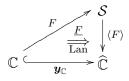
A 2-Categorical Note On Day's Tensor Product

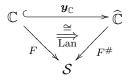
Marcelo Fiore

May 2010

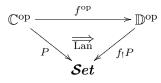
- **1.** For a small category \mathbb{C} , let $\widehat{\mathbb{C}} \stackrel{\text{def}}{=} Set^{\mathbb{C}^{\text{op}}}$ and let $y_{\mathbb{C}} : \mathbb{C} \hookrightarrow \widehat{\mathbb{C}}$ be the Yoneda embedding.
- **2.** For a functor $F : \mathbb{C} \to S$, where \mathbb{C} is small, we have the following situation



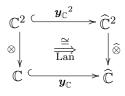
where $\langle F \rangle(S) = \mathcal{S}(F-,S)$ and $\underline{F}_c = \{F_{c,z} : \mathbb{C}(c,z) \to \mathcal{S}(Fc,Fz)\}_{z \in \mathcal{C}}$. Furthermore, for \mathcal{S} cocomplete, $\langle F \rangle$ has a left adjoint $F^{\#}$ given by



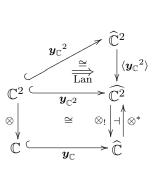
3. For a functor between small categories $f : \mathbb{C} \to \mathbb{D}$, let $f_! \dashv f^* : \widehat{\mathbb{D}} \to \widehat{\mathbb{C}}$ be given by $f_! \stackrel{\text{def}}{=} (\boldsymbol{y}_{\mathbb{D}} f)^{\#}$ and $f^* \stackrel{\text{def}}{=} \langle \boldsymbol{y}_{\mathbb{D}} f \rangle$. Since $f^*Q \cong Q f^{\text{op}}$, we have that



4. Let (\mathbb{C}, I, \otimes) be a small monoidal category. Day's monoidal structure on $\widehat{\mathbb{C}}$ has tensor unit $\boldsymbol{y}_{\mathbb{C}}(I)$ and tensor product $\widehat{\otimes}$ given by



Since



it follows that

and hence that

$$\begin{array}{ccc} (\mathbb{C}^{\mathrm{op}})^2 \ \cong \ (\mathbb{C}^2)^{\mathrm{op}} \xrightarrow{\otimes^{\mathrm{op}}} & \mathbb{C}^{\mathrm{op}} \\ & & & & \downarrow \\ P \times Q & & & & \downarrow \\ & & & & \downarrow \\ \mathcal{Set}^2 \xrightarrow{} & \times & \mathcal{Set} \end{array}$$

 $\widehat{\otimes} \,\cong\, \otimes_! \, \langle {oldsymbol y}_{\mathbb C}{}^2
angle$