systems such as
the applied pi calculus [1].

1. Mathematical operational semantics
We develop a mathematical operational semantics for

rules that carry extra structure, establishing the congruence
of behavioural equivalence.
Mathematical universe. We consider the following uni-
verse of discourse
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of categories and functors between them, where T is the
free monad on the endofunctor Σ and where T is a monad
lifting of T along U . Recall that a monad lifting of a monad
S on C along a functor F : D −→ C is a monad S on D
together with a natural isomorphism λ : SF

∼
−→ FS that

defines a monad functor (F, λ) : (D, S) −→ (C, S) in the
sense of Street [19]. When SF = FS and λ = id, the
monad lifting is said to be strict.
Operational models and bisimulation. A (U, BU)-
dialgebra (occasionally referred to as a U -structured
B-coalgebra) is an object X of S equipped with a
B-coalgebra structure UX → BUX on UX inM. These
are operational models to be thought as abstract transition
systems carrying extra structure. We let (U, BU)-dialg

be the category of (U, BU)-dialgebras and homomor-
phisms (viz., maps between the underlying objects that are
compatible with the coalgebra structure).

A U -structured B-bisimulation (relation) between two
(U, BU)-dialgebras, (X, h) and (Y, k), is a (jointly mono)
span X ← R→ Y in S such that there is a B-coalgebra
structure UR → BUR on UR lifting the span to the cate-
gory of (U, BU)-dialgebras.

We say that a U -structured B-bisimulation between
two (U, BU)-dialgebras is final if every other U -structured
B-bisimulation between them factors through it uniquely.
Whenever it exists, the final U -structured B-bisimulation is
called U -structured B-bisimilarity.
Congruence of bisimilarity. For a monad S, to
be thought of as describing algebraic structure, an
S-congruence between two S-algebras (X, x) and (Y, y) is
a span X ← R → Y for which there exists an S-algebra
structure lifting the span to the category of S-algebras.

The following result describes a setting in which struc-
tured bisimilarity is a congruence.

Theorem 1.1 Let S be a monad lifting of a monad S on
S along the forgetful functor F : (U, BU)-dialg −→ S.
Consider (U, BU)-dialgebras (X, h) and (Y, k), and let
SX ← R→ SY be a span in S.

If the span FS(X, h)
∼
� SX ← R→ SY

∼
� FS(Y, k)

is a U -structured B-bisimilarity between S(X, h) and
S(Y, k) then the span SX ← R→ SY is an S-congruence,
where SX and SY are considered with their respective free
algebra structures.

Abstract rules and operational semantics. We assume
that M has binary products, and define an abstract opera-
tional rule as a natural transformation as follows:

ρ : Σ
(
U(−)×BU(−)

)
=⇒ BTU(−) : S →M (7)

Note that for S = M, U = Id, and T = T this notion,
and the following result, specialise to those of Turi and
Plotkin [20].

Theorem 1.2 For every B-coalgebra h : UX → BUX
there exists a unique B-coalgebra h] : TUX → BTUX



such that the diagram
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commutes, where σ denotes the free Σ-algebra structure,
and η and µ respetively denote the unit and multiplication
of the monad T . Further, the mapping defined by

T
ρ
(X, h) = (TX, UTX

∼
� TUX

h]

→ BTUX
∼
� BUTX)

extends to a strict monad lifting T
ρ of T along the forgetful

functor (U, BU)-dialg→ S.

Thus, the monad T
ρ, which is actually lifted from

T via structural recursion, associates to each opera-
tional model UX → BUX a behavioural interpretation
UTX → BUTX of the monadic structure as specified by
the operational rule ρ.

Corollary 1.3 Assume that S has an initial object 0,
and that U preserves it. If it exists, the U -structured
B-bisimilarity T0← E → T0 on the operational model
UT0→ BUT0 (arising from the unique map U0→ BU0)
is a T -congruence on T0. Consequently, the span
T0

∼
� UT0← UE → UT0

∼
� T0 is a T -congruence on

the initial Σ-algebra T0.

Adjoint mathematical universes. The mathematical uni-
verses of discourse in the examples at hand (see [9] and
Section 2 below) support plenty of further structure. For the
purpose of the development here we highlight the following:
(i) the category S has binary products; (ii) the endofunctor
Σ onM arises as the restriction of an endofunctor Σ on S,
and T is the free monad on Σ; (iii) the functor U preserves
binary products and has a right adjoint, say V : M → S
(so that the categories (U, BU)-dialg and VBU -coalg are
isomorphic). Thus we have the following adjoint situation
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where B̃ = VBU . Hence, one can consider, as did Fiore
and Turi [9], abstract rules of the form

Σ
(
(−)× B̃(−)

)
=⇒ B̃T (−) : S → S (8)

as in the setting of Turi and Plotkin [20].
The following result relates the operational semantics ad-

vocated here based on rules of the form (7) to the more gen-
eral one with rules of the form (8).
Theorem 1.4 Every ρ as in (7) induces a ρ of the form (8)
such that the monad liftings T

ρ and T
ρ of the monad T

respectively to (U, BU)-dialg and to B̃-coalg are isomor-
phic.
Indeed, for X ∈ S, one lets ρX be the right adjunct of
the composite UΣ(X × VBUX)

∼ // Σ(UX × UVBUX)
Σ(id×εBUX ) // Σ(UX×BUX)

ρX // BTUX
∼ // BUTX,

where ε denotes the counit of the adjunction U a V .

2. Abstract syntax
We develop a theory of binding signatures suitable for

name-passing systems. We investigate models for the sig-
natures and consider how morphisms between model cate-
gories relate different kinds of model.

2.1. Signatures and their models
Binding signatures. The syntax of the π-calculus is built
from various operators. For instance, the input phrase
c(a).P , which will be written inp(c, 〈a〉P ), has one name
parameter c and one term parameter P with name a bound;
the output phrase c̄d.P will be written out(c, d, P ), it has
two name parameters c, d, and one term parameter P with
no names bound. We will also use the restriction phrase
νa.P , written res(〈a〉P ), with one term parameter with a
name bound in it; and the parallel phrase P |Q, written
par(P, Q), which has two term parameters, neither with any
names bound.

The following notion of signature, already used by Fiore
and Turi [9], can be seen as an extension of that of Fiore,
Plotkin and Turi [7] to allow name parameters, or alterna-
tively as a restricted form of nominal-logic signature as in-
troduced by Pitts [15].
Definition 2.1 A binding signature Σ consists of a finite
set OPΣ of operators together with, for each operator
op ∈ OPΣ, a name-arity arn(op) ∈ N and a term-arity
art(op) ∈ N. To each j ∈ [1, art(op)] is associated a bind-
ing depth bdepop(j) ∈ N.
Note for instance that for the fragment of the π-calcu-
lus recalled above we have a signature Σπ with opera-
tors OPΣπ

={inp, out, res, par}; arities are assigned as fol-
lows.

op arn(op) art(op) dep

inp 1 1 bdepinp(1) = 1
out 2 1 bdepout(1) = 0
res 0 1 bdepres(1) = 1

par 0 2 bdeppar(j) = 0 (j = 1, 2)



Signature models. Signatures for name-passing admit in-
terpretation in a variety of categories.

Definition 2.2 A model category (for binding signatures)
is a category C with (i) finite products and coproducts,
(ii) a distinguished object NC ∈ C representing names, and
(iii) an endofunctor [N ]

C
on C representing name binding.

Definition 2.3 A model for a binding signature Σ in a
model category C is an algebra for the endofunctor ΣC on
C given as follows.

ΣC(−) =
‘

op∈OPΣ

“

NC
arn(op) ×

Q

j∈art(op) [N ]C
bdepop(j)(−)

”

In particular, for the π-calculus fragment introduced above,
we have the following endofunctor.

Σπ,C(−) = NC × [N ]
C
(−) + NC ×NC × (−)

+ [N ]
C
(−) + (−)× (−)

Typically, and this is the case in all our examples, C is
cartesian closed and has colimits of ω-chains that are pre-
served by [N ]

C
; thus the free monad TC on ΣC can be con-

structed in the usual fashion to provide a free model for the
signature. A model for Σ in C can be equivalently given by
an algebra for the monad TC .
Raw syntax. Fixing a set N of name meta-variables, we
can consider the model category SetN = Set with name ob-
jectNSetN

= N and with abstraction endofunctor [N ]
SetN

=
N × (−). Then for any set X the set TSetN

X contains all
raw Σ-terms with name variables from N and term variables
from X , where α-equivalent terms are not identitifed.

Notation. Elements (a, x) of [N ]
SetN

X will be written sug-
gestively as 〈a〉x, even though no α-equivalence is imposed
on them.

2.2. Abstract syntax with variable binding

We give two examples of model categories capturing syn-
tax up-to α-equivalence. The first one is the model of nom-
inal sets of Gabbay and Pitts [10]; the second one is an ex-
tension of the former which is a sheaf subcategory of the
model of Fiore, Plotkin and Turi [7].

2.2.1. Nominal sets

We briefly review and set notation for the theory of nominal
sets.
Nominal sets. Throughout the paper we fix an infinite
countable set N of names. Recall that a left action of the
symmetric group Sym(N ) onN is a set X equipped with a
function •X : Sym(N ) ×X → X (written infix) which is
such that for any element x ∈ X we have idN •X x = x and,
for any σ, τ ∈ Sym(N ), that (τσ) •X x = τ •X (σ •X x).

A finite set of names C ⊆f N is said to support an ele-
ment x of a Sym(N )-action (X, •X) if every permutation
σ ∈ Sym(N ) that fixes every element of C also fixes x. A
nominal set is a Sym(N )-action in which every element has
finite support. We let Nom be the category of nominal sets
and equivariant functions, i.e. functions compatible with the
actions.

Notation. For names a, b ∈ N be write [a ↔ b] for the per-
mutation onN that swaps a and b and fixes the other names.
The expression “a#x”, that stands for “a is fresh for x”,
means that there is a support of x that does not contain a.

Constructions. The category Nom has colimits and fi-
nite limits, and the functor |−| : Nom → Set that forgets
the Sym(N )-action structure preserves them. So, in partic-
ular, sums and products are inherited from Set.

The set N of names has nominal-set structure; the ac-
tion is given by evaluation, i.e. σ •N a = σ(a). For any
nominal set X we have the nominal set [N ]X of the names
abstracted in X . The carrier set is the quotient

[N ]X = (N ×X)/∼[N ]X

where (a, x) ∼[N ]X (a′, x′) if for any b ∈ N such that b#x
and b#x′ we have [b↔ a]•X x = [b↔ a′]•X x′. We write
〈a〉x for the equivalence class (a, x)[N ]X . The Sym(N )-ac-
tion of [N ]X is inherited from that of the product.

These constructions make Nom into a model category.
Syntax up-to α-equivalence. For any binding signature
Σ and nominal set X , the nominal set TNomX contains all
Σ-terms with name variables from N and term variables
from X ; here, α-equivalent terms are identified in accor-
dance with the intrinsic notion of α-equivalence in X . In-
deed, a TNom-algebra is a model of the nominal-logic sig-
nature underlying Σ, in the sense of Pitts [15].

2.2.2. Nominal substitutions

While nominal sets support actions of bijective renamings
useful for modelling α-equivalence, to give semantics to
name communication it is necessary to further consider ar-
bitrary name substitutions.

Definition 2.4 A nominal substitution is a nominal set X to-
gether with an equivariant function subX : N×[N ]X → X
that satisfies the following four axioms, where, for clarity,
we write [b/a]x for subX(b, 〈a〉x).

1. Identity: [a/a]x = x.
2. Weakening: [b/a]x = x, whenever a#x.
3. Contraction: [c/b][b/a]x = [c/b][c/a]x.
4. Permutation: [d/b][c/a]x = [c/a][d/b]x,

whenever c 6= b 6= a 6= d.



(Note that by definition of [N ]X we have that [b/a]x =
[b/z][a↔ z]x, whenever z#x.)

A homomorphism of nominal substitutions is an equiv-
ariant function between the underlying nominal sets that
respects the nominal substitution. Thus we have a cate-
gory NomSub of nominal substitutions. This category
is complete and cocomplete, and the forgetful functor
NomSub→ Nom preserves limits and colimits. The ob-
jectN of names in Nom has a unique nominal-substitution
structure, while for any nominal substitution X the nominal
set [N ]X has a nominal-substitution structure such that for
x ∈ X and a, b, c ∈ N with a 6= c 6= b we have [b/a]〈c〉x =
〈c〉[b/a]x. In this way the endofunctor [N ] on Nom is
lifted along the forgetful functor NomSub→ Nom.

Thus NomSub is a model category and we are also able
to consider syntax there. In fact, the syntax thus obtained is
as in the model category Nom, but equipped with a name-
substitution action (see the following subsection).
Explicit name substitutions. For every signature Σ there
is an extended signature Σsub which is the same as Σ but
has one extra operator: the substitution operator sub, that
takes one name parameter and one term parameter with a
name bound in it. For any model category C, we write Σsub

C

for the endofunctor on C generated by the signature Σsub.
We further write T sub

C for the free monad on Σsub
C , when it

exists.
In the particular case of the model category NomSub,

we have a natural transformation Σsub
NomSub

→ ΣNomSub

which evaluates the explicit substitutions using the notion
internal to nominal substitutions. This induces a monad
functor TNomSub → T sub

NomSub
, and hence, in particular,

morphisms T sub
NomSub

X → TNomSubX natural for X in
NomSub.

2.3. Morphisms of model categories

By considering morphisms between model categories we
are able to relate the different models of syntax.

Definition 2.5 A morphism (F, f, φ) : D → C between
model categories is given by a product-preserving functor
F : D → C together with a morphism f : NC → F (ND) in
C and a natural transformation φ : [N ]C F → F [N ]D.

For any binding signature Σ, such a morphism induces a
natural transformation ΣCF → FΣD. If the free monads on
ΣC and ΣD exist then they induce, by structural recursion,
a monad functor (D, TD)→ (C, TC).

We now use this framework to explain how raw syntax is
quotiented by α-equivalence.
Instantiating raw syntax. We fix a set N of name meta-
variables and consider an instantiation function I : N → N
sending name meta-variables to names. We have a mor-
phism of model categories NomSub → SetN given by

the forgetful functor |−| : NomSub → Set together
with the function I : N → |N| and the natural transfor-
mation N × |−| → |N | × |−| � |[N ](−)|. Thus for
any binding signature we have an induced monad functor
TNomSub → TSetN , and so for any nominal substitution X
we have a function TSetN

|X | → |TNomSubX | that in fact
converts terms of raw syntax into terms of abstract syntax
up-to α-equivalence.
Lifting syntax from Nom to NomSub. For any mor-
phism (F, f, φ) : D → C of model categories, if the functor
F preserves coproducts and f and φ are isomorphisms then
the induced natural transformation ΣCF → FΣD is an iso-
morphism. If, in addition, the free monads on ΣC and ΣD

exist and F has a right adjoint then the further induced nat-
ural transformation TCF → FTD is also an isomorphism.
That is, TD is a monad lifting of TC along F .

We can apply this to relate models in Nom with models
in NomSub. Indeed, a morphism NomSub → Nom

of model categories is given by the forgetful functor |−| :
NomSub → Nom together with the identities NNom =
|NNomSub| and [N ]

Nom
|−| = |[N ]

NomSub
(−)|. More-

over, |−| has a right adjoint and so for any binding signature
Σ we have isomorphisms ΣNom|X|

∼
→ |ΣNomSubX | and

TNom|X|
∼
→ |TNomSubX | natural for X in NomSub.

3. Behavioural models of name-passing
We introduce coalgebraic models for both ground and

wide-open bisimulation.

3.1. Ground bisimulation

We study ground bisimulation, viz. bisimulation for
which the only relevant input transitions are those involving
fresh data.
Deterministic ground behaviour. We introduce an endo-
functor on Nom for deterministic ground behaviour:

Lg(−) = N × [N ](−) (input)
+ N ×N × (−) (output)
+ N × [N ](−) (bound output)
+ (−) (silent action)

Thus an Lg-coalgebra is a nominal set of states together
with an equivariant function assigning to each state either:
an input (in) behaviour (i.e. a channel name and a resump-
tion state with one name bound); an output (out) behaviour,
with the output data paired rather than bound; or a bound
output (bout) or silent (tau) behaviour.
Ground behaviour. We introduce non-determinism into
the model by interpreting the theory of (finite-)join semi-
lattices in the category Nom. For any nominal set X , we
write PfX for the carrier of the free join semi-lattice on



X . This free construction is a monad lifting of the free
join semi-lattice monad on Set (whose underlying functor
is the covariant finite powerset) along the forgetful functor
Nom→ Set.

We thus define an endofunctor Bg on Nom for (non-
deterministic) ground behaviour:

Bg = PfLg .

In the remainder of this subsection we put this theory in
a more concrete perspective.
Nominal transition systems. We start by introducing a
notion of nominal transition system. First, for each nominal
set N we have a nominal set of labels over N :

Lab(N) = N ×N + N ×N + N ×N + 1 .

The components of this sum correspond respectively to in-
put action (written c(z)), output action (c̄d), bound out-
put action (c̄(z)), and silent action (τ ). For any label
l ∈ Lab(N) the binding names bn(l) and free names fn(l)
are defined as usual: bn(c(z)) = bn(c̄(z)) = {z} and
bn(c̄d) = bn(τ) = ∅; whilst fn(c(z)) = fn(c̄(z)) = {c},
fn(c̄d) = {c, d}, and fn(τ) = ∅.

Definition 3.1 A ground transition system is a nom-
inal set X together with an equivariant relation
−→ ⊆ X × Lab(N ) ×X for which binding names are
always fresh; i.e., if x

l
−→ x′ then bn(l)#x.

Every Bg-coalgebra (X, h) induces a ground transition
system with carrier the underlying nominal set X and with
transition relation −→h⊆ X × Lab(N ) ×X given as fol-
lows.

If in(c, 〈z〉x′) ∈ h(x) and z#x then x
c(z)
−→h x′.

If out(c, d, x′) ∈ h(x) then x
c̄d
−→h x′.

If bout(c, 〈z〉x′) ∈ h(x) and z#x then x
c̄(z)
−→h x′.

If tau(x′) ∈ h(x) then x
τ
−→h x′.

Note that this transition relation is finite-branching, up to
renaming of bound names.
Ground bisimulation. We consider ground bisimulations
in the sense of Sangiorgi [17, Def. 2.1] that are closed under
bijective renamings.

Definition 3.2 A ground bisimulation between two ground
transition systems (X,−→) and (X ′,−→′) is an equivari-
ant relation R ⊆ X × X ′ such that the following holds:
for any (x, x′) ∈ R and any label l ∈ Lab(N ) such that
bn(l)#(x, x′), (i) if x

l
−→ y then there is y′ ∈ X ′ such

that x′−→′l

y′ and (y, y′) ∈ R, and (ii) if x′−→′l

y′ then
there is y ∈ X such that x

l
−→ y and (y, y′) ∈ R.

Proposition 3.3 An equivariant relation between the carri-
ers of two Bg-coalgebras is a Bg-bisimulation if and only
if it is a ground bisimulation between the induced ground
transition systems.

3.2. Wide-open bisimulation

Operational models. We consider the operational mod-
els given by structured Bg-coalgebras with respect to
the forgetful functor |−| : NomSub→ Nom; that is,
Bg-coalgebras together with a name-substitution action on
their carrier.

Interestingly, this notion of operational model has essen-
tially appeared before, though in a different guise. Indeed,
to give a structured Bg-coalgebra is to give an N -LTS in
the sense of Cattani and Sewell [5, Def. 3.4] that addition-
ally satisfies an image finiteness condition, and for which
the carrier presheaf preserves pullbacks of injections. We
explored correspondences of this kind in [8].
Wide-open bisimulation. The associated notion of be-
havioural equivalence, viz. structured Bg-bisimulation, has
a simple description as a form of open bisimulation.

Definition 3.4 Let X and Y be nominal substitutions. A
wide-open bisimulation between ground transition systems
on the nominal sets |X | and |Y | is a ground bisimula-
tion R ⊆ |X | × |Y | that is substitution closed in the sense
that, for any a, b ∈ N , x ∈ X, y ∈ Y , if x R y then
[b/a]x R [b/a]y.

Proposition 3.5 The notions of Bg-bisimulation relation
between structured Bg-coalgebras (X, h) and (Y, k) and of
wide-open bisimulation between the induced ground transi-
tion systems (|X |,−→h) and (|Y |,−→k) coincide.

Furthermore, wide-open bisimilarity is characterised as
the structured Bg-bisimilarity.

4. Operational rules for name-passing
We proceed to give concrete rules for name-passing sys-

tems that have been extracted from abstract ones. Recall
then from Sections 2 and 3 that for every binding signature
Σ we obtain a mathematical universe as follows

NomSubTNomSub

'' |−| // Nom TNom

ww

ΣNom

YY

Bg

��
(9)

(which is in fact an adjoint mathematical universe).
Following the mathematical operational semantics of

Section 1, an abstract rule is a natural transformation of
the form:

ΣNom

(
|−| ×Bg |−|

)
=⇒ BgTNom| − | (10)



between functors NomSub→ Nom.
(We stress that rules merely arising from the model

(Nom, ΣNom, Bg) are not expressive enough, crucially to
support name communication.)

4.1. Concrete rules

We introduce rule structures as a formalisation of the
usual, concrete notion of rule.
Informal presentation. Systems such as the π-calculus
involve rules of the form

x1
l1−→ y1 x2

l2−→ y2 . . .

op(c, 〈a〉x, . . . )
l
−→ t

— premises

— conclusion

where op is an operator of a binding signature; a, c are name
meta-variables; x, xj , yj are term meta-variables; l, lj are
labels (for input, output, bound output, and silent actions)
involving name meta-variables; and where t is a compound
term built out of operators from the signature together with
name and term meta-variables.

For first examples consider the π-calculus rules for input
and scope closure.

(input) —

inp(c, 〈a〉x)
c(a)
−→ x

(close) x
c̄(a)
−→ y x′

c(a)
−→ y′

par(x, x′)
τ
−→ res(〈a〉par(y, y′))

While the terms of the language are considered up-to
α-equivalence, it makes little sense to consider α-equiva-
lence in the rules themselves. Indeed, rules are templates
where no actual binding takes place. In the terminology
of Section 2: rules are built of raw syntax.

Note also that rules may involve renamings in the right
hand side of the conclusion; consider for instance the π-cal-
culus rule for communication.

(com) x
c̄d
−→ y x′

c(a)
−→ y′

par(x, x′)
τ
−→ par(y, [d/a]y′)

For this reason explicit substitutions (as in Section 2.2.2)
are needed.
Formal rule structures. Rule structures for a binding sig-
nature Σ are defined as follows.

Definition 4.1 Let N and X be finite sets, and write Lab(N)
for the set of labels over N.

1. A rule structure over (N, X) is a finite set of premises
over (N, X) together with a conclusion over (N, X).

2. A premise over (N, X) is a triple in X × Lab(N) × X;
the components are referred to as the source, the la-
bel, and the target of the premise.

3. A conclusion over (N, X) is a triple in

ΣSetN
X× Lab(N)× T sub

SetN
X

The components are again referred to as the source,
the label, and the target of the conclusion.

Interpretation of rules. In Section 4.3 we explain how a
rule structure induces an operational semantics. For the time
being, we suggest that a rule be used to define a transition
system by induction in the usual way, subject to two con-
ventions about how the rule can be instantiated: (i) Names,
when instantiated, must be as distinct as the corresponding
name meta-variables are in the rule. (ii) Binding data on the
conclusion label must be fresh for the conclusion source.

These two conventions are to be thought of as side con-
ditions that are implicit in every rule. For instance, consider
the π-calculus rules for mismatch and parallel transition.

(mm) x
τ
−→ y

mm(c, d, x)
τ
−→ y

(par) x
c̄(a)
−→ y

par(x, x′)
c̄(a)
−→ par(y, x′)

Convention (i) eliminates the need for the usual side con-
dition c 6= d on the rule (mm); convention (ii) covers the
usual side condition a 6∈ fn(x′) in rule (par).

On the other hand, because of these conventions, some
duplication in the rules may be necessary. For instance, to
attain the usual output behaviour it is necessary to split the
usual rule in two:

(out-eq) —
out(c, c, x)

c̄c
−→ x

(out-neq) —
out(c, d, x)

c̄d
−→ x

One can envisage a notion of rule structure with explicit
side conditions from which a finite family of rule structures
in the form of Definition 4.1 can be derived, but we will not
dwell on that here.

4.2. Rule format for name-passing

We introduce conditions on rule structures explicitly de-
signed to capture concrete rules that give rise to abstract
rules, and hence to guarantee that wide-open bisimilarity is
a congruence for the induced transition systems.

Throughout this section we fix a rule structure R over
(N, X), with premise set Prem and conclusion with source

op

(
(ci)i∈[1,arn(op)],

(
〈aj

k〉k∈[1,bdepop(j)]
xj

)

j∈[1,art(op)]

)
,

label l, and target tar. (We distinguish entities appearing
in the conclusion by underlining them.)



GSOS-like conditions:
1. Every term meta-variable appears exactly once in the conclusion source and the premise targets.

2. The source of every premise appears in the conclusion source.

Conditions relating to name binding:

3. For each term meta-variable in the conclusion source,
the binding names are distinct.

∀j ∈ [1, art(op)], k, k′ ∈ [1, bdepop(j)].

a
j
k = a

j
k′ =⇒ k = k′

4. No free names bind in the conclusion source.
∀j ∈ [1, art(op)], k ∈ [1, bdepop(j)].

a
j
k 6∈ FN(src, Prem)

5. For each premise, binding names in the label are fresh
for the source.

∀(x, l, y) ∈ Prem. bn(l) ∩ FN(x) = ∅

6. Free names of the conclusion label are free.
fn(l) ⊆ FN(src, Prem)

7. Bound names of the conclusion label are fresh.1

bn(l) ∩ FN(src, Prem) = ∅

8. No names become unbound in the induced transition.

FN(tar) ⊆ FN(src, Prem) ∪ bn(l)

9. The conclusion target is well-formed.
WF(tar)

Figure 1. Conditions on rule structures.

Conditions on rule structures. In Figure 1 we present
conditions that we expect to hold of rule structures. Condi-
tions (1–2) are the conditions of the GSOS format [4] con-
sidered in this context. Conditions (3–9) relate to the fresh-
ness of the names that appear in binding position. To spec-
ify these conditions formally it is necessary to formalise the
notions of bound and free names that are implicit in rule
structures.
Associating names to variables. From here on we as-
sume that Conditions (1–2) hold of R. We then assign to
each term meta-variable x ∈ X the set BN(x) ⊆ N of name
meta-variables that are binding in x. For instance, in the
(input) rule above, BN(x) = {a}, and in the (par) rule,
BN(x) = BN(x′) = ∅, while BN(y) = {a}.

To define BN we use the fact that since Conditions (1–2)
are satisfied we have a bijection

X ∼= [1, art(op)] +
∐

j∈[1,art(op)]

{
(x, l, y) ∈ Prem

∣∣ x = xj

}

whose inverse maps j ∈ [1, art(op)] to xj , and injj(x, l, y)
to y. Now:

• For j ∈ [1, art(op)] we let

BN(xj) =
{
a

j
k

∣∣∣ k ∈ [1, bdepop(j)]
}

.

• For (x, l, y) ∈ Prem we let

BN(y) = BN(x) ∪ bn(l) .

Finally, we write BN(src, Prem) ⊆ N for the set

BN(src, Prem) =
⋃

x∈X

BN(x)

of all name meta-variables that appear in binding position
in the conclusion source or the premise labels.

We now associate to each variable x ∈ X a set FN(x) ⊆ N,
which approximates (from the point of view of the rule) the
names which appear free when the variable x is instantiated.
To do this we first define the set FN(src, Prem) ⊆ N that
approximates the names that will be free in the conclusion
source when it is instantiated.

FN(src, Prem) =
{
ci

∣∣∣ i ∈ [1, arn(op)]
}
∪

⋃

(x,l,y)∈Prem

fn(l) \ BN(x)

Finally, for any x ∈ X, we let

FN(x) = FN(src, Prem) ∪ BN(x) .

The functionFN extends to compound terms with explicit
substitutions. For t ∈ T sub

SetN
X with

t = op




(ci)i∈[1,arn(op)],(
〈aj

k〉k∈[1,bdepop(j)]
tj

)

j∈[1,art(op)]






we define FN(t) ⊆ N by

FN(t) = {ci | i ∈ [1, arn(op)]} ∪

[

8

<

:

FN(tj) \
n

a
j

k

˛

˛ k ∈ [1, bdepop(j)]
o

˛

˛

˛

˛

˛

˛

j ∈ [1, art(op)]

9

=

;

As an example, consider the (close) rule above:
FN(src, Prem) = {c}, while BN(y) = BN(y′) = {a}, and
so FN(y) = FN(y′) = {a, c}. However, FN(tar) = {c}.

For the (com) rule above, we have FN(src, Prem) =
FN(y) = {c, d}, while BN(y′) = {a} and so FN(y′) =
{a, c, d}. However, FN(tar) = {c, d}.
Well-formed conclusion targets. Condition (9) asserts
that the predicate WF holds of the conclusion target. Infor-
mally, this predicate requires that a binding variable is not
used to bind in one term in the conclusion source and in
a different term in the conclusion target. For instance, con-
sider a strange operator taking two term parameters, the first
one with a binder, and the following rule structure.

(strange) —
strange(〈a〉x, x′)

τ
−→ res(〈a〉par(x, x′))

Here the scope of the binder a in the conclusion target en-
compasses both x and x′, but was previously only binding
in x; thus the conclusion target is not well-formed.

Formally, the predicate WF is defined by induction on the
structure of the set T sub

SetN
X, as follows.

• For x ∈ X, we always let WF(x).

• For t = op




(ci)i∈[1,arn(op)],(
〈aj

k〉k∈[1,bdepop(j)]
tj

)

j∈[1,art(op)]



,

we let WF(t) if: for all j ∈ [1, art(op)] we have
WF(tj) and, furthermore, for all k ∈ [1, bdepop(j)], if
a

j
k ∈ BN(src, Prem) then for all x appearing in tj we

have aj
k ∈ FN(x).

Necessity of conditions. If one of Conditions (1–6)
or (8–9) is violated then wide-open bisimilarity need not
be a congruence for the induced transition system.1 The
reasons suggested by Bloom et. al. [4, App. A] justify Con-
ditions (1–2). Conditions (3–6) and (8–9) are important be-
cause they disallow testing of name freshness. For instance,
consider the construct if-fresh, which takes one name pa-
rameter and one term parameter with a binder, with seman-
tics given by the rule structure

(if-fresh) x
τ
−→ y

if-fresh(c, 〈c〉x)
τ
−→ y

which violates Condition (4). If the if-fresh construct was
allowed, the semantics in the nominal framework would

be that if a#〈b〉P then if-fresh(a, 〈b〉P ) performs all the
τ transitions of [a ↔ b]P , because in that case 〈b〉P =
〈a〉[a↔ b]P . Thus the context if-fresh(a, 〈b〉tau(−))
would distinguish the π-calculus term nil from the bisimi-
lar term mm(a, b, nil).

4.3. From concrete to abstract rules

Our aim in this section is to derive from a rule struc-
ture an abstract rule, i.e. a natural transformation of the
form (10). To do this we consider all the possible instan-
tiations of the rule structure.
Instantiations. For a nominal substitution X , an instan-
tiation I of the rule structure R is a pair of functions
(In : N→ |N| , It : X→ |X |) such that In is injective.
Archetypal parameter. To each instantiation I we assign
an archetypal parameter

I(src, Prem) ∈ ΣNom (|X | ×Bg |X |)

This is to be thought of as a simultaneous instantiation of
both the conclusion source and of the premises.

First, for each j ∈ [1, art(op)], we instantiate the
premises with source xj , by defining I(Prem[j]) ∈
Bg |X |.

I(Prem[j])

=
{
in(In(c), 〈In(a)〉It(y))

∣∣ (xj , c(a), y) ∈ Prem
}

∪
{
out(In(c), In(d), It(y))

∣∣ (xj , c̄d, y) ∈ Prem
}

∪
{
bout(In(c), 〈In(a)〉It(y))

∣∣ (xj , c̄(a), y) ∈ Prem
}

∪
{
tau(It(y))

∣∣ (xj , τ, y) ∈ Prem
}

Now the archetypal parameter I(src, Prem) is given by

op

0

B

B

B

@

(In(ci))i∈[1,arn(op)]
,

 

〈In(a
j

k)〉k∈[1,bdepop(j)]

`

It(xj), I(Prem[j])
´

!

j∈[1,art(op)]

1

C

C

C

A

Archetypal result. To each instantiation I we assign an
archetypal result I(l, tar) ∈ LgTNom |X |. This is to be
thought of as a simultaneous instantiation of both the con-
clusion label and of the conclusion target.

First, we consider how to instantiate the conclusion tar-
get. By instantiating raw syntax into abstract syntax (as in
Section 2.3) and then evaluating explicit substitutions (as in
Section 2.2.2), we have a function

T sub
SetN

X→
∣∣T sub

NomSub
X

∣∣→ |TNomSubX |
∼
� TNom |X |

and we let I(tar) ∈ TNom |X | be the image of this func-
tion on the conclusion target tar.

1Condition (7), though sensible, is not strictly necessary for our main result (Theorem 4.4); rules violating it do not induce any transitions.



Now the archetypal result is dependent on the kind of
conclusion label, as follows:

for l = c(a), I(l, tar) = in(In(c), 〈In(a)〉I(tar));
for l = c̄d, I(l, tar) = out(In(c), In(d), I(tar));
for l = c̄(a), I(l, tar) = bout(In(c), 〈In(a)〉I(tar));
for l = τ , I(l, tar) = tau(I(tar)).

Abstract rules. The archetypal parameter of an instan-
tiation represents the smallest parameter that should be
considered with that instantiation. The same instantia-
tion, however, is also adequate for overspecified parameters;
i.e. those that more than fulfill the premises. Formally, thus,
we say that an instantiation I is adequate for a parameter

s = op

0

B

@

(In(ci))i∈[1,arn(op)] ,
“

〈In(a
j
k)〉k∈[1,bdepop(j)]

`

It(xj), βj

´

”

j∈[1,art(op)]

1

C

A

in ΣNom (|X | ×Bg |X |) if I(Prem[j]) ⊆ βj for all
j ∈ art(op) and In(bn(l))#s.

Thus for every parameter s ∈ ΣNom (|X | ×Bg |X |) we
have a set JRKX(s) ⊆ LgTNom |X | of possible results:

JRKX(s) = {I(l, tar) | I is an adequate instantiation for s}

The collection of adequate instantiations is typically not fi-
nite. However, we have the following result.

Lemma 4.2 The set JRKX (s) is finite.

Thus the mapping s 7→ JRKX (s) yields a function as fol-
lows:

JRKX : ΣNom (|X | ×Bg |X |)→ BgTNom |X | .

Theorem 4.3 The family {JRKX}X∈NomSub
is a natural

family of equivariant functions.

The collection of natural transformations (10) pointwise
inherits a join semi-lattice structure from Bg, allowing the
extension of the theory to finite sets of rules.

Theorem 4.4 For a name-passing system defined by a fi-
nite set of rule structures for a binding signature Σ, each
satisfying Conditions (1–9), wide-open bisimilarity on the
ground transition system induced by the syntactic opera-
tional model TNom∅ → BgTNom∅ is a congruence.
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