A Very Short Note on the Principle of Mathematical Induction

MARCELO FIORE

Let P be a property of natural numbers. If P(0) holds and if, for all natural numbers n, if P(n) holds then so does P(n+1), then the property P holds for all natural numbers.

Let P be a property of natural numbers. To prove that P(n) is true for every natural number n by the principle of mathematical induction we proceed as follows.

Base case: Prove that P(0) is true.

Inductive step: For all natural numbers n, prove that if P(n) is true then P(n+1) is also true.

Example. Prove that

$$\sum_{i=0}^{n} 2i + 1 = (n+1)^2$$

for all natural numbers n.

PROOF: We prove that the property

$$P(n): \sum_{i=0}^{n} 2i + 1 = (n+1)^2$$

holds for all natural numbers n by the principle of mathematical induction.

Base case: P(0) is true because $\sum_{i=0}^{0} 2i + 1 = 1 = (0+1)^2$.

Inductive step: For n an arbitrary natural number, we need to show that if P(n) is true then so is P(n+1).

So let n be an arbitrary natural number, and suppose that P(n) holds; that is, we have that

$$\sum_{i=0}^{n} 2i + 1 = (n+1)^2 \quad . \tag{IH}$$

Then, P(n+1) is also true, because

$$\sum_{i=0}^{n+1} 2i + 1 = (\sum_{i=0}^{n} 2i + 1) + (2(n+1) + 1)$$

$$= (n+1)^2 + 2(n+1) + 1 \qquad , \text{ by the Induction Hypothesis } (\mathbf{IH})$$

$$= n^2 + 4n + 4$$

$$= ((n+1) + 1)^2$$

The following piece of text does NOT constitute a proof:

$$\sum_{i=0}^{n+1} 2i + 1 = (\sum_{i=0}^{n} 2i + 1) + (2(n+1) + 1)$$
$$= (n+1)^{2} + 2(n+1) + 1$$
$$= ((n+1) + 1)^{2}$$

A Very Short Note on Principles of Mathematical Induction

MARCELO FIORE

Principle of mathematical induction (PMI). For every property P of the natural numbers, if P(0) holds and if, for all natural numbers n, if P(n) holds then so does P(n+1), then the property P holds for all natural numbers.

Generalised principle of mathematical induction (GPMI). For every property P of the natural numbers, if P(0) holds and if, for all natural numbers n, we have that assuming that $P(0), P(1), \ldots, P(n)$ hold then also P(n+1) holds, then the property P holds for all natural numbers.

Well-ordering principle (WOP). Every non-empty subset of the natural numbers has a least element.

NB. The above principles are equivalent.

1. (PMI) \Rightarrow (GPMI):

We want to show that (PMI) implies (GPMI). So assuming (PMI), we have to show that, for P a property of the natural numbers, if

$$P(0)$$
 and $\forall n \in \mathbb{N}. (\forall 0 \le i \le n. P(i)) \Rightarrow P(n+1)$ (†)

hold, then so does

$$\forall n \in \mathbb{N}. \ P(n) \quad . \tag{\ddagger}$$

So, letting P be a property of natural numbers we assume that (\dagger) holds and proceed to establish (\dagger) .

Define Q to be the property of natural numbers given as follows:

$$Q(n): \forall 0 \le \ell \le n. P(\ell)$$
.

Observe that

$$Q(0)$$
 and $\forall n \in \mathbb{N}. \ Q(n) \Rightarrow Q(n+1)$

hold (make sure that you know why!). So, by (PMI) (which we have assumed —recall from above), applied to the property Q we have that

$$\forall n \in \mathbb{N}. \ Q(n)$$

holds. Finally, notice that this implies that (‡) holds (why?). Hence the proof is finished.

- 2. (GPMI) \Rightarrow (PMI): Exercise.
- 3. **(PMI)** \Leftrightarrow **(WOP)**: See lecture notes.