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1 Algebraic Simple Type Theory

Outline of an Algebraic Theory of Simple Types.

1.1 Signatures

Example 1.1. The signature of the simply-typed A-calculus with sums given below will be
our running example.

Type operators  Unit, Empty : — x
Prod, Fun, Sum : % — x

Term operators > u : Unit

a, B % > pair: «, 8 — Prod(a, f)

a, B % > proji : Prod(a, ) — «

a, B % > projp : Prod(a, 8) —

a,fB: % > app: Fun(a, 8), a0 — 8

a,fB % > abs: («)B — Fun(a, )

a,fB: % > inp o — Sum(ay, B)

a,B:% > iny: B — Sum(a, B)

a, B : % > case : Sum(a, B), ()Y, (B)y — B

Remark. Simply-typed theories with type-binding type operators, as that of recursive types
below, are at the moment outside the scope of the note, but may be incorporated.



Type operator  Rec: (x)x —

Term operators T : [#]% > intro : T[Rec(a.T[a])] — Rec(a.T[a])
T : [#)* > elim : Rec(a.T[a]) — T [Rec(a.T[e])]

1.2 Algebraic models
1.2.1 Types

The algebraic structure of types is as in universal algebra, consisting of a set equipped with
a polynomial algebra structure induced by the type signature. For our running example, it is

[[Unit], [Empty], [Prod], [Fun], [Sum]] :  J] 1+ J[ $*—¢
Unit,Empty Prod,Fun,Sum
1.2.2 Terms

Definition 1.2. A cartesian typed-context structure consists of a small category C and a set
S together with a specified terminal object € in C and, for every I' € C and ¢ € S, a product
diagram

where (o) =€ 0.

Notation. We use the same notation for a set and for the presheaf that is constantly that
set; analogously, we do so for a function and the natural transformation that is constantly
that function.

Definition 1.3. A term-typing structure (T',7) on a cartesian typed-context structure (C, S)
is a presheaf T' € C together with a natural transformation 7:7 — S in C.

The algebraic structure of terms is given along the lines of [?], that extended the approach
of [?] from the mono-sorted to the multi-sorted setting. This is however expressed here in
the language of polynomial diagrams. We are thus moving from the indexed viewpoint to the
fibred one. Technically, via the equivalence

C/S ~ C°
mapping (X, X — S) to (Xs)secs where
X,— X
T
1——8
and (Xs)oes to [[,cq Xs equipped /v\vith the canonical projection.
The polynomial diagram D, in C is

g 0 1 [Unit] g




An algebra Py(T,7) — (T, 7) in @/S amounts to giving

1 T
1 S

[u]
—

—
[Unit]

The polynomial diagram Dy, in C is

w1472 [Prod]

S+ 8™ (G 81 (Sx8) S xS

An algebra Poyr(T'+ T, 7+ 7) — (T, 7) in ((AZ/S amounts to giving

The polynomial diagram Dy, in C is

gl gug M Lgxg—T g
An algebra Py, (T, 7) — (T, 7) in @/S amounts to giving
Hproji]] T — T[[Prod]]

T[[Prod]] —T

J JT where TJ b J

SXST

The polynomial diagram D,pp in C is

[Fun]+m1

S+S (Sx8)+(Sx8)—2s5x8-"38

An algebra Pypo(T'+ T, 7+ 1) = (T,7) in C/S amounts to giving

[app]
Ha,ﬂES T[Fun]](a,ﬁ) X Ta > T

| |

S xS S

2

Definition 1.4. We let V =J[ .qy(e) in C.

S



Proposition 1.5. The canonical projection v : V — S in C is representable:

I',o
Ly Oy

yI - o) ——V
ﬂf’ol pb JV
yI) —F——5

More generally, v™ : V™" — S™ in C is representable:

yI-o1-..iop) ——y(l o) x - xy([-0,) —Vx---xV
l pb l pb J{w«nxy
(015eey0n)

The polynomial diagram D,ps in C is

vxid [Fun]

S« yxS S xS S

An algebra Pu,s(T,7) — (T, 7) in @/S amounts to giving

Tﬁ)y a) [abs]

T
S

Remark. The calculation of II(,yiq)(id x 7: V X T — V x S) uses that

S————
[Fun]

§(I - a) — ()

(ﬂ‘g’aoba,ﬁ)l pb Jr(azﬁ)

VXSWSXS

and that X¥{?) = X (- .¢). R
The polynomial diagram Dj,, in C is

ST gxs g B g
Algebras Py, (T,7) — (T, 7) in @/S amount to giving
TxS8 & T SxT %T
dl . idwl .
S x SW S S xS WS

The polynomial diagram Dcaee in C is

[[Sum],m2,m2] [id,rxid,rxid]
—

S (Sx8)+ (Vx8)+(VxS) SxS§—"58



1.2.3 Formal theory
An A-sorted first-order arity for a set A is an element of
ar(A) = A" x A |

where A* denotes the set of finite sequences on A. An operator o of arity («; ...ayp, @) is
indicated as follows
O:],...,Qp > .

An A-sorted second-order arity for a set A is an element of
ar’(A) = (A* x A)" x (A* x A) .

An operator o of arity ((oz% . O‘}claal) co(ad a,ﬁn, o), (B1 ... B, 6)) is indicated as follows

o: (a%,...,akl)al,...,(a{,...,aig)ozg = (B1y---,Bk)B - (1)
Its intended meaning is that of an operator of sort S parametrized by sorts Bi,..., 8 that
takes ¢ arguments where the i*" argument, of sort «;, binds ¢;-variables of sorts ..., 0

In type-theoretic style this could be written as a rule as follows:

I‘,yl:ﬁl,...,yk:ﬁk,x’i:aﬁ,...,xii:azil—ti:ai (1<i<¥)

1 1 L

. . 1. .1 0. VAN .
F,yl.ﬁl,...,yk.ﬁkl—o(:rl.al...xkl.akl.tl,...,xl.al...xkg.ozke.tg,yl,...,yk).ﬂ

In most examples, including all the ones here, k = 0.

A signature of types 3 is specified by mono-sorted first-order operators. We let 3* be the
free Y-algebra construction in Set.!

A signature of terms over X is specified by (X*[n])-sorted second-order operators for n € N
where [n] = {1,...,n}.

We give examples.

Example 1.6. The arrows of functional programming have signature

Type operator  Arrow : *, * — x

Term operators  «:*,3:x > arr: Fun(a, 8) — Arrow(a, 3)
aq, e, 8% > first : Arrow(a, ) — Arrow(Prod(al,B), Prod(ag,ﬂ))

Example 1.7. The A-calculus has signature

Type operator D : — x

Term operators > app:D,D — D
> abs: (D)D — D

Example 1.8. The computational monads of programming semantics have signature
Type operator T : % — %

Term operators  «:* > eta:a — T(a)
a,B:x > let: T(a),(a)T(8) — T(B)

1Tt seems to make sense to generalize the type signature to be multi-sorted, and perhaps this is to do with
universes, but I'm refraining from exploring this direction for now.




Term operators binding many variables can be modelled by means of the second part of
Proposition 1.5. More generally, we now show how to associate a polynomial diagram to every
term signature.

Definition 1.9. An operator as in (1) with types in X*[n] where k£ = 0 is modelled by the
following composite of polynomial diagrams in C:

\Y

[TiciceS™ S
H1§i§€<([[O‘Zi]]7"'7|1a2i]]>7id> [[B]]
[i<i<e Vhox St [i<ice Ski x §n S

1<i<t vki xid
[foidoma] ., _,
S

where [—] : £*(-) — (S¢) = S) denotes the semantics induced by a given algebra ¥(S) — S.
The general case, is as follows:

H1<7,<€ S 4> S

k% sm
] vPxid o
Misicellioghssse i) [ml«w\ / wQ
k% gn

k; n k; n
Hicice VP xS —— Tl1<icp S™ < S
Hicice vki % id

[[[oci]]o7r2] L<i<e

S

Remark. In elementaty terms, an algebra Py (7,7) — (7,7) in C/S for the polynomial
endofunctor Py on C /S induced by a diagram as above amounts to giving:

e for the case k =0,

[Tsesn ngigz T[[ai]](r?)( — [ail(@)- ... [[a%;i]](ﬁ)) HT
S

S’n
15

or, equivalently,

{(Mhcsce Togo) (= 1031@) - [03,1(8) ) — Ty () }

agesm

in C, and



o for the general case,

{(Thcize Tan) (= 105)@) - [0}, 1(@)) ) — Tpaya) (= 1811 - - [8:1(®)) }

in C.

gesn

Remark. Note that in the abscence of binders and parameters in the operator, the above
simplifies to

Ve
mn n
[li<i<eS »S

[[[ai]] 199& JV['B]]

S S
and to
H&eSn H1§z’§e Ta,1(5) T

S——S
(51

as expected.

Definition 1.10. A model consists of a cartesian typed-context structure (C,S), a term-
tAyping structure (T, 7), and algebra structures on S € Set for type operators and on (7, 7) €
C/S for term operators.

1.3 Morphisms

An homomorphism (H,h) : (C,S) — (C',S") between cartesian typed-context structures
(C,S) and (C',S") consists of a functor H : C — C’ and a function h : S — S’ such that the
canonical maps

H(e) »¢ and H(I-0)— H()- (ho)

are identities.
Moreover, when S and S’ come equipped with Y-algebra structures as in the case of
models, the function A is further required to be an homomorphism; that is,

2(5) =", 55

S—F7 S’

An homomorphism (H, h, f) : ((C7 S, (T, T)) — ((C’, S’ (T, T’)) between term-typing struc-
tures (T, 7) and (1", 7') respectively over the cartesian typed-context structures (C,S) and
(C',5") consists of an homomorphism (H, h) : (C,S) — (C', S’) and a natural transformation
f:T — T'H such that

T Ty

STMS”



Remark. We have an homomorphism (H, h,v) : (C, S, (V,v)) = (C', 5, (V',V/)) forv: V —
V'H given by the action of H:

[Maes C(= (@) —— Hwes C'(H(=), ()

(,z:T = (a)) — (ha, Hz : HT — (ha))

For models, in which (T,7) € @/S and (T',7') € @/S’ come equipped with operator
algebra structures, an homomorphism requirement needs to be imposed on the natural trans-
formation f : T — T'H in C. To make this precise, we need analyze the relationship between
the polynomial endofunctor Py on (Af/ S of an operator in the model (C, S, (T,T)) and the
polynomial endofunctor P/, on C /S" of the same operator in the model (C', ', (T",7')). We
have the following.

Lemma 1.11.
C/s' -~ C/8' - C/S
P‘//,l o J{PV
C/S' ——C/S' ——C/S

The crucial reason for the above, besides the fact that h is an homomorphism and H* is
continuous and cocontinuous, is that

@//Sln H* (/C\/S/n (hn)* @/Sn

”*l J”Z*

C'/(V'* x §'m) C/(Vk x 5™

Hu’kxidJ/ Jnukxid

C/(S"F x §'") ————C/(5" x §'") C/(S* x 5™

I

(hk X hn)*
which essentially comes from the identity

H(—~a1-...-ak) = H(—)h(al)h(ak) .



