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Abstract. We study generalised polynomial functors between presheaf
categories, developing their mathematical theory together with computa-
tional applications. The main theoretical contribution is the introduction
of discrete generalised polynomial functors, a class that lies in between
the classes of cocontinuous and finitary functors, and is closed under
composition, sums, finite products, and differentiation. A variety of ap-
plications are given: to the theory of nominal algebraic effects; to the
algebraic modelling of languages, and equational theories there of, with
variable binding and polymorphism; and to the synthesis of dependent
zippers.
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1 Introduction

The recurrent appearance of a structure in mathematical practice, as substanti-
ated by interesting examples and applications, is a strong indicator of a worth-
while theory lurking in the background that merits development. This work is a
direct outgrowth of this viewpoint as it arises from the interaction of two ubiqui-
tous mathematical structures —presheaf categories and polynomial functors—
in the context of computational applications. The paper thus contributes to
the continued search for the foundational mathematical structures that underlie
computer science.

Presheaf categories are functor categories of the form SetC for C a small
category and Set the category of sets and functions. They enrich the universe of
constant sets to one of variable sets [28]. The crucial import of this being that the
mode of variation, as given by the parameter small category, translates to new,
often surprising, internal structure in the presheaf category. As such, the use of
presheaf categories in computer science applications has been prominent: e.g.,
in programming language theory [33, 31, 15], lambda calculus [34, 25], domain
theory [14, 16], concurrency theory [13, 35, 5], and type theory [23, 7].

Polynomial functors, i.e. polynomial constructions in or between categories,
have also featured extensively; especially in the semantic theory of ADTs (see
e.g. [37]). In modern theories of data structure there has been a need for the
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naive notion of polynomial functor as a sum-of-products construction to evolve
to more sophisticated ones. In connection with type-theoretic investigations,
this arose in the work of Gambino and Hyland [17] on the categorical study of
W-types in Martin Löf Type Theory, and in the work on (indexed) containers
of Abbott, Altenkirch, Ghani, and Morris [1, 4] on data structure in dependent
programming. Type theoretically, the extension can be roughly understood as
generalising from sums and products to Σ and Π types.

It is with the above level of generality that we are concerned here, in the
particular context of presheaf categories. Our motivation stems from a variety
of applications that require these new generalised polynomial functors. A case
in point, treated in some detail in the paper, is the use of a class of discrete
generalised polynomial functors as formal semantic counterparts of the informal
vernacular rules that one encounters in presentations of syntactic structure. A
main contribution of the paper shows the flexibility and expressiveness of our
theory to the extent of being able to encompass languages, and equational the-
ories thereof, with variable binding and polymorphism.

The work is presented in three parts, with Secs. 2 and 3 providing the neces-
sary background, Secs. 4 and 5 developing the mathematical theory, and Secs. 6
and 7 dwelling on applications.

2 Generalised logic

This section recalls the basics of Lawvere’s generalised logic [27]. Emphasis is
placed on the categorical view of quantifiers as adjoints [26] that plays a central
role in our development.

The basic categorical modelling of quantifiers as adjoints arises from the
consideration of the contravariant powerset construction on sets, for which we
will write ℘. Indeed, for all functions f : X → Y , the monotone function ℘f :
℘Y → ℘X (where, for T ∈ ℘Y and x ∈ X, x ∈ ℘f(T ) ⇔ fx ∈ T ) has both
a left and a right adjoint, that roughly correspond to existential and universal
quantification. More precisely, there are Galois connections

∃f a ℘f a ∀f : ℘X → ℘Y

given, for S ∈ ℘X and y ∈ Y , by

y ∈ ∃f (S) ⇐⇒ ∃x ∈ X. fx = y ∧ x ∈ S , (1)

y ∈ ∀f (S) ⇐⇒ ∀x ∈ X. y = fx ⇒ x ∈ S . (2)

The categorical viewpoint of quantifiers generalises from sets to categories
by considering the contravariant presheaf construction on small categories. For
a small category C, let PC be the functor category SetC of covariant presheaves
and, for a functor f : X → Y between small categories, let f∗ : PY → PX be
given by P 7→ P f . A fundamental result states that there are adjunctions

f! a f∗ a f∗ : PX→ PY . (3)

For P : X → Set , f!(P ) is a left Kan extension of P along f ; whilst f∗P is a
right Kan extension of P along f . Importantly for our development, these can



be expressed by the following coend and end formulas

f!P (y) =
∫ x∈X Y(fx, y)× Px , (4)

f∗P (y) =
∫
x∈X [Y(y, fx)⇒ Px ] (5)

for P ∈ PX and y ∈ Y. (See e.g. [29].)

Example 2.1. Whenever necessary, we will identify a set (resp. a function) with
its induced discrete category (resp. functor). For a function f : X → Y , the for-
mulas (4) and (5) for f!, f∗ : PX → PY simplify to give, for P ∈ PX and y ∈ Y ,

f!P (y) ∼=
∐
{x∈X|fx=y} P (x) , (6)

f∗P (y) ∼=
∏
{x∈X|y=fx} P (x) . (7)

Coends are quotients of sums under a compatibility equivalence relation and,
as such, correspond to a generalised form of existential quantification; ends are
restrictions of products under a parametricity condition and, dually, correspond
to a generalised form of universal quantification (see e.g. [27]). In this respect, the
formulas (6) and (7) are intensional generalisations of the formulas (1) and (2).
Further in this vein, the reader is henceforth encouraged to use the following
translation table

sum disjunction
coend existential quantification

product conjunction
end universal quantification

exponential implication
hom equality

presheaf application predicate membership

to provide an intuitive logical reading of generalised categorical structures. In
particular, note for instance that the categorical formulas (4) and (5) translate
into the logical formulas (1) and (2).

3 Polynomial functors

The main objects of study and application in the paper are given by a general
notion of polynomial functor between presheaf categories. This will be introduced
in the next section. Here, as preliminary motivating background, we briefly recall
an analogous notion of polynomial functor between slices of locally cartesian
closed categories as it arose in the work of Gambino and Hyland [17] and of
Abbott, Altenkirch, Ghani, and Morris [1, 4]. See [18] for further details.

In a type-theoretic setting, starting with the informal idea that a polynomial
is a sum-of-products construction, one can consider them as constructions

X 7→
∑
j∈J

∏
i∈I(j)X (8)

arising from dependent pairs (J : Set , I : J → Set), where each j ∈ J can be
naturally understood as a constructor with arities in I(j). The categorical for-
malisation of this idea is founded on the view of Σ and Π types as adjoints.



Recall that these arise as follows

Σf a Rf a Πf : C /A→ C /B (9)

where, for an object C of a category C , we write C /C for the slice category of
C over C and, for f : A → B in C , we set Σf : C /A → C /B : (a : C � A) 7→
(f a : C � B). Thus, (8) corresponds to

X 7→ ΣJ�1ΠI→J X (10)

for a specification of constructors J and arities I → J . More generally, we have
the following definitions extending the construction (10) to slices.

Definition 3.1. 1. A polynomial in a category is a diagram A← I → J → B.

2. The polynomial functor induced by a polynomial P = (A
s←− I f−→ J

t−→ B)
in C is the composite

FP = ΣtΠf Rs : C /A→ C /B . (11)

Example 3.1. To grasp the definition, it might be convenient to instantiate it in
the category of sets. There, one sees that modulo the equivalence Set/S ' SetS ,

F
(A

s←I f→J t→B)
〈Xa〉a∈A =

〈∐
j∈Jb

∏
i∈Ij Xsi

〉
b∈B

(12)

for Jb = {j ∈ J | tj = b} and Ij = {i ∈ I | fi = j}. These are the normal
functors of Girard [19].

4 Generalised polynomial functors

The notion, though not the terminology, of polynomial in a category appeared
in the work of Tambara [36] as an abstract setting for inducing polynomial con-
structions in the presence of additive and multiplicative transfer structure. The
transfer structure provided by Σ and Π types (9) gives rise to polynomial func-
tors between slice categories (11). Our interest here is in the transfer structure
provided by existential and universal quantification in generalised logic (3) as
giving rise to generalised polynomial functors between presheaf categories (13).

Definition 4.1. The generalised polynomial functor induced by a polynomial

P = (A s←− I f−→ J t−→ B) in the category of small categories and functors is
the composite

FP = t! f∗ s
∗ : PA→ PB . (13)

That is,

FP X b =
∫ j∈J B(tj, b)×

∫
i∈I
[
J(j, fi)⇒ X(si)

]
.

The closure under natural isomorphism of these functors yields the class of gen-
eralised polynomial functors.

A polynomial is said to represent a functor between presheaf categories when-
ever the latter is naturally isomorphic to the generalised polynomial functor
induced by the former.



Example 4.1. 1. Write
∮
P for the category of elements of a presheaf P ∈ PC

and let π be the projection functor
∮
P → C : (c ∈ C, p ∈ Pc) 7→ c.

Modulo the equivalence P(C)/P ' P(
∮
P ), polynomial functors P(C)/P →

P(C)/Q are subsumed by generalised polynomial functors P(
∮
P )→ P(

∮
Q).

The two notions coinciding for C = 1.
It follows, for instance, that for every presheaf P , (i) the product endo-
functor (−) × P and (ii) the exponential endofunctor (−)P are generalised
polynomial.

2. Constant functors between presheaf categories are generalised polynomial.
3. Every cocontinuous functor between presheaf categories is generalised poly-

nomial.

The definition of generalised polynomial functor extends to the multi-ary
case as follows.

Definition 4.2. For indexed families of small categories {Ai}i∈I and {Bj}j∈J ,
a functor

∏
i∈I PAi →

∏
j∈J PBj is generalised polynomial iff so is the composite

functor P
(∐

i∈I Ai
) ∼= ∏i∈I PAi →

∏
j∈J PBj ∼= P

(∐
j∈J Bj

)
.

The examples below play an important role in applications.

Example 4.2. For a small monoidal category C, Day’s monoidal-convolution ten-
sor product [8] on PC is a generalised polynomial functor P(C)

2 → P(C). Fur-
thermore, for every c ∈ C, monoidal-convolution exponentiation to the repre-
sentable yc ∈ PC is a generalised polynomial endofunctor on PC.

Proposition 4.1. The class of generalised polynomial functors is closed under
sums and finite products.

5 Discrete generalised polynomial functors

We introduce a simple subclass of generalised polynomial functors: the discrete
ones. The results of this section show that they have a rich theory; those of
Section 7 provide a range of sample applications.

Notation. For a set L and a category C , let L · C =
∐
`∈L C with ∇L the

codiagonal functor [Id]`∈L : L · C → C .

Definition 5.1. The class of discrete generalised polynomial functors is in-
duced by discrete polynomials, defined to be those of the form

P =
(
A

∐
k∈K Lk · Jk

soo

∐
k∈K ∇Lk //

∐
k∈K Jk t // B

)
where Lk is finite for all k ∈ K.

One then has that: FPX b ∼=
∐
k∈K

∫ j∈Jk B(tιkj, b)×
∏
`∈Lk

X(sιkι`j).

Remark. The class of discrete generalised polynomial functors is the closure
under sums of the class of functors induced by uninomials, defined as diagrams

A←− L · J ∇L−→ J −→ B
with L finite.



Example 5.1. 1. For sets A and B, the discrete generalised polynomial functors
PA→ PB are as in (12) with Ij finite for all j ∈ J .

2. The generalised polynomial functors of Examples 4.1 (1(i)), (2), (3) and 4.2
are discrete.

The theory of discrete generalised polynomial functors will be developed
elsewhere. An outline of main results and constructions on them follows.

Definition 5.2. A functor is said to be inductive whenever it is finitary and
preserves epimorphisms.

Proposition 5.1. Discrete generalised polynomial functors are inductive. Thus,
they admit inductively constructed free algebras.

Theorem 5.1. The class of discrete generalised polynomial functors is closed
under sums, finite products, and composition.

Proposition 5.2. The 2-category of small categories, discrete generalised poly-
nomial functors, and natural transformations is cartesian. As such, and up to
biequivalence, it subsumes the cartesian bicategory of small categories, profunc-
tors, and natural transformations.

Definition 5.3. The differential of a uninomial M = (A s←− L · J ∇L−→ J t−→ B)
is the discrete polynomial given by

∂M =
(
A

∐
(L0,`0)∈L′ L0 · J̃

s′oo

∐
(L0,`0)∈L′ ∇L0

// L′ · J̃
t′ // A◦ × B

)
for L′ =

{
(L0, `0) ∈ ℘(L) × L | L0 ∩ {`0} = ∅, L0 ∪ {`0} = L

}
; J̃ =

∮
homJ

(the twisted arrow category of J); s′ = [s (ı0 · π2)](L0,`0)∈L′ for ı0 : L0 ↪→ L; and

t′ =
[
〈(s ι`0)◦ π1, t π2〉

]
(L0,`o)∈L′ .

For a discrete polynomial P expressed as the sum of uninomials
∐
i∈IMi, we

set ∂P =
∐
i∈I ∂Mi.

We have that:

F∂M X (a, b) ∼=
∫ j∈J B(tj, b)×

∐
(L0,`0)∈L′ A(a, sι`0j)×

∏
`∈L0

X(sι`j) .

6 Equational systems

We reformulate and extend the abstract theory of equational systems of Fiore
and Hur [10] to more directly provide a framework for the specification of equa-
tional presentations. This we apply to generalised polynomial functors in the
next section.

Notation. Writing Σ-Alg for the category of Σ-algebras of an endofunctor Σ on

a category C , let U denote the forgetful functor Σ-Alg→ C : (C,ΣC
γ� C) 7→ C

and σ the natural transformation ΣU⇒ U with σ(C,γ) = γ.

Definition 6.1. 1. An inductive equational system is a structure (C : Σ.Γ `
λ ≡ ρ) with C a cocomplete category, Σ,Γ inductive endofunctors on C ,
and λ, ρ natural transformations Γ U⇒ U : Σ-Alg→ C .



2. For an inductive equational system S = (C : Σ . Γ ` λ ≡ ρ), the category
of S-algebras, S-Alg, is the full subcategory of Σ-Alg determined by the
Σ-algebras that equalise λ and ρ.

Categories of algebras for inductive equational systems have the expected
properties.

Theorem 6.1 ([10]). For an inductive equational system S = (C : Σ . Γ `
λ ≡ ρ), S-Alg is reflective in Σ-Alg (with inductively constructed free S-algebras
over Σ-algebras), the forgetful functor S-Alg → C is monadic (with inductively
constructed free algebras), and S-Alg is complete and cocomplete.

It is important in applications to have a systematic framework for specifying
inductive equational systems. To this end, we introduce rules of a somewhat
syntactic character for deriving natural terms. These are judgements F `n ϕ
with n ∈ N, F an inductive functor C n → C , and ϕ a natural transformation
F Un ⇒ U : Σ-Alg→ C for Un = 〈U, . . . ,U〉 : Σ-Alg→ C n.

Σ `1 σ Πi `n id
(1 ≤ i ≤ n)

F `n ϕ Fi `m ϕi (1 ≤ i ≤ n)

F ◦ (F1, . . . , Fn) `m ϕ ◦ F (ϕ1, . . . , ϕn)

γ : G⇒ F F `n ϕ
G `n ϕ ◦ γUn

(G inductive)

Within this new framework, the specification of an equational presentation
Γ ` λ ≡ ρ is done by setting Γ =

∐
i∈I Γi and λ = [λi]i∈I , ρ = [ρi]i∈I for

natural terms Γi `1 λi and Γi `1 ρi for i ∈ I.

7 Applications

We give applications of generalised polynomial functors to nominal effects, ab-
stract syntax, and dependent programming.

7.1 Nominal effects

The algebraic approach to computational effects of Plotkin and Power [32] re-
gards the view of notions of computation as monads of Moggi [31] as derived from
algebraic structure. This section illustrates the use of the theories of generalised
polynomial functors and of equational systems in this context. We focus on nom-
inal effects, explaining that the algebraic theory of the π-calculus of Stark [35]
is an inductive equational system.

The algebraic theory of the π-calculus is built from the combination of three
sub-theories: for non-determinism, communication, and name creation. Whilst
each of the sub-theories is subject to algebraic laws of their own, the overall
theory is obtained by further laws of interaction between them; see [35, Sec. 3]
for details. The signature of π-algebras gives rise to an inductive generalised
polynomial endofunctor on PI, for I a skeleton of the category of finite sets and
injections. All the laws, that in [35] are either informally presented by syntactic
equations or formally presented by commuting diagrams, can be seen to arise as



equational presentations of natural terms. The monadicity of π-calculus algebras
is thus a consequence of the abstract theory of inductive equational systems.

7.2 Abstract syntax

An algebraic theory for polymorphic languages is developed within the frame-
work of discrete generalised polynomial functors. This is done in three successive
steps by considering first variable binding and capture-avoiding substitution, and
then polymorphism.

Variable binding. We start by recasting the algebraic approach to variable
binding of Fiore, Plotkin and Turi [15] in the setting of discrete polynomial
functors. This we exemplify by means of the syntax of types in the polymorphic
lambda calculus. Recall that this is given by the following informal vernacular
rules (see e.g. [6]):

(Var)
∆,X : ∗ ` X : ∗

(⇒)
∆ ` A : ∗ ∆ ` B : ∗

∆ ` A⇒ B : ∗
(∀)

∆,X : ∗ ` A : ∗
∆ ` ∀X :∗. A : ∗

(14)

Our first task here will be to explain how these, and thereby the syntax they
induce, are formalised as discrete generalised polynomial functors.

We need first to describe the mathematical structure of variable contexts.
To this end, define a scalar in a category C to be an object C ∈ C equipped
with a coproduct structure ı : Z → (Z • C) ← C :  for all objects Z ∈ C .
In the vein of [9], for a set of sorts S, define the category of S-sorted variable
contexts C[S] to be the free category with scalars 〈s〉 ∈ C[S] for all sorts s ∈ S.
The mathematical development does not depend on explicit descriptions of C[S],
rather these provide different implementations. To fix ideas, however, the reader
may take C[S] to be a skeleton of the comma category FinSet ↓ S of S-indexed
finite sets.

Writing C for the category of mono-sorted contexts C[ {∗} ], which is a skele-
ton of FinSet , each of the rules (14) directly translates as a uninomial as follows:

(Var) C ←− 0 ·C ∇0−→ C
−•〈∗〉−→ C

(⇒) C
[id,id]←− 2 ·C ∇2−→ C

id−→ C

(∀) C
−•〈∗〉←− 1 ·C ∇1−→ C

id−→ C

(15)

Note that the maps ∇n : n ·C → C correspond to the number of premises in the
rule and that the associated maps C ← n ·C describe the type of context needed
for each of the premises. On the other hand, the maps C → C describe the type
of context needed in the conclusion. Indeed, note that an algebra structure for

the functor induced by a uninomial C
s←− n ·C ∇n−→ C

t−→ C on a presheaf
P ∈ PC corresponds to a family of functions

∏n
i=1 P

(
si(∆)

)
→ P

(
t(∆)

)
natural

for ∆ ∈ C.
The sum of the uninomials (15) yields the discrete generalised polynomial



endofunctor Σ on PC given by

Σ(P )(∆) = C(〈∗〉, ∆) + P (∆)× P (∆) + P (∆ • 〈∗〉) ,

whose initial algebra universally describes the syntax of polymorphic types in
context up to α-equivalence.

Capture-avoiding substitution. Within this framework, one can algebraically
account for the operation of capture-avoiding substitution. This is achieved by
introducing a suitably axiomatised operator for substitution (see [15, Secs. 3
& 4]), that specifies its basic properties and renders it a derived operation. An
outline, omitting details for brevity, follows.

The uninomial for the substitution operator is on the left below

(ς) C
[−•〈∗〉,id]←− 2 ·C ∇2−→ C

id−→ C
∆,X : ∗ ` A : ∗ ∆ ` B : ∗

∆ ` ς(X :∗. A ,B) : ∗
and, as such, arises from the informal vernacular rule on the right above. Conse-
quently, one extends (Var), (⇒), (∀) with (ς) to obtain the discrete generalised
polynomial endofunctor Σ′ on PC given by

Σ′(P )(∆) = Σ(P )(∆) + P (∆ • 〈∗〉)× P (∆) ,

and then equips it with an equational presentation axiomatising theΣ-substitution
algebras of [15, Sec. 4]. This axiomatisation can be equationally presented by
means of natural terms as explained at the end of Sec. 6. Thereby, it deter-
mines an inductive generalised equational system by construction. Its initial
algebra universally describes the syntax of polymorphic types in context up to
α-equivalence equipped with the operation of single-variable capture-avoiding
substitution. (This development applies to general second-order algebraic pre-
sentations, for which see [11, 12].)

Polymorphism. As we proceed to show, our framework is expressive enough to
also allow for the modelling of polymorphic languages. This we exemplify with
the term syntax of the polymorphic lambda calculus, for which the informal
vernacular rules follow (see e.g. [6]):

(var)
∆ ` A : ∗

∆;Γ, x : A ` x : A

(app)
∆;Γ ` t : A⇒ B ∆;Γ ` u : A

∆;Γ ` t(u) : B
(abs)

∆;Γ, x : A ` t : B

∆;Γ ` λx :A. t : A⇒ B

(App)
∆;Γ ` t : ∀X :∗. A ∆ ` B
∆;Γ ` t[B] : A[B/X]

(Abs)
∆,X : ∗ ;Γ ` t : A

∆;Γ ` ΛX :∗. t : ∀X :∗. A

(16)

(In the rule (Abs) the type variable X is not free in any type of the context Γ .)
Following Hamana [21], we set up the algebraic framework on presheaves over

type and term variable contexts obtained from indexed categories by means of
the Grothendieck construction [20]. Recall that from K : K → CAT this yields

the category, which we will denote
∮K∈K K(K), with objects (K, k) for K ∈ K



and k ∈ K(K), and morphisms (f, g) : (K, k) → (K ′, k′) for f : K → K ′ in K
and g : K(f)(k)→ k′ in K(K ′).

Let [ν,⇒,∀, ς] : Σ′(T ) → T in PC be an initial algebra for the equational

system of polymorphic types with substitution. For G =
∮∆∈C

C[T∆]× T (∆),
the rules (16) directly translate into uninomials as follows:

(var) G 0 ·Goo
∇0 // G

∮
〈•,id〉

// G

where •S : C[S]× S → C[S] : Γ, s 7→ Γ • 〈s〉

(app) G 2 ·Ga

[
∮
(id×⇒),

∮
(id×π1)]

oo
∇2 // Ga

∮
(id×π2)

// G

where Ga =
∮∆∈C

C[T∆]× T (∆)× T (∆)

(abs) G 1 ·Ga

∮
〈•,id〉

oo
∇1 // Ga

∮
(id×⇒)

// G

(App) G 2 ·GApp
[
∮
(id×(∀π1)),

∮
(id×π2)]

oo
∇2 // GApp

∮
(id×ς)

// G

where GApp =
∮∆∈C

C[T∆]× T (∆ • 〈∗〉)× T (∆)

(Abs) G 1 ·GAbs
ı#oo

∇1 // GAbs

∮
(id×∀)

// G

where GAbs =
∮∆∈C

C[T∆]× T (∆ • 〈∗〉)
and ı#(∆;Γ,A) =

(
∆ • 〈∗〉;C[T ı](Γ ), A

)
Note again that the maps ∇n : n ·G→ G correspond to the number of premises
in the rules and that the associated maps G← n ·G describe the type of context
and types needed for each premise; whilst the maps G→ G describe the context
and type needed in the conclusion. One can therefore see rules as syntactic
specifications of uninomials.

The sum of the above uninomials yields a discrete generalised polynomial
endofunctor on PG whose initial algebra universally describes the syntax of
typed polymorphic terms in context up to α-equivalence. One can even go further
and equationally axiomatise the operations of type-in-term and term-in-term
substitution leading to a purely algebraic notion of model for polymorphic simple
type theories. Details will appear elsewhere.

7.3 Dependent programming

McBride [30] observed that the formal derivative of the type constructor of an
ADT yields the type constructor for the one-hole contexts of the ADT, and use
this as the basis for a generic framework for developing zippers for data-structure
navigation as originally conceived by Huet [24]. In dependent programming,
these ideas were revisited by Abbott, Altenkirch, Ghani, and McBride [2, 3]
for containers [1]. Following this line, Hamana and Fiore [22, Sec. 5] considered
partial derivation for set-theoretic indexed containers (i.e. polynomial functors
between slice categories of Set) and applied the construction to synthesise de-
pendent zippers for GADTs. This section shows that the more general notion
of differential for discrete generalised polynomial functors introduced in this pa-



per (Definition 5.3) leads to more refined zippers, with staging information. For
brevity, we only consider an example.

Dependent zippers. The differentials of the uninomials (15) are as follows

(Var′) C 0oo // 0 // C◦ ×C

(⇒′) C 2 · C̃
[π2,π2]

oo id // 2 · C̃
[π,π]

// C◦ ×C

(∀′) C 0oo // C̃
〈(−•〈∗〉)π1 , π2〉

// C◦ ×C

from which it follows that the induced discrete generalised polynomial functor
∂Σ : PC → P(C◦ ×C) is given by

∂Σ(P )(∆′, ∆) = 2×C(∆′, ∆)× P (∆) + C
(
∆′, ∆ • 〈∗〉

)
.

For an algebra [ν,⇒,∀] : ΣS → S, the construction ∂Σ(S)(∆′, ∆) is that of
the one-hole contexts at stage ∆ for elements of S at stage ∆′. Indeed, we have
a map for plugging components

plug : S(∆′)× ∂Σ(S)(∆′, ∆) → S(∆)

with plug
(
A, (0, f, B)

)
=
(
B ⇒ Sf(A)

)
, plug

(
A, (1, f, B)

)
= (Sf(A)⇒ B), and

plug(A, f) = ∀
(
Sf(A)

)
; and maps for focussing on sub-components

focus0, focus1 : S(∆′)× S(∆′)×C(∆′, ∆) −→ S(∆′)× ∂Σ(S)(∆′, ∆)

focus : S(∆′ • 〈∗〉)×C(∆′, ∆) −→ S(∆′ • 〈∗〉)× ∂Σ(S)(∆′ • 〈∗〉, ∆)

with focus0
(
(A,B), f

)
=
(
A,
(
1, f, Sf(B)

)
), focus1

(
(A,B), f

)
=
(
B,
(
0, f, Sf(A)

)
),

and focus(A, f) = (A, f • 〈∗〉).
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