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Abstract

We generalise Joyal’s notion of species of structures and develop their combinatorial calculus.
In particular, we provide operations for their composition, addition, multiplication, pairing and
projection, abstraction and evaluation, and differentiation; developing both the cartesian closed
and linear structures of species.
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1 Categorical background

1.1 Monoidal categories

Monoidal categories. A monoidal category is a tuple (C, ®,1, a,1,r) where € is a category, _ ® =
is a bifunctor € x € — €, I is an object of €, and a, 1,7 are natural isomorphisms with components
aABC:(A®B)®C—-=A®(B®C),lAa:I®A —=A, 1A : A®I— A subject to coherence
axioms [Kel82]. We have a strict monoidal category when these isomorphisms are identities. A
monoidal functor F: (€, ®,1,a,1,1) — (€', ®',I’,a’,',r') is a functor F : € — €’ equipped with
a morphism I — F(I) and a natural transformation with components F(A) @’ F(B) — F(A ® B)
subject to coherence axioms [EK66, Law73]. We have a strict monoidal functor if these morphisms
are identities.

A symmetric (strict) monoidal category is a (strict) monoidal category equipped with a natural
isomorphism ¢, called the symmetry, with components cap : A ® B — B ® A satisfying fur-
ther coherence axioms [Kel82]. A symmetric (strict) monoidal functor between symmetric (strict)
monoidal categories is a (strict) monoidal functor that satisfies a further coherence axiom associated
to the symmetries [EK66, Law73].

Free symmetric strict monoidal completion. We write Cat for the category of small cate-
gories and functors, and 8MCat for the category of small symmetric strict monoidal categories and
strict monoidal functors. The forgetful functor SMCat — Cat : (C,®,1) = € has a left adjoint
() : Cat — 8MCat that maps a small category into its symmetric strict monoidal completion.

An explicit description of !C is given by the category with objects consisting of finite se-
quences qcibizhn (n € N) of objects of C with !(C[([Ci}i:])k, ([dj])].:m] = 0 iff k # £ and mor-
phisms {ci),_, n {cidi; - given by pairs (o, (i, )n) consisting of a permutation o € &y, and
a sequence of maps (f;:c;—c éih:] n in C. (Composition is essentially given pointwise modulo
permutation

(OJ’ qf{bi:1 ,n) © (G’ qfibi:1 ,n) = (OJ °© 0, qu'l © fi}i:1 ,n)

and identities are given pointwise.) The symmetric strict monoidal structure of !C is given by
concatenation with unit the empty sequence and the obvious symmetry.

We will use the following notational conventions. For C € !C, we write ¢ € C to indicate that
¢ is an index ranging through the length of C and we let Cq. € C be the element of C at index c.
Thus, we have that C = @ cc (Cac). Further, for y: C— C’in !C and ¢ € C, we write yc € C’
for the index associated to ¢ by the permutation underlying v and let yac : Cac — C{@yc be the
corresponding map in C.

It is important to note that the symmetric strict monoidal completion comes equipped with
canonical natural coherent equivalences as follows

1 — 10

0 — (@

ICy x IC; —> 1(Cy+Cy) W
(C1,C2) = I1(Cq) ® TIx(Cy)



For the purpose of the development below, we fix a quasi inverse to @ according to the following
notation

(C1+Cy) —=!Cyx!ICy : Cr (C.q,C.0)
For instance, one could take (_).; : [(Cy + C;) — !C; to be the free strict monoidal extension of
the functor Cy + C, — !C; mapping IIi(c) to the singleton sequence (c) and IIj(c) with j # i to
the empty sequence ().

1.2 Bicategories

Bicategories. A bicategory X consists of the following data.

e A set Xy of O-cells.

A family of categories X'[X, Y] for X, Y € X, with objects and arrows respectively called 1-cells
and 2-cells.

e A composition law given by a family of functors mxyz : X[Y,Z] x X[X,Y] — X[X, Z] for
X,Y,Z € Xy. (The action of m on a pair of 1-cells (g, f) is written g o f.)

e Units, given by 1T-cells 1x € X[X,X] for X € X.

e An associativity law given by a natural isomorphism with components an g¢: (hog)of =

ho(gof) for f € X[X)Y], g € X[Y,Z], and h € X[Z, W].

e Left and right unit laws respectively given by natural isomorphisms with components L :
lyof=fand rf:folx=ffor f € X[X,Y].

The associativity, and right and left unit laws are subject to coherence axioms [Bén67]. A 2-category
is a bicategory in which the associativity, left and right unit laws are identities.

We recall the notion of morphism of bicategories. A pseudo-functor F : X — A between
bicategories consists of the following data.

e A function F: Xy — Ao.
e A family of functors Fxy: X[X,Y] — A[FX,FY] for X, Y € &.

e For all X,Y,Z € &), natural isomorphisms with components ¢g ¢ : F(g) o F(f) = F(g o f) in
A[FX,FZ] for f € X[X,Y] and g € XY, Z].

e For all X € X}, an isomorphism ¢x : Tex = F(1x) in A[FX, FX].

These data are subject to coherence axioms [Bén67]. A pseudo-functor between 2-categories is said
to be a 2-functor if its natural isomorphisms are identities.

Pseudo-adjoints. A right pseudo-adjoint to a pseudo-functor F: X — A is given by the follow-
ing data.

e A function G: A9 — Xj.



e A family of 1-cells ea € A[FGA,A], for A € A, such that for all X € Xy and A € X, the
functor

XIX,GA] A A[FX, Al @)
f [ €AOF(f)

is an equivalence of categories.

Hence, to give a right pseudo-adjoint to F we need provide functors Dx a : A[FX,A] — X[X, GA]
together with natural isomorphisms

Idyx ca) = DxaExa , ExaDxa = Idqrx A

These data canonically yield a pseudo-functor G: A— X. A right 2-adjoint to a 2-functor is
determined by a right pseudo-adjoint for which the functors in (2) are isomorphisms.

1.3 Profunctors

Coends. f is the coend operation, whose definition and basic properties can be found in [Mac71,
Chapter X].

Presheaves. For a small category C, we write C for the functor category [C°, 8et] of presheaves
on C and natural transformations, and let y¢ denote the Yoneda embedding C—— C:c+—=C[_,c].

Profunctors. For (C,®,I) a (symmetric) monoidal category, the presheaf category C acquires
a (symmetric) monoidal structure via Day’s tensor product construction [Day70, IK86] given, for
X1, X5 € @, as

X1®Xy = [T2CX(er) x Xa(ea) x yeler ® ¢a)

The unit for Day’s tensor product @ is yc(I).

For small categories A and B, an (A, B)-profunctor, indicated as A -+ B, is a functor A — B.
Small categories, profunctors, and natural transformations between them form a bicategory [Bén00].
The profunctor composition VoU: A —+=C of U: A +=B and V : B -+ C is given by

(VoW(a)(c) = [*PV(b)(c) x U(a)(b) (3)

with identities y¢ : C =+ C.
We will use the following construction on profunctors. The dual of an (A, B)-profunctor P is
the (B°, A°)-profunctor P+ given by

For more on the structure of the bicategory of profunctors see [Bén00, Law73, CWO03].



2 The calculus of generalised species

For small categories A and B, an (A, B)-species of structures is a profunctor !A —+= B. In particular,
(A, 1)-species are referred to as A-species. The notation P : A — B is used to indicate that P is an
(A, B)-species.

Structures in P(A)(b), for a species P: A —B, A € |A, and b € B, are pictorially represented
as follows

Concrete examples of combinatorial species abound in the literature.

e Joyal's species [Joy81] are 1-species, and k-sorted (or k-coloured) species [Joy81, MNO3,
BLL98| are (Zlf:] 1)-species.

e Permutationals [Joy81, Ber87] are CP-species for CP the groupoid of finite cyclic permuta-
tions.

e Partitionals [NR85] are B*species for B* the groupoid of non-empty finite sets.

Further examples that fit into generalised species are I-permutationals [MN93], and species on
graphs and digraphs [Mén96].

Basic general examples of species follow.

e Presheaves on C are essentially species 0 — C, whilst presheaves on !C also correspond to
species C — 1.

The Yoneda embedding yc is a C — !C species.

e The species ec : IC +— C is defined as ec(C) =!IC[({-)),C].
e The species S¢ : C — C is defined as
Sc(C) = ) ye(Cac) 4)
ceC

e The species Ep g : A — B is defined by Eg g(A) = 1.

2.1 The bicategory of species

We introduce the bicategory &S (Espéces de Structures) of generalised species of structures.



Composition. For species P: A —=B and Q : B — C, the composition QoP : A — C is defined

as
(QoP)(A)(c) = [P*Q(B)(c) x P#(A)(B) (A €1A,ceC) (5)
where
P#(A)(B) = [ (B (TT, 5 P(AL)(Bab)) X A [®pep Ab, Al (A €!A,B € IB°)
One can visualise the structures in (Q o P)(A)( ) as follows
| XA |
i v d
[ [ P
| b |
Q
QoP
Lc]

Lemma 2.1 For P:A — B, we have that
#(A)(b) = P(A)(b)
naturally in A € A and b € B°, and
PE(A)(B1@By) = [ P#(A1)(B1) x P#(A2)(B2) x |A[A) © Az, Al
naturally in A € A and By, B, € IB°.

PROOF:
#(A)(b) = [MEEPA)(b) x IA[AY,A] = P(A)(b)

P#(A)(B1 ® B3)

= [Aocth BB (I 5, PAL)(B1 ©B2)ab)) X 1A [®pep, ws, Av Al
J‘Abl €lA (b1€By) J‘AbZG’A (b2€B3) (Hb1eB1 Ab] )((B1) ab; ) (HbzeBz Abz)((BZ)@bz))

< IA[( Ry, B, Abi) ® (Qy,ep, Ab) Al

J‘A] AL ENA J‘Ab]E!A (b1€B]]J'Ab2€!A (b2€B>2)

(Hb]eB] P(Ab] )((B] Qb ) (HbzeBz Abz)((BZ)@bz))

x IA[AT ® Az, A] x !A[®b B, Aby VAT X !A[®b2682 Av,, A2
~ IA] JAZEA J‘Ab] €lA (b1€By) (Hb]EBl Ab] )((B])@b1 )) x 1A [®b1€B1 Ab] ,A‘]]
x [Aea SR RSB (T o P(Ab,)((B2)ab,)) X 1A[®p,cp, Aby, Al
X !A[A] ®A2,A]

= [ PE(A)(B1) x P#(A2)(B2) x IA[AT ® A, Al

IIe

Il2



Abstractly, we have that Q o P is the composite of profunctors

#
A B2 C

where (P#)1 : 1B° — TA® is the free monoidal extension of P+ : B® — TA° induced by Day’s tensor

product on TA°.

Note also that a succint description of the coend defining composition can be given as follows
(QoP)(A)(c) = [FEAE) Q(imyF)(c) x TAXB [SF,P] x !A[R(ImF),Al (6)
where S is as in (4), P(A,b) = P(A)(b), and ) is the multiplication of !.

Example 2.2 We give explicit descriptions of sample pre- and post-compositions with a species
P: A —B.

yis{b)
1. For b € B, the composite species A !L B !]B—> 1 is isomorphic to the species Py 1 A — 1
defined as
Py(A)() = P(A)(Db) (7)
Indeed,

(y(o) o P)A)) = [PFIB(B, (b)) x P#(A)(B)
= [PEBb/,b) x P#(A)(b')
= P#(A)(b)
= [MEPAY(b) x IA[AY,A]
= P(A)(b)

2. For X € ;&, the composite 0 !LA !L B, is as follows
(PoX){D(b) = [ P(A)(b) x A [SaA, X(]] (8)

where Sy : 1A — A is as in (4). Indeed,

X

(PoX)()(b) = [**PA)D) x [7 (TTaen X(Za)(Aaa)) X 10 [®uca Za, (1]
* [Taen X()(Aqd)
X HQGAI& [YA(A@Q),XQN

A

[Sa(A),X()]
Identities. The identity species I¢ : C — C is defined as

Ic(C) = IC[(-),C] (9)



Proposition 2.3 ForP: A+—=B, Q:B'—C, and R: C —= D, we have canonical natural coherent
isomorphisms as follow

IgoP=P=Poly

(10)
(RoQ)oP=Ro(QoP)

establishing the unit laws of identities and the associativity of composition.
PROOF:
(Iz o P)(A)(b)
= [PB [(6),B] x [ T (TTycp P(AY ) (Baw)) x 4 [@ep Avr, Al
[P B b, b x [MUPAN (b)) x A[A, A (11)
J"PBb,b’] x P(A)(b’)
P(A)(b)

[l2

lle

lle

(PoIn)(A)(b)
= [MEEPAN ) x [ EEANIA (A ad), Xa] X 1A [@aca Xar Al

= [MEEPAY) (D) X 1A [@ s (Aad), Al
= P(A)(b)

((RoQ)oP)(A)(d)
_ J‘BE!B (ROQ)(B)(d) « J‘AbE'A (beB) (HbeB B@b)) x 1A [®b€BAb’A]

=[5 (RO JB*!B 9 (Teec QB (Cac) x 1B [@cecBeB] ) (13)

x [ReSh PSRN (T 5 P(Ap)(Bab)) X 1A [@yep Av, Al
= [CECR(C)(d) x [P €9 ([T eee Q(B)(Cac))
i [AeElh (PE®rcc Be) (Hb€(®cech) P(Ab)((®c€CBC)@b)) X 18 [Que(@, .o 5e) At Al
~ J-Cel(C R(C)(d) x J‘Bcel]B (ceC) (HcgcQ(Bc)(C@c))
" J‘Ab,cGlA (ceC,beBe) (HcEC,bEBc P(Ab,c)((Bc)@b)) X A [@cec Qves. Apc, Al

8



(Ro(QoP)J(A)(d)
= [FRO)(A) x [ € ([Teec(Q 0 PIAL)(Cac)) X A [®cec Ac, Al
[ R(C)(@)
« [Pe€h (e<C) (HCGC [P Q(B)(Cac)
x [Xo€4 (PEB) (T P(Xp)(Baw))

X 14 [@pep Xo Ac] )
X< 1A [®ucc A Al

~ J‘CE!B R(C)(d)

x [AcEh (ceC) <J-BCGIIBS (ceC) (TTace QB)(Cac))
% (Meee 4" %) (TTpep, PXo)(Belav))
x 1A [@upep, Xb,Ac] )>
x 1A [®ceCAC>A]

= [ R(C)(@)

" J-ACGEA (ceC) (IBcGZB (ceC) (TTeec Q(Bc)(Cac))
" (fxb,ce!A (ceC,beBe ) (TTeec ITven, P(Xob,e)((Be)ab))
x Tleec!'A [vep, Xoer Ac] ))
X 1A [@cecAc, Al
= [CEE Ric)(a)
x [P LEO (T« Q(Bo)(Cac))
« fxb,ce!A (c€C,beBe) (TTeecITpen, PXo,e)((Be)ab))
< 1A [Qccc ven. Xoe Al

Theorem 2.4 Small categories, species, and natural transformations form a bicategory.

PRrOOF: The composition and identities, the left and right unit laws, and the associativity law are
as in (5), (9), and (10) respectively. See Appendix A for details. O
2.2 Addition and multiplication

Each hom-category &S [A,B] acquires a commutative rig structure given by the addition and mul-
tiplication of species.



Addition. For P,Q : A — B, the addition P+ Q : A — B is defined by

(P+Q)(A)(b) = P(A)(b) + Q(A)(b) (A €!AbeB)

That is,
P+Q = (A2 1A x 1A% B« B B)

A A

P Q
P+Q P+Q
b b

More generally, for X; € B and Pi: A —B (i € I), the linear combination ) ;.1 XiPi: A —B
is defined by

(ZierXiPi) (A)(0) = Lo Xilb) x Py(A)(b)
Addition together with the species 0 : A — B defined as

0(A)(b) = 0 (A €1A,beB°)
satisfy commutative monoid laws.

Proposition 2.5 For P,Q,R: A —= B, we have

(P+Q)+R=P+(Q+R)
P+0=P P+Q=Q+P

Further, for P,Q : A —B and R: C — A, we have

(P+Q)oR=(PoR)+(QoR)

PrOOF: We only show that (P+ Q)oR = (PoR)+ (QoR).

[le

JAS% (P(A)(B) + Q(A) (b)) x R¥(C)(A)

JAS (P(A) (1) x R#(C)(A)) + (Q(A)(b) x R¥(C)(A))
(JAP(A)(B) x RE(C)(A)) + ([ Q(A)(b) x R¥(C)(A))
= ((PoR)+(QoR))(C)(b)

((P+Q)oR)(C)(b)

[le

[le

10



Multiplication. For P,Q : A — B, the multiplication P - Q : A — B is defined by
(P-Q)A)(b) = [A S P(A)(b) x Q(A2)(b) x IA(A; ® Az, A) (15)
That is, using (7),
(P- Q)b =Ppr®Qv

for all b € B°.
Abstractly, (P - Q)T is the composite of functors

(PLQY) ®

]:BO

where ® is Day’s tensor product.

Multiplication together with the species 1: A —= B defined by
1(A)(b) = 1A[(),A]
satisfy commutative monoid and distributive laws.

Proposition 2.6 For P,Q,R: A — B, we have

(P-Q)-R=P-(Q-R)
P.1=p P.Q=

Q
P0=0 P (Q+R)=(P Q) +(P R

Further, for P,Q : A —B and R: C — A, we have

(P-Q)oR=(PoR)-(QoR)

PROOF:
e Note that
((P-Q)-R)(A)(b)
_ IAI A2CA (p Q)(A7)(b) x R(A2)(b) x A [A]; ® Ay, Al
_ [ (IA3’A46!AP(A3)(b) x Q(A4)(b) x 1A [A3®A4,A1]>
x R(A2)(b) x 1A AT ® Az, Al
[ MELP(AL)(B) x Q(A4)(b) x R(A2)(B) X IA[A3® Ag© A, Al

[le

11



and that
(P-(Q-R))(A)(b)
= [AEEER(A(6) x (Q - R)(A)(b) x LA AT @ Az A
= MRS A (0) ¢ ([ M QUAS)(D) X R(A)(b) x 1A [A3 @ Ag ALl )
x 1A AT ® Az, Al
= [MAMER DA (B) x Q(A3)(b) X R(A4)(b) x !A[A] © Az ® Ag, Al

(P-1)(A)(b) = [M2AP(A)(b) x 1A [(),Az] X IA[A; ® Az Al
= [MEAP(A)(b) x 1A [Ar ® (), A]
= P(A)(b)

(P-0)(A)(b) = [ME4P(A)(b) x 0(A2)(b) x !A[A; ® Az, Al = 0

(P-(Q+R)ANL) = [MEEPA(b) x (Q+R)(A2)(b) x 1A [A1 & A Al
JAAER (PA)(B) x Q(A)(b) x 1A [A; ® Az, Al)
+ (P(A1)(b) X R(A2)(b) x 1A [A1 @ Az, Al)
([ 22S4P(AT)(B) x Q(A2)(b) x 1ATA; @ Ag, Al )
+ ([N P(AT)(b) x R(AL)(b) x 1A [A @ Az, Al )
= ((P-Q)+(P-R))(A)(b)

lle

[le

((P-Q) o R)(C)(b)
= [A(P-Q)(A)(b) x R¥(C)(A)
_ [Ac (J‘Al A2€%4 b A ) (b) x Q(AL)(b) x IA[A; ® Az, Al) x R¥(C)(A)
= [M72SRP(A)(b) x Q(A2)(b) x RF(C)(A; @ Ay)
= MR p(A)(b) x Q(AZ)(b)
x [EEERE(C)(AT) x RF(C2)(Az) x ICICy @ €y, C]
, by Lemma 2.1
JEUGEE (JREEPAY) (0) x R¥(C1) (A1)
x ([ QAL)(b) x R¥(C2)(A2)
x IC[Cy ® Ca,C]
= ((PoR)-(QoR))(C)(b)

lle

12



For P: A —=B, we have P# : A — |B and Lemma 2.1 gives
P# <[b]> = Pb and P#B1®Bz = P#B] . P#Bz
for all b € B® and By, B, € !B°. Thus

# ~
P# loy o) = Por oo P

.....

for all (by,...,by) € IB°.

2.3 Linear structure

We refer to a C — A° x B species as an A x B-matriz. The transpose of an A x B-matrix
U:C1— A° x B is the B® x A°-matrix U': C — (B°)° x A° defined as

u*(C)(b,a) = U(C)(a,b)

More generally, for a species P : C +— [[iL; A; we define the transposition P : C — [[i; Ay
according to the permutation o € G,, by

P°(C)(ay,...,an) = P(C)(ast,...,q0n)

Matrix multiplication. The matriz multiplication (or linear composition) of the matrices U :
K+—=A°x B and V: K —B° x C is the matrix V ¢ U : K == A° x C defined by

(Ve U)(K)(a,c) = [PH KV (b, e) x U(K2)(a,b) x K Ky @ Ka, K]

(Compare with the composition of profunctors (5) and the multiplication of species (15).) Using (7),
we obtain the familiar formula for matrix multiplication

beB
(VeW e = 7 Vive  Ugap)

fora€ A and c € C.
The associativity of matrix multiplication and the unit laws with respect to the identity matriz

Ap : C1— A° x A defined as
Ap(C)(a’;a) = IC[(),C] x Ala,a’]

hold

We (Vel)=(WeV)elU
UeAy=U=Age U

where U: K 1—= A°xB, V: K —= B°xC, and W : K == C° xD. Further, for U; : K —= A°xB (i € I),
and V;: K 1—=B° x C (j € ]), we have

(ZieV5) o (ZicrWi) =X 50exa1 Vi o Wi

13



2.4 Differential structure

We introduce differentiation in the context of generalised species and establish its basic properties.
Higher-order differential operators are further considered in Subsection 2.6.

Differentiation. For P: A — B and a € A, the partial derivative %P : A — B is defined as

(ZP)(A)(b) = P(A® (a))(b)

a

P

[}
3al

15

For all P,Q: A —B and X € I@, we have the following basic properties

and the Leibniz’s rule

ProOF: Use that

A (@i AvA @ (@)] = T JNIA[AGA @ (@)] % 14 |(@jenA) @A A

Further, for P: A —=B and Q : B —= C, we have the chain rule

(-, = " (#101-7)- (47,

C

where a € A and c € C.
The differential application (or Jacobian matrix) dP: A —= A° x B of P: A — B is defined as

(dP)(A)(a,b) = FZP(A)(b)

14



The basic properties of partial derivatives translate in terms of differentials; in particular, the chain
rule amounts to the identity

d(QoP) = (d(Q) o P)e dP

For aspecies P: ) ;.1 Aj = B, one may introduce j-differentials d;P : 3 ; ;Aj —= A" x B (j € I)
as follows

(dP)(A)(a,b) = 5 P(A)(b)

However, as we show below, these are derivable.

2.5 Cartesian closed structure

We informally describe the cartesian closed structure of species.

Pairing and projections. There is exactly one species C — 0. More generally, for P; : C —
Ci (i € 1), the pairing (Pi)icy: C =} ;1 C; is defined as

(POicr (C)e) = Yoo JCPUCI) X (i C) le, T(c)] (16)
Pi(C)(c’) where c =1I;(c’)

C

lle

P>

Py
C1 C2
% N jL (P1,P2)
<

<Pi>i€I = ([Pil] ieI)J_

For i € I, the projection species m; : } ;.1 Ci = Cj is defined as

That is,

m(C) = (Y C) [(L(-),C] an)

icl

C

us
M

15



The usual laws of pairing and projections are satisfied up to isomorphism:

= Py :C—C kel
" K ( ) (18)
= P :C!—>Zi€I(Ci

7 © (Pi)icr

(Tt 0 P>i€I

Note that in the presence of cartesian structure the differentials diP : 3 ; {Aj —= AL xB (k € I)

are derivable from the differential dP: } ; ;Aj =) ;A7 x B, as

di(P) =meod(P)  (kel)

forall P: ) ;1A —B.
For P: C+A — B, the abstraction ApP : C —1A° x B is defined

Abstraction and evaluation.
(19)

as
(AaP)(C)(A,b) = P(C® A)(D)

C

AP

LA ] [p]

ean: (lA°xB)+A+—DBby

and the evaluation
JREIATERASR 140 X B)[((A, b)), F] x [((1A° x B) + A)[F& A,M] (20)

eap(M)(b) =
= (IA° xB) [((M.2,b)) ,M.{]

[ M ]
s
D)

3]

For P: C — A° x B, we write va(P) for the composite € o (P o 71y, 72) : C+ A — B. The usual

(3

laws of abstraction and evaluation are satisfied up to isomorphism:

VAP)=P:C+A+—DB (21)
AvP)=P:C—I!A°x B
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We further note the following interesting commutation property between abstraction and linear
composition: for o the permutation (12)(3),

(AaQ)° e P)?= Au(Qe (Pom)) (22)

forall P: Ki—B° xCand Q:K+ A —C° x D.

2.6 Higher-order differential structure
We relate the linear and cartesian closed structures, and introduce an operator which is shown to

satisfy the basic properties of differentiation.

Linear and cartesian closed structure. For a matrix U:C — A° x B we define the species

U:C+A—DB as

UM)(b) = [oHCCATRY(C)(a,b) x 1A [(a),A] x I(C +A) [Co A, M]
= [*““U(M.1)(a,b) x A [(a), M.]

This construction internalises as an embedding of matrices into exponentials as follows

WWB = AA(IonB) tA°xBi—I1A°x B

That is,
wp(W(A,b) = [*““1(A° x B) [((a,b)),U] x A [(a), A]

Indeed, for all P: C — A° x B, we have that

wBoP =M (P):Cr—1A° x B
Further, the embedding commutes with identities and composition; since, for
lapc = maem:(B°xC)+ (A° xB) —=A° x C

we have that
to(P,Q)=PeQ
forall P: K +—=A° xB and Q : K —B° x C, and

a0l =A(In) 1 0—=T1A° X A
wpolapc = (BC 072, 1AR O M) O MARC

for mypc = AA(E]B,C o (771, €A B © T2) ) the internal composition (!B° x C) + (!A° x B) —A° x C.
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Differentiation operator. We introduce the differentiation operator
Dap:!A°x B 1—=1A° x A° x B

defined as
Dag(F)(A,a,b) = 1(IA°x B) [{(A® (a),b)),F]

Proposition 2.7 The differential operator is linear. Indeed,
D=3%
for & the (1A° x B) x (1A° x A° x B)-matriz given by
§(U,(A,a,b)) = IA°xB[(A® (a),b), U]

Further, this operator internalises differential application since

AP = va(DoAgP):C+ A > A° x B (23)

for all P: C+ A — B and is constant on linear maps as

Doy =A(m1) : A° x B 1—1A° x A° x B

It follows that

d(Ig) =Ap A —A° x A

and we have from (22) and (23) above that, for o the permutation (12)(3),

<(D oAsP)" u>05 Ax(d2(P) e (Uom))

forall P: C+ A — B and U : C — D° x A. This identity corresponds to the 3-rule of the
differential lambda calculus [ER03].

2.7 Operators on generalised Fock space

Annihilation and creation. Let A and B be small categories. For a € A define the annihilation
and creation operators as the (IA° x B) x (!A° x B)-matrices xq and yq given by

(Xa(u, (Av b)) = S(U) (Av a>b))
YalU, (A,b)) = A% 1A° X BI(A/,b),U] x 1A [A' @ (a), A]
Further, let & and v be the (1A° x B) x (!A° x B)-matrices

W, V) = [*““ag(U,V)  and  y(U,V) = [y U, V)

18



Proposition 2.8 Let A and B be small categories. For w,v € A the following hold:

Ky @ Xy = Xy @ Oy Yu®Yv=YveYu

Xy ®Yy="7Yve Xyt Alv,u] Apoxp

Further, for non-empty A, we also have that

xey = vex+Apoxp

PROOF: We only show that o, @ vy = vy @ &y + Av, U] Ajpoxp.
On the one hand we have that

(vv e a)(U, (A, b))

and on the other that

= [V A ) x (U, V)

JYERTE (PAER (AN 0), VI X [A @ (), A]) X oy (U, V)
JVER A ® (), A] X o (U, (A, b))

At [A'® (v),A] x [((A’® (u),b)), U]

Il2

(cw ey (U, (A, b)) = [YEF A @ (u),b), V] x vu(U,V)

Further, since

A'@ (v),A® (u)]

we finally have that

lle

(xy o vy)(U, (A, b))

[l

lle

lle

Ile

YU, (A ® (u), b))
= J‘A’E!A [(Al,b),U] % [AI ® ([VD,A ® (Iub]

= (A Xe @] x [Xe (),A]) + (v, ul x [A',A])

JAEE (A ), W x SR A X @ ()] x [X® (v),A])
+ ([(A",b), U] x [v,u] x [A/,A])

JRERXER AN D), U % [AL X @ (U] x [X© (v, A]
+ [AMEREIAY D), UL X v, ul x A A]
(IXE!A [(X® (u),b),u] x [X& (v),A] ) + (v, ul x [(A,b),U])
(vv e o) (U, (A, b)) + [v,ul AU, (A, D))
(vve o+ [v,ul A)(F)(A,b)

Let Ag =g, Ca =Yqand A=«&, C=7%.
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Proposition 2.9 For all Ag, Cq:!A° x B —A° x B,

Aa(F)(A,b) = (ZFI(A)(b)  and  Cq(F)(A,b) = (F-xa)(A)(D)

where F(A)(b) = ean(F @ A)(b) and Xa(A)(b) = 14(A)(a).

Corollary 2.10 Let A and B be small categories. For w,v € A the following hold:

AuoCG,=CoAu+ A, ul Tpoxp
ALoA, =A,0A, CuoC,=C,0(Cy

Further, for non-empty A, we also have that

AoC = CoA+TIpoxn

3 Remarks

The cartesian closed structure of species.

Conjecture 3.1 The bicategory of generalised species ES is pseudo-cartesian-closed.

The only verifications missing to obtain this result are the functoriality of the pairing operation (16)
and the abstraction operation (19), and the naturality of the isomorphisms (18) and (21).

References

[Bén67] J. Bénabou. Introduction to bicategories. In Reports of the Midwest Category Seminar,
volume 47 of Lecture Notes in Mathematics, pages 1-77. Springer-Verlag, 1967.

[Bén00] J. Bénabou. Distributors at work. Lecture notes of a course given at TU Darmstadt
(available from http://www.mathematik.tu-darmstadt.de/ streicher/), 2000.

[Ber87] F. Bergeron. Une combinatoire du pléthysme. Journal of Combinatorial Theory (Se-
ries A), 46:291-305, 1987.

[BLL98] F. Bergeron, G. Labelle, and P. Leroux. Combinatorial Species and Tree-Like Structures.
Cambridge University Press, 1998.

[CWO03] G.L. Cattani and G. Winskel. Profunctors, open maps and bisimulation. Available from
http://www.cl.cam.ac.uk/ gwl04, 2003.

[Day70] B. Day. On closed categories of functors. In Reports of the Midwest Category Seminar
1V, volume 137 of Lecture Notes in Mathematics, pages 1-38. Springer-Verlag, 1970.

[EK66] S. Eilenberg and G.M. Kelly. Closed categories. In Proceedings of La Jolla Conference on

Categorical Algebra, pages 421-562. Springer-Verlag, 1966.

20



[ER03] T. Ehrhard and L. Reigner. The differential lambda calculus. Theoretical Computer
Science, 309(1-3):1-41, 2003.

[IK86] G. B. Im and G.M. Kelly. A universal property of the convolution monoidal structure.
Journal of Pure and Applied Algebra, 43:75-88, 1986.

[Joy81] A. Joyal. Une théorie combinatoire des séries formelles. Advances in Mathematics, 42:1-82,
1981.

[Kel82] G. M. Kelly. Basic Concepts of Enriched Category Theory. Cambridge University Press,
1982.

[Law73] F. W. Lawvere. Metric spaces, generalized logic, and closed categories. Rend. del Sem.
Mat. e Fis. di Milano, 43:135-166, 1973. (Also in Reprints in Theory and Applications of
Categories, 1:1-37, 2002.).

[Mac71] S. MacLane. Categories for the working mathematician. Springer-Verlag, 1971. (Revised
edition 1998).

[Mén96] M.A. Méndez. Species on digraphs. Advances in Mathematics, 123:243-275, 1996.

[MN93] M. Méndez and O. Nava. Colored species, c-monoids and plethysm, 1. Journal of Combi-
natorial Theory, Series A, 64:102-129, 1993.

[NR85] O. Nava and G.-C. Rota. Plethysm, categories, and combinatorics. Advances in Mathe-
matics, 58:61-88, 1985.
A The bicategory of species

In this technical section I exhibit the bicategorical structure of £S.

Composition. Define the composition functors
OA,]B,(C : &S [B,C] X &S [A)B] - &S [A)(C]

by taking the following explicit description of the coends (5) and (6)

(QoP)(A)(c) = (ZB@B Q(B)(c) X X_a, e (ven) (Tver P(Ab)(Bab)) X A [@pep Av, Al )/N

~

where = is the equivalence relation generated by

(B» q, <Ab>beB ) <P((xb)(6@b)(pﬁb) >b€B ) (X)

Q

(B/ ) Q(B)(C)(q) ) <A,/>b’€B’ ) <pb’>b/eB/ , Xo (®beB (Xb) OG)

for : B — B’ in B, q € Q(B)(C), <(Xb : A,Bb _>Ab>beB in 1A, (pb/ € P(A/b’)(B/@b’»b/eB/a and
% QpcgAb—= A in lA, where 0: Qprcpr A'vy = Qe Alpy in A,
Clearly, for ¢ : A—= A’ in !A and g : ¢’ — ¢ in C, we have that

(QoP)e)(g) [B) q, <Ab>beB ) (pb>be|3 ) ‘X] = [B) Q(B)(g)(q), (Ab>beB ) <pb>beB y P o (X]
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For:P1=Pr:A+—=Bandy: Q= Q2 :B 1—= C, we have yop : P,oP; = Q,0Q1: A —=C
given by

(vo (P)A,c : [B» q, <Ab>b€B » <pb>b63 ) (X] = [B»VB,c(q)» <Ab>beB ) <(pAb ,Bap (pb)>be|3 ) ‘X]

Unit laws. The natural family of left unit laws

{ l,p . I]B oP :>: P }PESS(A,B)
arising from (11) is explicitly given by

(lP)A,b: [B » B ) <Ab>beB ) <pb>beB ) (X] = [8@1 ) [3@1 ) A] y P1, (X]
— [Ba1, Ba1r, Pla)(Ba1)(p1) ]
— P(a&)(Ba1)(p1)

whilst the natural family of right unit laws

{Tp :Po IA :>: P }PESS(A,]B)
arising from (12) is explicitly given by

(rP)A,b: [A/ y Py <X‘1>(1€A’ ) <(X‘1>GEA’ y (X] — [A, y Py (Xo®aeA/ (Xa]

— P((X o ®a€A’ (Xa) (b)(p)

Associativity law. The natural family of associativity laws

{arqpr:(RoQ)oP=Ro(QoP):A =D }REES(C,D),QE&S(]B,C) PEES(AB)
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arising from (13) and (14) is explicitly given by

(arqQplaa: [B, [C, 1, (Be)eec s (deecc » BT, (Ab)pep » (Pbluep » & |
— [ C,r,
<Bc>ceC ) <qC>ceC y
{(Apbloe(®, . Bo) <P(A[5b)(B@b)(pﬁb)>be(®cec B.)
(®re@.cc By ABb) = (QpepAv) A |
— [ C,r,
<Bc>ceC ) <qC>ceC y
<Af5(°-b3>cec,besc , <P(AB(C-b))(B@(C-b))(pB(C.b))>CeC‘beBC ,
(®ceC ®b€Bc AB(c.b)) = (®b€(®cec Be) Aﬁb) —X% A ]
= [ C,r,
(Rves. AB(C.b)>CeC )
[ <Bc>cec ) <qC>CEC )
[ (Apev))cecoen, » (PABEn) (Bac))Ppicn))eecpes. »

<id®beBC AB(c.b)>C€C] ] )
xo0 |

= [ C y Ty
(Rbep. Apleb)) e
[ (Be)eec » (de)eec »
[ <Af5(c.bJ>beBC , (P(Ag(e.p) (Baew) (Ppie.s))pep, »

id®b€BcAB(C-b) ] >c€C] J
xoo0 |

— [C, T,
<®beBc AB(C-b)>C€C J

< [ BC ) qC )
<A($(c.b)>beBC , <P(AB(C.bJ)(B@(c.b))(pﬁ(c.bJ)>beBC ,
1@, cp. Apien) | Jeec

xoo0 |

for B € 1B, C € IC, v € R(C)(d), (Bc € B).ccs (dc € Q(Be)(Cac))eccs B+ QeecBe — B in
!B, <Ab S !A>beB7 (pb S P(Ab)(B@b)>b€B7 and o : ®b€B Ap — A in !A, where for Y € !Y and
(Xy € IX) ¢y the index of x € Xy for y € Y within (®erXy) € !X is denoted y.x and where
o(b.a) = (Bb).a and oa(v.a) = id(Agy)a, fOr all b € QccBe and a € Agp.

Coherence axioms. I will first check the commutativity of

(aqQ,ig,P)A,c

((Qolg)oP)(A)(c) (Qo (Ig o P))(A)(c)
(m idgolp)a,c
(QoP)(A)(c)
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forP:A—B, Q:B+—C, Ae€!A, and c € C.

Note that for B,B' € B, q € Q(B')(c), (Bur € B)yicps (Bor: (B'aw) — By in 1B),, .
B:@pep By —Bin !B, (Ap € !A) g, (Pv € P(Ap)(Bab))pep, and o : Qg Ap — A in A we
have that

[B, [B/, q v<Bb/>b/€B/ ) <Bb’>b'eB/ ) B] ) <Ab>beB ) <pb>beB ) oc]

(rgoidp)a,
RIS B, QB o (®pep Bv))(€)(a) , (Av)per » (Polpes » & ] (24)
and that
[B, [B", a4, (Bo)uer » (Bodoer » Bl (Avdpep » (Po)oen » & ]
[B', q,
<AB(b/.1)>b/€B/ )
(aqQ,ig,P)A,c < [ Bv, Bu
<A(3(b’.1)>b/63/ , <P(Aﬁ(b’.1))(6@b’)(pﬁ(b’.1))>b/63/ ,
idA[s b/.1) ] >b’eB’ )
(Quren Apor)) = (QpepAv) —A ]
[B', q,
(idgolp)a,c <AB b’.1 >b’€B’ ) (25)
<P idag (BW)@])(P(Aﬁ(b/J])(B@(b’.]))(pﬁ(b’.n))>b,€B,
(®b’eB’AB v1)) = (QpepAb) —>A ]

Further, since

(25) = [B', q,
<Aﬁ(b’.1]>b/€B/ )
(P(Apwr1)) (Baw .1y o (Bo)ar) (pﬁ(b’.1))>b/63/ ,

(Qurep Aporn)) = (QpepAv) — A ]

<Aﬁ(b’.1]>b/€B/ )
(P(idag 1)) (B0 (@ren BorDav) (P(poi@y rcsr o) ),y
(®b’eB’AB(b/ ) (®beB )_“>A]
= [B, Q(Bo(®uep Bv))(c)(a) ,
<Ab>b€B )
(Pv)ben >

(®beB Ab) = (®bfeB/AB(b’-1)) = (®beB Ab) _“>A]
= (29)
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we are done.

To conclude, for P: A —= B, Q: B+ C,R:C —= D, and S : D —= E, I will check the
commutativity of

((SoRjoQ)oP

Wﬁ

el (So(RoQ))oP
(SoP)o(QoP) as,RoQ,p
as,R,QoP So((RoQ)oP)

M(,Q,P

So(Ro(QoP))

instantiated at every A € !A and e € E.

To this end, for B € !B, C € IC, D € D, s € §(D)(e), (Cq € !C)4cp, (ra € R(Ca)(Dad)) gep>
Y:Qgep Ca—=Cin!C, (Be € !B) e, (de € Q(Be)(Cac))eccr B: QeccBe —Bin !B, (Ap € lA)p,
(Pv € P(Ap)(Bab))pep) & : @pegAb —= A in A, A € |A and e € E, we proceed to evaluate the
above two composites at

(B,
[C’ [D’ S, <Cd>dED ’ <rd>deD ) Y] ) <BC>CEC ) <qC>ceC ) B] ) (26)

(Ab)bep » (Po)beB > ‘X]

in (((SoR)oQ)oP)(A)(e).
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The evaluation of the left-hand-side composite is as follows

asor,Q,P
(26) — [C> [D» S, <Cd>deD ) <rd>deD ) ’Y] ) <uC>C€C ) O(I]
where
uC = |: BC) qC )
<A($(c.b)>beBC , <P(AB(C.bJ)(B@(c.b))(pﬁ(c.bJ)>beBC ,

id |
= (@@ Apeo)=( &  Ap)=(QAs)*=A)
ccC beB, be(@.cc Be) beB
as R,QoP [ D )
<®ceCd Rveb, 4.0 ABlvide). J>d€D )
([Ca, ra,
<®b€By(dAc) AB(Y(d-C)-b)>c€Cd ) <VC>C€Cd )
id ] )gep »
cxl/ :|
where
ve = (QoP)(@ues, ., AB(v(do)b) (Ya(c.a) (Uy(dc)
= [ Bytao)» Qlid)(va(a.c)(dy(ac)
(Apvide)0)pep, oo,
<P(id)(B@(y(d.c).b])(p(S(y(d.c).b]DbeBy(d |
id |
and

= ( (Qqep Qeecy ®beBY(d,c) AB(v(dc).b))
= (®c6(®d€D Ca) ®beByc ABiv(c).b)

= (Qcec Qvep. Aplea) = A )
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whilst the evaluation of the right-hand-side composite is as follows

(26) as r,Qoidp [ B
[ )y S <®C€Cd dc>d€D’ <Xd>deD ) [3 ]
(Ab>beB » (pb>be|3 , (X]
where
xa=][Ca, Ta,
<By(d.c)>cecd ) <Q(B (d. ))(V@ d.c) )(qy d.c) )>c€Cd )
id |
and
“(Q RBryea)=( & By =(RB)->B)
deD ceCqy c€(®qgep Ca) ceC
as roQ,P [ D s

<®b€ ceCd y(d Ac))AB/(d-b)>deD )

< |: ®C€Cd BY(d.C] y Xd
<A($l(d.bJ>be(®C€Cd B, a.c)
<P(id)([3(/®(d.b))(pﬁ’(d.b])> ,

be(@cecd Bv(d-C))

id] )gep
O(/
where
= ( (®dep cecy Oves, o . Abividorb)
= (®b€(®d6D ®c6Cd By(d.c)) Aﬁlb)
= ®beBAb _“>A)
® ® Aply(d.c). >d€D’ (Ya)aep » &' ]
CECd bEB c)
where

Ya= [ Qcec, Byiac)» Xa,
<A[3(V(d-c)-b)>(c_b)€(®Cecd By(dAc)) ’
<P(id)(B@(y(d.c).b))(pfi(v(d.C).b])>(C_b)e(®Cecd Bya.c))
id |
dsoar.Qp (D, s, <® ® AB(y(de)b) gep » (Zd)aep » &' ]
ceCq bEB, (4.¢)
where
z4 = [ Ca, Ta,
<®beBy(d_c) Aﬁ(v(d-C)-b)>ceCd )
( [ Bytao)» Qlid)(va(ac)(dyace)
<AB d.c).b J>beB
(P(id) (BT (a.c).0 (d.C]-b))>beBy(d )
id] >ceCd !
Qcecy Qveb, g DAsiyiacrb) ]



and, since (27) and (28) are equal, we are done.
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