
ST Winter Meeting, 3 Feb 2015

Magnus Myréen

Turning proof assistants 
into programming assistants



Why?
Why combine proof- and programming assistants?

Testing cannot show absence of bugs.Why proofs?
Some care very much about bugs.

(Applicable to specialist code only…)

What is the specification of Microsoft Word?

But what about bugs in compilers, 
library routines, OS?



Why?
Why combine proof- and programming assistants?

If proof assistants were convenient programming 
environments, then proofs might become more 
commonplace.

Unit proofs, instead of unit tests?
Proving some key properties of algorithm 
implementations?

Not necessarily full functional correctness…



Trusting your toolchain

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing

{

j

x

y

a

n

g

,

c

h

e

n

y

a

n

g

,

e

e

i

d

e

,

r

e

g

e

h

r

}

@

c

s

.

u

t

a

h

.

e

d

u

Abstract
Compilers should be correct. To improve the quality of C compilers,

we created Csmith, a randomized test-case generation tool, and

spent three years using it to find compiler bugs. During this period

we reported more than 325 previously unknown bugs to compiler

developers. Every compiler we tested was found to crash and also

to silently generate wrong code when presented with valid input.

In this paper we present our compiler-testing tool and the results

of our bug-hunting study. Our first contribution is to advance the

state of the art in compiler testing. Unlike previous tools, Csmith

generates programs that cover a large subset of C while avoiding the

undefined and unspecified behaviors that would destroy its ability

to automatically find wrong-code bugs. Our second contribution is a

collection of qualitative and quantitative results about the bugs we

have found in open-source C compilers.

C

a

t

e

g

o

r

i

e

s

a

n

d

S

u

b

j

e

c

t

D

e

s

c

r

i

p

t

o

r

s

D.2.5 [Software Engineer-

ing]: Testing and Debugging—testing tools; D.3.2 [Programming

Languages]: Language Classifications—C; D.3.4 [Programming

Languages]: Processors—compilers

G

e

n

e

r

a

l

T

e

r

m

s

Languages, Reliability

K

e

y

w

o

r

d

s

compiler testing, compiler defect, automated testing,

random testing, random program generation

1. Introduction
The theory of compilation is well developed, and there are compiler

frameworks in which many optimizations have been proved correct.

Nevertheless, the practical art of compiler construction involves a

morass of trade-offs between compilation speed, code quality, code

debuggability, compiler modularity, compiler retargetability, and

other goals. It should be no surprise that optimizing compilers—like

all complex software systems—contain bugs.

Miscompilations often happen because optimization safety

checks are inadequate, static analyses are unsound, or transfor-

mations are flawed. These bugs are out of reach for current and

future automated program-verification tools because the specifica-

tions that need to be checked were never written down in a precise

way, if they were written down at all. Where verification is imprac-

tical, however, other methods for improving compiler quality can

succeed. This paper reports our experience in using testing to make

C compilers better.

c� ACM, 2011. This is the author’s version of the work. It is posted here by permission

of ACM for your personal use. Not for redistribution.

The definitive version was published in Proceedings of the 2011 ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), San Jose,

CA, Jun. 2011, http://doi.acm.org/10.
1

1

4

5

/

N

N

N

N

N

N

N

.

N

N

N

N

N

N

N

1 i

n

t

f

o

o

(

v

o

i

d

)

{

2 s

i

g

n

e

d

c

h

a

r

x

=

1

;

3 u

n

s

i

g

n

e

d

c

h

a

r

y

=

2

5

5

;

4 r

e

t

u

r

n

x

>

y

;

5 }

Figure 1. We found a bug in the version of GCC that shipped with

Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles

this function to return 1; the correct result is 0. The Ubuntu compiler

was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-

ports compiler bug-hunting using differential testing. Csmith gen-

erates a C program; a test harness then compiles the program us-

ing several compilers, runs the executables, and compares the out-

puts. Although this compiler-testing approach has been used be-

fore [6, 16, 23], Csmith’s test-generation techniques substantially

advance the state of the art by generating random programs that

are expressive—containing complex code using many C language

features—while also ensuring that every generated program has a

single interpretation. To have a unique interpretation, a program

must not execute any of the 191 kinds of undefined behavior, nor

depend on any of the 52 kinds of unspecified behavior, that are

described in the C99 standard.

For the past three years, we have used Csmith to discover bugs

in C compilers. Our results are perhaps surprising in their extent: to

date, we have found and reported more than 325 bugs in mainstream

C compilers including GCC, LLVM, and commercial tools. Figure 1

shows a representative example. Every compiler that we have tested,

including several that are routinely used to compile safety-critical

embedded systems, has been crashed and also shown to silently

miscompile valid inputs. As measured by the responses to our bug

reports, the defects discovered by Csmith are important. Most of

the bugs we have reported against GCC and LLVM have been

fixed. Twenty-five of our reported GCC bugs have been classified as

P1, the maximum, release-blocking priority for GCC defects. Our

results suggest that fixed test suites—the main way that compilers

are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part

because it generates tests that explore atypical combinations of C

language features. Atypical code is not unimportant code, how-

ever; it is simply underrepresented in fixed compiler test suites.

Developers who stray outside the well-tested paths that represent

a compiler’s “comfort zone”—for example by writing kernel code

or embedded systems code, using esoteric compiler options, or au-

tomatically generating code—can encounter bugs quite frequently.

This is a significant problem for complex systems. Wolfe [30], talk-

ing about independent software vendors (ISVs) says: “An ISV with

a complex code can work around correctness, turn off the optimizer

in one or two files, and usually they have to do that for any of the

compilers they use” (emphasis ours). As another example, the front

1

PLDI’11

“ Every compiler we tested was found to 
crash and also to silently generate 

wrong code when presented with valid input. ”

“ [The verified part of] CompCert is the only compiler 
   we have tested for which Csmith cannot find wrong-code
   errors. This is not for lack of trying: we have devoted 
   about six CPU-years to the task.” 



Programming assistants
Visual Studio, Xcode, Eclipse

‣ a helpful program editor

‣ helps test and refactor code

‣ debugger

‣ some can even do complex static analysis



Visual Studio, Xcode, Eclipse

not designed for strong semantic guarantees

High-assurance code development?

Programming assistants

‣ can be used: 1. write code in programming assistant
2. verify code using other tools

what about development life cycle?



Producing high-assurance code

Verification of compiler output (bottom up)
e.g. translation of low-level code (e.g. machine code) into 
higher-level representation (functions in logic).

Correct-by-constriction (top down)

synthesis of implementations from high-level 
specifications (e.g. functions in logic)

Approaches:

Source code verification (traditional)
e.g. annotate code with assertions and (automatically) 
prove that program respects the assertions, i.e. never fails



Trustworthy code

… but that’s what compilers do!

Correct-by-constriction (top down)

synthesis of implementations from high-level 
specifications (e.g. functions in logic)

But is the source code good enough for
expressing the specification and
implementation strategy in the same text?



Proof assistants

What are they?

‣ proof scripts editors

type definitions

clear name spaces

function definitionsfunction definitions

proof statements

goal-oriented proofs

‣ important feature: proof assistants are programmable (not shown)

General-purpose proof assistants: HOL4, Isabelle/HOL, Coq, ACL2…



Trustworthy?

HOL4 is a fully expansive theorem prover:

HOL4 theorem prover

HOL4 kernel

All proofs expand at runtime 
into primitive inferences in 
the HOL4 kernel.

The kernel implements the 
axioms and inference rules 
of higher-order logic.

Thus all HOL4 proofs are formal proofs.

Proof assistants are designed to be trustworthy.



Landmarks

Major maths proofs

‣ Odd Order Theorem, Gonthier et al.

‣ Kepler Conjecture, Hales et al. 

‣ Four-Colour Theorem, Gonthier

Major code verification proofs

‣ Correctness of OS microkernel, Klein et al. (NICTA)

‣ CompCert optimising C compiler, Leroy et al. (INRIA)

These proofs are 100,000+ lines of proof script.

compositional development!

Modern provers are scale well:



Proof assistants

A closer look:

‣ Correctness of OS microkernel, Klein et al. (NICTA)

‣ CompCert optimising C compiler

Verified a deep embedding of 10,000 C code
w.r.t. a very detailed semantics of C
and a high-level functional specification.
Proofs also extended down to machine code (I helped).

Compiler written as function in logic (not a deep embedding)
Correctness theorems proved about this function.
Function exported to Ocaml using an unverified code generator.

bottom up-ish

top down



Proof assistants
Used as generators of code

‣ CompCert optimising C compiler

functions in logic Ocaml code

theorem about functions

no proof

no formal semantics

inside the prover:

Compiler written as function in logic (not a deep embedding)
Correctness theorems proved about this function.
Function exported to Ocaml using an unverified code generator.

top down



Proof assistants
Are they programming assistants?

Comparison

proof scripts contain 
functional programs

… that can be exported 
to programming languages
(Ocaml, SML, Haskell, Scala)

But here: code and spec
not necessarily the same.

‘Code’ can be abstract, 
non-executable.

(Isabelle/HOL has nice automation for finding counter examples.)



Trustworthy?

functions in logic FP code

theorem about functions

no proof

no formal semantics

inside the prover:

Not to the high standards of fully expansive provers…

A better solution:

functions in logic FP code

theorem about functions

with proof

with formal semantics

inside the prover:

ASCII for  
FP code

very simple 
translation



Code generation as a trustworthy step

At ICFP’12 (and a JFP’14 paper):

Showed that we can automate proof-producing code 
generation for FP programs written in HOL4.

The target is CakeML, a (large) subset of Standard ML.

A better solution:

functions in logic FP code

theorem about functions

with proof

with formal semantics

inside the prover:

ASCII for  
FP code

very simple 
translation

… but do we trust Poly/ML to implement CakeML 
according to our semantics?



Going to machine code
Code generation from functions in logic 
directly to concrete machine code.Compiler

Synthesis often more practical. Given function f ,

f (r1) = if r1 < 10 then r1 else let r1 = r1 � 10 in f (r1)

our compiler generates ARM machine code:

E351000A L: cmp r1,#10

2241100A subcs r1,r1,#10

2AFFFFFC bcs L

and automatically proves a certificate HOL theorem:

` {R1 r1 ⇤ PC p ⇤ s }
p : E351000A 2241100A 2AFFFFFC

{R1 f (r1) ⇤ PC (p+12) ⇤ s }

From my PhD thesis:



Going to machine code
Code generation from functions in logic 
directly to concrete machine code.

Has been used to build non-trivial applications:

e.g. a fully verified machine-code implementation of 
a Lisp read-eval-print loop (with dynamic compilation)

Disadvantage of the approach:

The source functions in logic must be stated in a 
very constrained format (only tail-rec, only specific types etc.).



Better: going via ML and compilation

We can be less restrictive using our verified compiler (POPL’14)

functions in logic FP code

theorem about functions

with proof

with formal semantics

inside the prover:

applying a verified 
compilation function

ARM, x86, MIPS machine code
with formal semantics binary 

very simple 
translation

i.e. we can use 
the compiler’s 
correctness 

theorem



Interest

Rockwell Collins

We are getting closer to a reality of using proof 
assistants as program development platforms…

NICTA

‣ large avionics/defence contractor in the US
‣ keen to use this technology
‣ two concrete projects in mind

‣ developers of the seL4 verified OS microkernel
‣ keen to build verified user code
‣ connect everything up to produce complete system 

with formal guarantees



I/O needed
Problem: real applications need I/O

CakeML has only very basic putc and getc char I/O…

Solution (my current work):
‣ the next version of the compiler will have I/O 

through a simple foreign function interface (FFI)

works through mutable byte arrays
that are shared with C

formally: in the semantics, I/O is modelled by
an oracle function (oracle state = rest of the world)

‣ the new version will also include optimisations 
(proper register allocation, better closure 
conversion, multi-argument function opt)



Going via ML and compilation (revisited)

functions in logic FP code

theorem about functions

with proof

with formal semantics

inside the prover:

applying a verified 
compilation function

ARM, x86, MIPS machine code
with formal semantics binary 

very simple 
translation

using I/O monad stateful

interactive



… but still not good enough

CakeML has automatic memory management…

The correctness theorem allows it to always exit 
with “not enough memory”.

Execution time unpredictable…

In the long run: need language without a GC. Go?

or sublanguage of CakeML



Summary

State-of-the-art:

Future vision:

Ramana Kumar 
(Uni. Cambridge)

Scott Owens
(Uni. Kent)

Collaborators:
Proof scripts contain functional programs.
Proof automation for data refinement, testing etc.
Can generate (without proofs) FP code.
I’ve showed that this can be done with proofs.

Proof assistants should be able to automatically  
produce verified binaries from FP-style definitions.

Usable in real high-assurance applications.

Verified compilation from FP to machine code.

Questions?


