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Synopsis

Fiore and Hur [18] recently introduced a novel method-
ology—henceforth referred to as Sol—for the Synthesis of
equational and rewriting logics from mathematical models.

In [18], Sol was successfully applied to rationally recon-
struct the traditional equational logic for universal algebra
of Birkhoff [3] and its multi-sorted version [26], and also to
synthesise a new version of the Nominal Algebra of Gabbay
and Mathijssen [41] and the Nominal Equational Logic of
Clouston and Pitts [8] for reasoning about languages with
name-binding operators.

Based on these case studies and further preliminary in-
vestigations, we contend that Sol can make an impact in
the problem of engineering logics for modern computational
languages. For example, our proposed research on second-
order equational logic will provide foundations for design-
ing a second-order extension of the Maude system [37], a
first-order semantic and logical framework used in formal
software engineering for specification and programming.

Our research strategy can be visualised as follows:

(I)
;

Algebraic
Meta-theory

;

(II)

/. -,() *+Sol ;

Equational
Logic

and consists of two main activities:

(I) the development of mathematical models of computa-
tional languages in the form of algebraic meta-theories,
and

(II) the systematic use of these to synthesise formal de-
duction systems for equational reasoning according to
Sol.

In this context, two further points are worth noticing.

(i) The algebraic meta-theories to be developed, even
though ultimately intended to serve as input to Sol,
are of interest in their own right and will be thus
investigated; e.g., to devise new syntactic structures
for formal language specification, to provide new no-
tions of definition by structural recursion, to derive
new induction principles, to feedback into program-
ming and meta-programming languages, to induce no-
tions of theory translation, to build algebraic models
for higher-order rewriting.

(ii) The equational logics output by Sol are guaranteed
to be sound with respect to a canonical model the-
ory induced by the input algebraic meta-theory. Sol

also provides a framework for analysing completeness,
which typically leads to canonical equational logics.

In order to make substantial progress in the area, the
proposal targets a host of key features of languages used for
formalising, specifying, programming, and reasoning about
computation. These features are: binders, metavariables,
linearity, sharing, graphical structure, type dependency,
substitution. Our research programme is planned in a
stepwise fashion so that the various feature combina-
tions can be treated modularly. Expected outcomes of
our work include algebraic meta-theories for languages with

(I.1) variable binding and metavariables (with and without
linearity constraints);

(I.2) type dependency (with and without variable binding
and metavariables);

(I.3) sharing (with and without variable binding and
metavariables)

together with corresponding

(II.1) sound and complete logics for equational reasoning,
and

(II.2) syntactic and semantic meta-theories of translations
between equational theories.

All in all, the mathematical theory will provide new al-
gebraic foundations for sophisticated computational struc-
tures; the equational logics will serve as the basis of
computer-assisted systems for formal methods.

1. Background and motivation

We introduce the general scientific background for the
proposal and provide specific motivation for our pro-
gramme. We briefly recall the role and importance of meta-
theories in computer science, and argue in favour of found-
ing their development on mathematical models. Readers
taking such views for granted can directly move on to Sec-
tion 2, where the core of the research proposal is presented.

Background. Challenged by both technological and theo-
retical developments, our view of computation is still evolv-
ing. Here “computation” should be understood broadly, to
include both classical notions (such as reduction, feasibility,
concurrency, communication, interaction, probability, ran-
domisation) and non-classical ones (quantum computation,
bio information, etc.). The concrete theories for specific
computational phenomena that are emerging encompass
three aspects: (1 ) the study of specification and program-
ming languages for describing computations; (2 ) mathe-
matical structures for modelling computations; and (3 ) log-
ics for reasoning about properties of computations. The
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interaction between these three strands is often as com-
plex as it is fruitful, with each strand informing and en-
riching the other two. To make sense of this complexity,
and also to compare and/or relate different concrete the-
ories, meta-theories have been built. These meta-theories
are used for the study, formalisation, specification, proto-
typing, and testing of concrete theories.

It is this distinction between concrete theories and meta-
theories that plays a prominent role in this proposal, where
we focus on the investigation of meta-theories to provide
systems that better support the formalisation of concrete
theories. The dichotomy between concrete theories and
meta-theories is not new. Mathematicians, for instance, are
both concerned with the development of the concrete theo-
ries of groups, rings, etc., as well as with the universal alge-
bra of these structures. However, the situation in computer
science seems to be of a richer nature: The development of
concrete theories typically stimulates that of meta-theories,
which themselves may turn into concrete theories that feed-
back into the development. This is best appreciated with an
example: The functional core of the programming language
ML [45] is a concrete theory of typed functional computa-
tion that arose as the meta-language underlying the LCF
proof-checking system [28], which in turn arose as a meta-
theory for a Logic for Computable Functions [54] based on
the mathematical theory of computation provided by Do-
main Theory [53].

Our research programme is part of this general scien-
tific enterprise. Indeed, we aim to develop algebraic meta-
theories for certain ubiquitous computational structures
and to synthesise equational logics to reason about them.

Motivation. The meta-theories to be developed aim at
syntactic structures for describing languages with the fol-
lowing features: variable binding, meta-variables, linearity,
sharing, graphical representation, type dependency, substi-
tution. All of these play a central role across areas such
as programming-language theory, computer-assisted rea-
soning, formal software engineering, rewriting theory, type
theory, etc.; and it is with these applications in mind that
our research will be conducted.

Our ambition is both to build and to experiment with
a mathematical theory for the design, specification, im-
plementation, and study of formal systems—specifically
in the form of equational logics—as needed for reasoning
about languages with the aforementioned features. As ad-
vocated and pioneered in computer science by Scott [54],
Plotkin [49] and others, we argue that such a mathematical
theory should account for both syntactic (i.e. language the-
oretic) and semantic (i.e. model theoretic) aspects. How-
ever, we go a step further and propose an algebraic frame-
work in which both the language syntax and the deduc-
tion system are derived. This becomes important as we
move from the traditional equational logic of universal al-
gebra [3, 26] to less familiar settings, such as dependent
type theory [10, 46, 6, 11] and beyond.

Our approach is novel and contrasts with much work
on type theory and logical frameworks, which is mainly
developed and validated on a proof-theoretic (i.e. syntac-

tic) basis. In this respect, we believe that the lack of a
model theory hinders the foundations and applicability
of the subject. For instance, syntactic features like those
at which we aim here are often not explained but rather
encoded, typically by means of analogous features at the
meta-level. On the other hand, all of the following can be
justified on model-theoretic grounds.

• The implementation of variable binding via de Bruijn
indices or levels [20].

• The availability of definitions by structural recursion
and the derivability of induction proof principles [13, 48].

• The specification, derivation, and correctness-proof of
notions of substitution [20, 15, 17].

• The validity of equational reasoning [18].

• The notion of theory translation [25, 34].

• The combination of equational theories [22, 31, 30].

Within our research programme, such model theories be-
come tools that provide principles for guiding and aiding
the design and implementation of meta-theories.

2. Methodology and programme

Philosophy. A distinctive aspect of our approach is
the commitment to investigate and develop meta-theories
within an algebraic framework. For this to be possible, one
has to use the mathematical theory of categories [36, 4] to
allow for a sufficiently general notion of “algebraic” that still
supports equational reasoning in the context of the various
language features under consideration. The commitment to
the algebraic framework is a direct consequence of adopt-
ing the well-established view that the essential syntactic
structure of a phrase—its abstract syntax—should reflect
semantic import, viewed in the light of the following first
main thesis for the project:

The mathematical structure of abstract syntax is algebraic.

In fact, we will be adhering to, but significantly ex-
tending, the initial-algebra semantics framework of the
ADJ group [27]. In this framework, (i) models for syntax
are canonically given as algebras, and (ii) syntax is under-
stood abstractly (viz. independently of any specific repre-
sentation) as an initial model equipped with a homomor-
phic (i.e. compositional) interpretation in all models. It fol-
lows from (i) that the notion of congruence, on which com-
positional reasoning is founded, is canonically given; and it
follows from (ii) that syntax supports definitions by struc-
tural recursion—a generalised form of primitive recursion—
with an associated induction principle [5, 35]. Thus the al-
gebraic framework accounts for both syntactic and semantic
aspects of languages.

With the above set-up in place, a crucial novelty of our
research proposal is that of synthesising equational logics
as prescribed by a mathematical methodology. The second
main thesis driving our approach is:

There is a universal abstract deduction system for equa-
tional reasoning underlying all concrete equational logics
for algebraic structures.
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This is analogous to Chomsky’s thesis [7] postulating a uni-
versal grammar that abstracts all concrete natural-language
grammars.

Consequently, our development of equational logics will
be profoundly based on model theories. This is in direct line
with the development of the equational logic of universal
algebra by Birkhoff [3], who aimed at a sound and complete
deduction system for reasoning about equality in traditional
algebra. Indeed, here we will be pursuing the same kind
of programme for the modern algebra needed in current
applications to computer science.

2.1. Framework and methodology

Algebraic meta-theories. As we have already mentioned,
we rely on the mathematical theory of categories to provide
a notion of algebraic structure that is general enough to
encompass the sophisticated language features that we are
interested in. We briefly recall how categorical models are
used to achieve this and mention some recent models by
the authors and collaborators that play a central role in
the consideration of one of these features: variable binding.

The main conceptual step is to regard a category as a
mathematical universe of discourse within which algebraic
structure is considered. For the usual category of sets and
functions, this leads to the traditional notion of algebraic
structure of universal algebra. However, by suitably vary-
ing the universe of discourse, broader notions of algebraic
structure may be obtained. The reason is that more sophis-
ticated universes of discourse allow for the consideration
of algebras A with operations Aa → A of arity a for suit-
able objects a other than natural numbers. For instance,
in the model F of Fiore, Plotkin and Turi [20] there is
an object of variables V for which operations AV → A of
arity V provide interpretations of variable-binding opera-
tors modulo α-equivalence. Two related universes of dis-
course are the model of nominal sets N of Gabbay and
Pitts [42] that also accommodates variable-binding arities,
but by means of supporting an intrinsic notion of freshness,
and the model R of Fiore and Staton [21, Definition 2.4]
which somehow lays in between the models F and N .

It is by fine-tuning universes of discourse that progress
will be made to accommodate further syntactic features.

Synthesis of equational logics. Our methodology
Sol for the synthesis of equational logics from algebraic
meta-theories such as the above consists of four phases.

[Sol 1] Select a category S as universe of discourse and
consider within it a syntactic notion of signature such
that every signature Σ gives rise to a monad S on S .

The category S provides the ambient mathematical uni-
verse for the model theory; the monad S embodies algebraic
structure (with notions of variable and substitution).

As mentioned above, the universe of discourse should be
carefully chosen to consist of mathematical objects with
enough internal structure to allow for the algebraic real-
isation of the syntactic constructs that are being modelled.

[Sol 2] Select a class of coarity-arity pairs (c, a) of objects
in the universe of discourse and give a description of the
Kleisli maps c → S(a) as syntactic terms.

In this context, Kleisli maps are regarded as generalised
terms. The need for terms with both arities and coarities
is well-established in categorical algebra, but somehow new
in applications to computer science. In the setting of the
algebraic models for variable binding mentioned above, the
role of coarities and arities respectively corresponds to that
of variables and metavariables [18, 17].

A syntactic notion of equational presentation—as a set
of pairs of syntactic terms—is thus obtained. For these, Sol

provides a canonical algebraic model theory for the validity
of equational assertions. Models of equational presentations
are Eilenberg-Moore algebras satisfying the equations.

From the model theory, an equational logic for reasoning
about the equality of Kleisli maps has been extracted [18,
Section 3]. This logic is sound by construction.

[Sol 3] Synthesise a deduction system for equational rea-
soning on syntactic terms with rules arising as syntactic
counterparts of the rules for the logic of Kleisli maps.

Again by construction, the synthesised equational logic
will be guaranteed to be sound. Sol also provides a frame-
work for completeness based on an inductive construction
of free algebras [19].

[Sol 4] Analyse the construction of free algebras so as ei-
ther to establish the completeness of the synthesised equa-
tional logic, or to get insight into how to extend it to make
it complete.

The resulting equational logic is thus synthesised from
an algebraic meta-theory by means of first principles.

2.2. Research programme

Our proposed investigations in the context of the above
philosophy, framework and methodology are put forward.
As a prologue, the diagram below gives a screenshot of
the research to be described. The left hand side of this
diagram, presents the space of algebraic meta-theories to be
explored; the right hand side, singles out some possibilities
for equational logics resulting from the application of Sol.

dependent
type theories

algebraic
operators

sorts

dependent
sorts

types

binding & metavariables

linearity

sharing

Algebraic meta-theory
space

;
'& %$ ! "#Sol ;

;
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Overall, thus, we propose a programme to develop a co-
herent mathematical theory for prominent and ubiquitous
features of modern computational languages and thereby to
synthesise canonical equational logics for reasoning about
them.

The research to be undertaken on the various regions of
the algebraic meta-theory space is now expounded upon.

1. Variable binding and metavariables

Second-order syntax. By second-order syntactic struc-
tures we understand languages with variables, variable bind-
ing, and metavariables ; the latter being essentially con-
texts (or holes) with term parameters. The terminology
second-order stems from the fact that in the context of lan-
guages with higher-order constructs (like e.g. CRS [33] and
HOAS [47]) metavariables can be encoded by second-order
variables. However, this is conceptually and technically un-
satisfactory. Conceptually, because any understanding of
the mathematical structure of metavariables is postponed to
that of the syntactic higher-order mechanisms of the meta-
language; technically, because one has to work with syntax
up to the β-equivalence of the meta-language. The model-
theoretic approach of Fiore [17] directly addresses the con-
ceptual problem and, in doing so, solves the technical issue.
Furthermore, it opens up new possibilities for research.

The initial task of our work here will be to provide a full
account of the extended abstract [17, Part I], expanding
it from the mono-sorted setting to the multi-sorted one.
Building on this, we are to pursue the following lines of
investigation.

[1.a ] The second-order syntactic structures arising from
the mathematical model are more general than those that
have been considered in applications in at least two re-
spects: they allow operators that are both equivariant (as
in [8]) and parameterised (as in [50]). Suitable concrete
syntax needs to be developed for these; accompanied with
case studies validating its applicability, specially in the
context of the development of second-order equational
logic (see below).

[1.b ] The aforementioned work is carried over in the
model F for variable binding. The question arises as to
whether such a development can also be carried through
in the model R—recall §Algebraic meta-theories in Sec-
tion 2.1. If so, we would then pursue the use of nominal
techniques for second-order syntax. This may lead to a
novel syntactic theory.

[1.c ] Our adopted algebraic view lends itself to the consid-
eration of structural recursion and associated induction
principles. Thus, we would aim for principles of the same
expressive power as the α-structural recursion/induction
of Pitts [48]. Indeed, if the above task is successful we
would expect these principles to be subsumed by this
work.

Second-order equational logic. The application of
[Sol 2] to the above algebraic second-order syntax will pro-
vide second-order equational presentations. For these, the

application of [Sol 3] will give a second-order equational
logic; whose completeness will be analysed by the methods
of [Sol 4]. The outcome of this research is summarised in
the following item.

[1.d ] A logical framework for specifying and reasoning
about presentations of simple type theories, that is sound
and complete for a canonical algebraic model theory.

2. Type dependency

The problem of providing algebraic models for abstract
syntax (with or without variable binding) in the presence
of type dependency has been open for around ten years.
Recent progress on the subject for first-order languages
with dependent sorts by Fiore [17] strongly suggests the
possibility of setting up a complete mathematical theory.
Our research proposal in this direction is to reconsider this
work and proceed to incorporate (term and type) variable-
binding, and capture-avoiding and metavariable substitu-
tion. Specifically, we will proceed as follows.

First-order dependent syntax. Our initial task con-
cerning the abstract syntax of first-order languages with
dependent sorts is to provide a full account of the extended
abstract [17, Part II], which mainly addresses simple sort
dependency, and proceed to extend this work along the fol-
lowing lines so as to reach at a complete theory.

[2.a ] Mathematical structures for modelling the general
case of sort dependency need to be investigated. Two
lines of investigation are to be pursued: (1 ) sketches
as graphical representations of dependently-sorted signa-
tures, with sorts together with their dependencies and
operators [17, Part II]; and (2 ) Cartmell’s categories with
attributes (see e.g. [29]). The former model seems to ac-
commodate the notion of simultaneous substitution; the
latter one that of single-variable substitution.

[2.b ] A general theory of free constructions for the al-
gebraic structures arising from first-order dependently-
sorted languages will be investigated and developed. This
will serve as the foundations for initial-algebra semantics
and structural recursion/induction in this context.

Second-order dependent syntax. The main chal-
lenge to be addressed in the development of second-order
dependently-typed abstract syntax is summarised in the fol-
lowing research task.

[2.c ] Unify the algebraic meta-theories of second-order ab-
stract syntax [1.a ] and of first-order dependently-sorted
abstract syntax [2.a ], and extend them to incorporate
type variable-binding.

Equational logics. The objective above is to build
the necessary algebraic meta-theories for the application
of [Sol 1] to dependently-typed languages. We will then
proceed as follows.
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[2.d ] The consideration of [2.a ] within [Sol 2–Sol 4]
will lead to studies within the realm of (first-order)
dependently-sorted algebraic theories.

Our research will analyse the two views of dependently-
sorted languages provided by Cartmell’s generalised al-
gebraic theories [6] and by Freyd’s essentially algebraic
theories [23]. Relationships to cartesian logic [43, 24]
may arise and, if so, will be pursued.

[2.e ] The application of [Sol 2–Sol 4] to [2.c ] will lead
to Algebraic Type Theory: a body of work providing al-
gebraic models and equational logics for dependent type
theories.

3. Graphical structure

The considerations on syntax in [1–2 ] can be classified as
concerning cartesian syntax. Cartesian syntax is roughly
characterised by the following two aspects: (i) the wiring
of variables in terms allows for the operations of weakening,
contraction, and permutation; and (ii) the graph structure
of terms is given as an ordered tree.

These two combinations of wiring and graph structure for
syntax are only one of the possibilities of interest. Along
the wiring axis, for instance, the notion of linearity (of rele-
vance in logic [2, 1], rewriting theory, and formal languages)
corresponds to wiring structure that only supports the op-
eration of permutation. Along the graphical-structure axis,
examples of graph structure more general than that of trees
arise as term graphs and bigraphs (e.g. in the contexts of
rewriting theory [57, 52] and of concurrency theory [9, 44]).

Our approach to the investigation of algebraic meta-
theories for graphical syntax will consider the wiring and
graph structures in this order. The main methodological
reason for this is that the two axes do not seem to be orthog-
onal to each other, but rather the latter requires aspects of
the former.

Wiring structure. We will firstly restrict attention to the
investigation of wiring structure in the context of tree struc-
ture, fully developing a purely linear setting from which we
can then proceed to develop a mixed setting.

[3.a ] The first step will be to extend the theory of (first-
order) linear abstract syntax with variable binding of
Tanaka [55] to provide an algebraic meta-theory for
second-order linear abstract syntax along the lines of [17,
Part I] and [1.a].

[3.b ] A general algebraic meta-theory for second-order
mixed models (linear, affine [32], relevant [32], cartesian)
will be subsequently developed. In this respect, the cat-
egorical notion of PRO (which stands for PROduct cate-
gory [36]) seems to provide the right mathematical con-
cept for modelling the various combinations of wiring
structure from which mixed models can be built [15, 16].
A central problem to be addressed here is the devel-
opment of a general theory of substitution; stepping
stones for which are [15, 16] and the work of Power and
Tanaka [56].

These developments will build the necessary algebraic
meta-theories for the application of [Sol 1] to mixed models
and pave the way for the following.

[3.c ] The application of [Sol 2–Sol 4] to [3.b ] will lead
to Mixed Simple Type Theory: a body of work providing
algebraic models and equational logics for simple type
theories with mixed wiring structure (as e.g. Barber and
Plotkin’s Dual Intuitionistic Linear Logic [1]).

Graph structure. Our study of more general graph struc-
tures will start with the development of an algebraic meta-
theory for term graphs [57, 52]. Our main aim is:

[3.d ] to give a characterisation of the abstract syntax
of term graphs with variable binding as initial alge-
bras, thereby providing algebraic models together with
an initial-algebra semantics; and

[3.e ] to investigate structural recursion and associated in-
duction principles.

This development is ambitious and, if successful, will also
make an impact on programming techniques for the algo-
rithmic manipulation of data structures such as directed
acyclic graphs.

Logical systems for graphical structure should arise from
the application of Sol to graphical syntax. We propose the
following first step from which to start exploring the topic.

[3.f ] Apply [Sol 2–Sol 4] to [3.d ] to extract a rewriting
logic for term graphs, that is sound and complete for the
canonical model theory.

Restricting attention to first-order term graphs, inves-
tigate the relationship between the obtained deductive
system and the deductive system for term graphs of Cor-
radini, Gadducci, Kahl, and König [9].

4. Theories and translations

Having developed algebraic meta-theories for general classes
of equational logics based on presentations, it is natural to
investigate two further related topics: (i) theories [34], as
invariant (i.e. presentation independent) versions of equa-
tional presentations; and (ii) translations, as means of re-
lating presentations or theories.

The various notions of equational theory and of trans-
lations between them are to arise in complete accordance
with the canonical model theory, which will thus guarantee
their correctness.

[4.a ] Notions of theory for the equational logics of [1–3 ]
are to be investigated. Ideally, a classification will arise
and the development of a general mathematical theory
for them all could be attempted.

[4.b ] A framework for translations between equational pre-
sentations and/or theories is to be developed.

With a mathematical theory of translations in place,
general criteria for achieving conservative-extension re-
sults (as e.g. in [14, Section 3]) will be sought.

These developments are important in the ever more pressing
problem of organising and relating theories of computation.
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3. Related work

Particularly relevant to our project is the work of
Plotkin [51], who advocated an algebraic framework ex-
tending the equational logic of universal algebra in the two
orthogonal dimensions provided by the addition of variable
binding and of type dependency. Our proposed work in this
specific context gives a conceptual framework and mathe-
matical methodology for the realisation of this programme
by synthesis from algebraic meta-theories.

We will also contribute to the research programme on
internal type theory of Dybjer [11], which aims at the for-
malisation of (the meta-theory of) type theory. In this con-
text, the relationship between the type-theoretic approach
to induction-recursion [12, 13] and the algebraic approach
to structural recursion is a main problem to be investigated.

Our approach shares the basic foundations of the en-
riched algebraic theories of Power et al. [40, 38, 39, 30].
However, there are substantial differences: whilst we focus
on equational presentations and logics, Power concentrates
on theories and on operations for combining them. Extend-
ing the common ground of both approaches to a unified
theory is a substantial open problem.
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