
CakeML
A verified implementation of ML

Ramana Kumar Scott OwensMichael NorrishMagnus Myreen

Ramana Kumar, Magnus Myreen, Michael Norrish, Scott Owens

CakeML Logo: Trần Tiến Dũng

Ramana Kumar, Magnus Myreen, Michael Norrish, Scott Owens

CakeML Logo: Trần Tiến Dũng

Ramana Kumar, Magnus Myreen, Michael Norrish, Scott Owens

CakeML Logo: Trần Tiến Dũng

Ramana Kumar, Magnus Myreen, Michael Norrish, Scott Owens

CakeML Logo: Trần Tiến Dũng

Certification of high-level and low-level programs, IHP, Paris, 2014

Background
From my PhD (2009):

Verified Lisp interpreter
in ARM, x86 and PowerPC machine code

Collaboration with Jared Davis (2011):
Verified Lisp read-eval-print loop
in 64-bit x86 machine code, with dynamic compilation
(plus verification of an ACL2-like theorem prover)

Can we do the same for ML?
A verified implementation of ML
(plus verification of a HOL-like theorem prover?)

Other HOL4 hackers also have relevant interests…

People involved

Ramana Kumar
(Uni. Cambridge)

Michael Norrish
(NICTA, ANU)

Scott Owens
(Uni. Kent)

Magnus Myreen
(Uni. Cambridge)

verified compilation from
CakeML to bytecode

operational semantics

verified type inferencer

verified parsing (syntax is
compatible with SML)

verified x86 implementations

proof-producing code
generation from HOL

Overall aim

proof-producing translation [ICFP’12, JFP’14]

functions in HOL (shallow embedding)

CakeML program (deep embedding)

verified compilation of CakeML [POPL’14]

x86-64 machine code (deep embedding)

to make proof assistants into trustworthy and
practical program development platforms

Trustworthy code extraction:

This talk

Part 1: verified implementation of CakeML

Part 2: current status, HOL light, future

Part 1: verified implementation of CakeML

CakeML: A Verified Implementation of ML

Ramana Kumar ⇤ 1 Magnus O. Myreen † 1 Michael Norrish 2 Scott Owens 3

1 Computer Laboratory, University of Cambridge, UK

2 Canberra Research Lab, NICTA, Australia‡

3 School of Computing, University of Kent, UK

Abstract

We have developed and mechanically verified an ML system called

CakeML, which supports a substantial subset of Standard ML.

CakeML is implemented as an interactive read-eval-print loop

(REPL) in x86-64 machine code. Our correctness theorem ensures

that this REPL implementation prints only those results permitted

by the semantics of CakeML. Our verification effort touches on

a breadth of topics including lexing, parsing, type checking, in-

cremental and dynamic compilation, garbage collection, arbitrary-

precision arithmetic, and compiler bootstrapping.

Our contributions are twofold. The first is simply in build-

ing a system that is end-to-end verified, demonstrating that each

piece of such a verification effort can in practice be composed

with the others, and ensuring that none of the pieces rely on any

over-simplifying assumptions. The second is developing novel ap-

proaches to some of the more challenging aspects of the veri-

fication. In particular, our formally verified compiler can boot-

strap itself: we apply the verified compiler to itself to produce a

verified machine-code implementation of the compiler. Addition-

ally, our compiler proof handles diverging input programs with a

lightweight approach based on logical timeout exceptions. The en-

tire development was carried out in the HOL4 theorem prover.

Categories and Subject Descriptors D.2.4 [Software Engineer-

ing]: Software/Program Verification—Correctness proofs, Formal

methods; F.3.1 [Logics and meanings of programs]: Specifying

and Verifying and Reasoning about Programs—Mechanical veri-

fication, Specification techniques, Invariants

Keywords Compiler verification; compiler bootstrapping; ML;

machine code verification; read-eval-print loop; verified parsing;

verified type checking; verified garbage collection.

⇤ supported by the Gates Cambridge Trust

† supported by the Royal Society, UK

‡ NICTA is funded by the Australian Government through the Department

of Communications and the Australian Research Council through the ICT

Centre of Excellence Program.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

POPL ’14, January 22–24, 2014, San Diego, CA, USA..

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2544-8/14/01. . . $15.00.

http://dx.doi.org/10.1145/2535838.2535841

1. Introduction

The last decade has seen a strong interest in verified compilation;

and there have been significant, high-profile results, many based

on the CompCert compiler for C [1, 14, 16, 29]. This interest is

easy to justify: in the context of program verification, an unverified

compiler forms a large and complex part of the trusted computing

base. However, to our knowledge, none of the existing work on

verified compilers for general-purpose languages has addressed all

aspects of a compiler along two dimensions: one, the compilation

algorithm for converting a program from a source string to a list of

numbers representing machine code, and two, the execution of that

algorithm as implemented in machine code.

Our purpose in this paper is to explain how we have verified

a compiler along the full scope of both of these dimensions for a

practical, general-purpose programming language. Our language is

called CakeML, and it is a strongly typed, impure, strict functional

language based on Standard ML and OCaml. By verified, we mean

that the CakeML system is ultimately x86-64 machine code along-

side a mechanically checked theorem in higher-order logic saying

that running that machine code causes an input program to yield

output or diverge as specified by the semantics of CakeML.

We did not write the CakeML compiler and platform directly in

machine code. Instead we write it in higher-order logic and synthe-

sise CakeML from that using our previous technique [22], which

puts the compiler on equal footing with other CakeML programs.

We then apply the compiler to itself, i.e., we bootstrap it. This

avoids a tedious manual refinement proof relating the compilation

algorithm to its implementation, as well as providing a moderately

large example program. More specifically,

• we write, and can run, the compiler as a function in the logic,

and we synthesise a CakeML implementation of the compiler

inside the logic;

• we bootstrap the compiler to get a machine-code implementa-

tion inside the logic; and

• the compiler correctness theorem thereby applies to the

machine-code implementation of the compiler.

Another consequence of bootstrapping is that we can include the

compiler implementation as part of the runtime system to form an

interactive read-eval-print loop (REPL). A verified REPL enables

high-assurance applications that provide interactivity, an important

feature for interactive theorem provers in the LCF tradition, which

were the original motivation for ML.

Contributions
• Semantics that are carefully designed to be simultaneously suit-

able for proving meta-theoretic language properties and for sup-

porting a verified implementation. (Section 3)

• An extension of a proof-producing synthesis pathway [22] orig-

inally from logic to ML, now to machine code (via verified

compilation). (Sections 4–6, 10)

POPL’14

Dimensions of Compiler Verification

source code

abstract syntax

intermediate language

bytecode

machine code

how far compiler goes

compiler
algorithm

implementation
in ML

implementation
in machine code

interactive call in read-
eval-print loop runtime

the thing that is verified

Our verification covers the full
spectrum of both dimensions.

The CakeML language

“The CakeML language is designed to be both easy
to program in and easy to reason about formally”

was originally

i.e. with almost everything else:
✓ higher-order functions
✓ mutual recursion and polymorphism
✓ datatypes and (nested) pattern matching
✓ references and (user-defined) exceptions
✓ modules, signatures, abstract types

CakeML, the language
= Standard ML without I/O or functors

Reality:

Design:

It is still clean, but not always simple.

light-weight approach to
divergence preservation

with big-step op. sem.

Contributions of POPL’14 paper

main new technique: use
verified compiler to produce

verified implementation

Artefacts Proof techniques

Specifications

Verified Algorithms

Divergence Preservation

Bootstrapping

Proof development where everything fits together.

Approach

Proof by refinement:

Step 1: specification of CakeML language

Step 2: functional implementation in logic

Step 3: production of verified x86-64 code

‣ big-step and small-step operational semantics

‣ read-eval-print-loop as verified function in logic

‣ produced mostly by bootstrapping the compiler

Operational semantics

‣ big-step evaluation relation
‣ environment semantics (cf. substitution sem.)
‣ produces TypeError for badly typed evaluations (e.g. 1+nil)
‣ stuck = divergence

Big-step semantics:

Equivalent small-step semantics:

‣ used for type soundness proof and definition of divergence

Read-eval-print-loop semantics.

Semantics written in Lem, see Mulligan et al. [ICFP’14]

Functional implementation

lexing, parsing

type inference

compilation

re
ad

-e
va

l-p
rin

t-l
oo

p

bytecode execution

Read-eval-print loop defined as rec. function in the logic:

lexing, parsing

Specification:

Context-free grammar (CFG) for significant subset of SML

Implementation:
Parsing-Expression-Grammar (PEG) Parser

Executable lexer.

‣ inductive evaluation relation
‣ executable interpreter for PEGs

Correctness:
Soundness and completeness

‣ induction on length of token list/parse tree and
non-terminal rank

type inference

Specification:

Implementation:

Correctness:

Declarative type system.

Based on Milner’s Algorithm W
Purely functional (uses state-exception monad)

Proved sound w.r.t. declarative type system
Re-use of previous work on verified unification

compilation

Purpose:

Translates (typechecked) CakeML into CakeML Bytecode.

Implementation:

Translation via an intermediate language (IL).

‣ de Bruijn indices
‣ big-step operational semantics

CakeML to IL: makes language more uniform
IL to IL: removes pattern-matching, lightweight opt.
IL to Bytecode: closure conversion, data refinement, tail-call opt.

bytecode executionSemantics of

bc inst ::= Stack bc stack op | PushExc | PopExc
| Return | CallPtr | Call loc
| PushPtr loc | Jump loc | JumpIf loc

| Ref | Deref | Update | Print | PrintC char

| Label n | Tick | Stop
bc stack op ::= Pop | Pops n | Shift n n | PushInt int

| Cons n n | El n | TagEq n | IsBlock n

| Load n | Store n | LoadRev n
| Equal | Less | Add | Sub | Mult | Div | Mod

loc ::= Lab n | Addr n
n = num

bc value ::= Number int | RefPtr n | Block n bc value

⇤

| CodePtr n | StackPtr n
bc state ::= { stack : bc value

⇤; refs : n 7! bc value;
code : bc inst

⇤; pc : n; handler : n;
output : string; names : n 7! string;
clock : n? }

Figure 2. CakeML Bytecode syntax, values, and machine state

6.3 CakeML Bytecode
The target language of the compiler is CakeML Bytecode (Fig-
ure 2), a low-level assembly language for a virtual machine with
a single random-access4 stack.

CakeML Bytecode was designed with three separate goals: to
be (i) conveniently abstract as a target for the compiler and its
proofs, and (ii) easy to map into reasonably efficient machine code
that is (iii) possible to reason about and verify w.r.t. an operational
semantics for x86-64 machine code. To support (i), the bytecode
has no notion of pointers to the heap, and provides structured
data (Cons packs multiple bytecode values into a Block) on the
stack instead. Also, the bytecode Number values are mathematical
integers; the x86-64 implementation includes a bignum library
to implement the arithmetic instructions. For (ii), we ensure that
most bytecode instructions map to one or two x86-64 machine
instructions; and for (iii), the bytecode essentially only operates
over a single ‘stack’, the x86-64 stack which we access using
the normal stack and base pointers, rsp and rbp registers. (See
Section 10 for the implementation of the bytecode in x86-64.)

The bytecode semantics is a deterministic state transition sys-
tem: the relation bs1 ! bs2 fetches from code the instruction
indicated by pc and executes it to produce the next machine state.
We give some example clauses in Figure 3.

Our data refinement relation l, r,Cv |= bv says bv is a byte-
code value representing the IL value Cv . It is parameterised by two
functions: l to translate labels to bytecode addresses, and r provid-
ing extra information about code pointers for closures.

The refinement of closures is most interesting. There are two
components to a closure: its body expression, and its environment
which may refer to other closures in mutual recursion. We use a
correspondence of labels to link a code pointer to an annotated
IL body, and for the environment, we assume the IL annotations
correctly specify the closure environment. In the IL, a closure
looks like CRecClos env defs n, where env is the enclosing5

environment, and the body is the nth element of the bundle of
recursive definitions defs . We say

l, r,CRecClos env defs n |= Block c [CodePtr a;Block e bvs]

holds (c and e are tags indicating closure and environment Blocks)
when:

4 Most operations work on the top of the stack, but Load n and Store n

read/write the cell n places below the top, and LoadRev takes an index
from the bottom.
5 Annotations on defs[n] build the closure environment from env .

fetch(bs) = Stack (Cons t n) bs.stack = vs @ xs |vs| = n

bs ! (bump bs){stack = Block t (rev vs) :: xs}

fetch(bs) = Return bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: xs; pc = ptr}

fetch(bs) = CallPtr bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: CodePtr (bump bs).pc :: xs; pc = ptr}

fetch(bs) = PushExc bs.stack = xs bs

0 = bump bs

bs ! bs

0{stack = StackPtr (bs.handler) :: xs; handler = |xs|}

fetch(bs) = PopExc bs.handler = |ys|
bs.stack = x :: xs @StackPtr h :: ys

bs ! (bump bs){stack = x :: ys; handler = h}

Figure 3. CakeML Bytecode semantics (selection). The helper
function fetch calculates the next instruction using the pc and code,
and bump updates the pc to the next instruction.

•
defs[n] has label lab and annotations ann , l(lab) = a, and
|ann| = |bvs|;

• for every variable x with an env annotation in ann , the corre-
sponding bytecode value bv in bvs satisfies l, r, env(x) |= bv ;
and,

• for every variable with a rec i annotation in ann , the corre-
sponding bytecode value in bvs is RefPtr p, for some p, and
there are env

0, defs 0, and j such that r(p) = (env 0, defs 0, j)
and CRecClos env defs i ⇡ CRecClos env

0
defs

0 j.
Thus, for a function in mutual recursion we assume it is behind
the indirection of a RefPtr; the function r acts as an oracle in-
dicating the closure that should be pointed to. To tie the knot,
the inductive hypothesis in our compilation proof says whenever
r(p) = (env 0, defs 0, j) the bytecode machine refs binds p to a
value bv satisfying l, r,CRecClos env defs j |= bv .

6.4 Translation to Bytecode
The main compilation algorithm takes an IL expression as input and
produces bytecode instructions. Additional context for the compiler
includes an environment binding IL variables to stack offsets, and
a return context indicating the number of variables that need to be
discarded before a jump if the expression is in tail position.

The correctness theorem for this phase is similar to Theorem 8
(whose proof uses this one as a lemma), assuming evaluation in
the IL semantics rather than the source semantics. In particular, we
have a relation called IL inv that captures an invariant between the
IL environment and store, the compiler state, the bytecode machine
state, and proof information like the l and r functions. This relation
is used in the definition of compiler inv, which crosses the three
languages (CakeML, IL, Bytecode). The theorem below depends
only on the IL and the bytecode.

Theorem 12. If the IL semantics says Cexp evaluates in environ-
ment Cenv and store Cs to a new store Cs 0 and result Cres , and all
the values in the context are fully annotated, then for all bytecode
machine states bs satisfying IL inv with Cenv and Cs (and proof
information including l and r), then
• If Cres is a value, Cv , then

Running bs with code from compiling Cexp in non-tail
position leads the bytecode machine to terminate in a new
state bs

0 such that IL inv holds of Cenv , Cs 0, and bs

0, and
bs

0.stack = bv :: bs.stack with l, r0,Cv |= bv ; and,

bc inst ::= Stack bc stack op | PushExc | PopExc
| Return | CallPtr | Call loc
| PushPtr loc | Jump loc | JumpIf loc

| Ref | Deref | Update | Print | PrintC char

| Label n | Tick | Stop
bc stack op ::= Pop | Pops n | Shift n n | PushInt int

| Cons n n | El n | TagEq n | IsBlock n

| Load n | Store n | LoadRev n
| Equal | Less | Add | Sub | Mult | Div | Mod

loc ::= Lab n | Addr n
n = num

bc value ::= Number int | RefPtr n | Block n bc value

⇤

| CodePtr n | StackPtr n
bc state ::= { stack : bc value

⇤; refs : n 7! bc value;
code : bc inst

⇤; pc : n; handler : n;
output : string; names : n 7! string;
clock : n? }

Figure 2. CakeML Bytecode syntax, values, and machine state

6.3 CakeML Bytecode
The target language of the compiler is CakeML Bytecode (Fig-
ure 2), a low-level assembly language for a virtual machine with
a single random-access4 stack.

CakeML Bytecode was designed with three separate goals: to
be (i) conveniently abstract as a target for the compiler and its
proofs, and (ii) easy to map into reasonably efficient machine code
that is (iii) possible to reason about and verify w.r.t. an operational
semantics for x86-64 machine code. To support (i), the bytecode
has no notion of pointers to the heap, and provides structured
data (Cons packs multiple bytecode values into a Block) on the
stack instead. Also, the bytecode Number values are mathematical
integers; the x86-64 implementation includes a bignum library
to implement the arithmetic instructions. For (ii), we ensure that
most bytecode instructions map to one or two x86-64 machine
instructions; and for (iii), the bytecode essentially only operates
over a single ‘stack’, the x86-64 stack which we access using
the normal stack and base pointers, rsp and rbp registers. (See
Section 10 for the implementation of the bytecode in x86-64.)

The bytecode semantics is a deterministic state transition sys-
tem: the relation bs1 ! bs2 fetches from code the instruction
indicated by pc and executes it to produce the next machine state.
We give some example clauses in Figure 3.

Our data refinement relation l, r,Cv |= bv says bv is a byte-
code value representing the IL value Cv . It is parameterised by two
functions: l to translate labels to bytecode addresses, and r provid-
ing extra information about code pointers for closures.

The refinement of closures is most interesting. There are two
components to a closure: its body expression, and its environment
which may refer to other closures in mutual recursion. We use a
correspondence of labels to link a code pointer to an annotated
IL body, and for the environment, we assume the IL annotations
correctly specify the closure environment. In the IL, a closure
looks like CRecClos env defs n, where env is the enclosing5

environment, and the body is the nth element of the bundle of
recursive definitions defs . We say

l, r,CRecClos env defs n |= Block c [CodePtr a;Block e bvs]

holds (c and e are tags indicating closure and environment Blocks)
when:

4 Most operations work on the top of the stack, but Load n and Store n

read/write the cell n places below the top, and LoadRev takes an index
from the bottom.
5 Annotations on defs[n] build the closure environment from env .

fetch(bs) = Stack (Cons t n) bs.stack = vs @ xs |vs| = n

bs ! (bump bs){stack = Block t (rev vs) :: xs}

fetch(bs) = Return bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: xs; pc = ptr}

fetch(bs) = CallPtr bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: CodePtr (bump bs).pc :: xs; pc = ptr}

fetch(bs) = PushExc bs.stack = xs bs

0 = bump bs

bs ! bs

0{stack = StackPtr (bs.handler) :: xs; handler = |xs|}

fetch(bs) = PopExc bs.handler = |ys|
bs.stack = x :: xs @StackPtr h :: ys

bs ! (bump bs){stack = x :: ys; handler = h}

Figure 3. CakeML Bytecode semantics (selection). The helper
function fetch calculates the next instruction using the pc and code,
and bump updates the pc to the next instruction.

•
defs[n] has label lab and annotations ann , l(lab) = a, and
|ann| = |bvs|;

• for every variable x with an env annotation in ann , the corre-
sponding bytecode value bv in bvs satisfies l, r, env(x) |= bv ;
and,

• for every variable with a rec i annotation in ann , the corre-
sponding bytecode value in bvs is RefPtr p, for some p, and
there are env

0, defs 0, and j such that r(p) = (env 0, defs 0, j)
and CRecClos env defs i ⇡ CRecClos env

0
defs

0 j.
Thus, for a function in mutual recursion we assume it is behind
the indirection of a RefPtr; the function r acts as an oracle in-
dicating the closure that should be pointed to. To tie the knot,
the inductive hypothesis in our compilation proof says whenever
r(p) = (env 0, defs 0, j) the bytecode machine refs binds p to a
value bv satisfying l, r,CRecClos env defs j |= bv .

6.4 Translation to Bytecode
The main compilation algorithm takes an IL expression as input and
produces bytecode instructions. Additional context for the compiler
includes an environment binding IL variables to stack offsets, and
a return context indicating the number of variables that need to be
discarded before a jump if the expression is in tail position.

The correctness theorem for this phase is similar to Theorem 8
(whose proof uses this one as a lemma), assuming evaluation in
the IL semantics rather than the source semantics. In particular, we
have a relation called IL inv that captures an invariant between the
IL environment and store, the compiler state, the bytecode machine
state, and proof information like the l and r functions. This relation
is used in the definition of compiler inv, which crosses the three
languages (CakeML, IL, Bytecode). The theorem below depends
only on the IL and the bytecode.

Theorem 12. If the IL semantics says Cexp evaluates in environ-
ment Cenv and store Cs to a new store Cs 0 and result Cres , and all
the values in the context are fully annotated, then for all bytecode
machine states bs satisfying IL inv with Cenv and Cs (and proof
information including l and r), then
• If Cres is a value, Cv , then

Running bs with code from compiling Cexp in non-tail
position leads the bytecode machine to terminate in a new
state bs

0 such that IL inv holds of Cenv , Cs 0, and bs

0, and
bs

0.stack = bv :: bs.stack with l, r0,Cv |= bv ; and,

Instructions:

Small-step semantics; values and state:

bytecode executionSemantics of

Sample rules:

bc inst ::= Stack bc stack op | PushExc | PopExc
| Return | CallPtr | Call loc
| PushPtr loc | Jump loc | JumpIf loc

| Ref | Deref | Update | Print | PrintC char

| Label n | Tick | Stop
bc stack op ::= Pop | Pops n | Shift n n | PushInt int

| Cons n n | El n | TagEq n | IsBlock n

| Load n | Store n | LoadRev n
| Equal | Less | Add | Sub | Mult | Div | Mod

loc ::= Lab n | Addr n
n = num

bc value ::= Number int | RefPtr n | Block n bc value

⇤

| CodePtr n | StackPtr n
bc state ::= { stack : bc value

⇤; refs : n 7! bc value;
code : bc inst

⇤; pc : n; handler : n;
output : string; names : n 7! string;
clock : n? }

Figure 2. CakeML Bytecode syntax, values, and machine state

6.3 CakeML Bytecode
The target language of the compiler is CakeML Bytecode (Fig-
ure 2), a low-level assembly language for a virtual machine with
a single random-access4 stack.

CakeML Bytecode was designed with three separate goals: to
be (i) conveniently abstract as a target for the compiler and its
proofs, and (ii) easy to map into reasonably efficient machine code
that is (iii) possible to reason about and verify w.r.t. an operational
semantics for x86-64 machine code. To support (i), the bytecode
has no notion of pointers to the heap, and provides structured
data (Cons packs multiple bytecode values into a Block) on the
stack instead. Also, the bytecode Number values are mathematical
integers; the x86-64 implementation includes a bignum library
to implement the arithmetic instructions. For (ii), we ensure that
most bytecode instructions map to one or two x86-64 machine
instructions; and for (iii), the bytecode essentially only operates
over a single ‘stack’, the x86-64 stack which we access using
the normal stack and base pointers, rsp and rbp registers. (See
Section 10 for the implementation of the bytecode in x86-64.)

The bytecode semantics is a deterministic state transition sys-
tem: the relation bs1 ! bs2 fetches from code the instruction
indicated by pc and executes it to produce the next machine state.
We give some example clauses in Figure 3.

Our data refinement relation l, r,Cv |= bv says bv is a byte-
code value representing the IL value Cv . It is parameterised by two
functions: l to translate labels to bytecode addresses, and r provid-
ing extra information about code pointers for closures.

The refinement of closures is most interesting. There are two
components to a closure: its body expression, and its environment
which may refer to other closures in mutual recursion. We use a
correspondence of labels to link a code pointer to an annotated
IL body, and for the environment, we assume the IL annotations
correctly specify the closure environment. In the IL, a closure
looks like CRecClos env defs n, where env is the enclosing5

environment, and the body is the nth element of the bundle of
recursive definitions defs . We say

l, r,CRecClos env defs n |= Block c [CodePtr a;Block e bvs]

holds (c and e are tags indicating closure and environment Blocks)
when:

4 Most operations work on the top of the stack, but Load n and Store n

read/write the cell n places below the top, and LoadRev takes an index
from the bottom.
5 Annotations on defs[n] build the closure environment from env .

fetch(bs) = Stack (Cons t n) bs.stack = vs @ xs |vs| = n

bs ! (bump bs){stack = Block t (rev vs) :: xs}

fetch(bs) = Return bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: xs; pc = ptr}

fetch(bs) = CallPtr bs.stack = x :: CodePtr ptr :: xs

bs ! bs{stack = x :: CodePtr (bump bs).pc :: xs; pc = ptr}

fetch(bs) = PushExc bs.stack = xs bs

0 = bump bs

bs ! bs

0{stack = StackPtr (bs.handler) :: xs; handler = |xs|}

fetch(bs) = PopExc bs.handler = |ys|
bs.stack = x :: xs @StackPtr h :: ys

bs ! (bump bs){stack = x :: ys; handler = h}

Figure 3. CakeML Bytecode semantics (selection). The helper
function fetch calculates the next instruction using the pc and code,
and bump updates the pc to the next instruction.

•
defs[n] has label lab and annotations ann , l(lab) = a, and
|ann| = |bvs|;

• for every variable x with an env annotation in ann , the corre-
sponding bytecode value bv in bvs satisfies l, r, env(x) |= bv ;
and,

• for every variable with a rec i annotation in ann , the corre-
sponding bytecode value in bvs is RefPtr p, for some p, and
there are env

0, defs 0, and j such that r(p) = (env 0, defs 0, j)
and CRecClos env defs i ⇡ CRecClos env

0
defs

0 j.
Thus, for a function in mutual recursion we assume it is behind
the indirection of a RefPtr; the function r acts as an oracle in-
dicating the closure that should be pointed to. To tie the knot,
the inductive hypothesis in our compilation proof says whenever
r(p) = (env 0, defs 0, j) the bytecode machine refs binds p to a
value bv satisfying l, r,CRecClos env defs j |= bv .

6.4 Translation to Bytecode
The main compilation algorithm takes an IL expression as input and
produces bytecode instructions. Additional context for the compiler
includes an environment binding IL variables to stack offsets, and
a return context indicating the number of variables that need to be
discarded before a jump if the expression is in tail position.

The correctness theorem for this phase is similar to Theorem 8
(whose proof uses this one as a lemma), assuming evaluation in
the IL semantics rather than the source semantics. In particular, we
have a relation called IL inv that captures an invariant between the
IL environment and store, the compiler state, the bytecode machine
state, and proof information like the l and r functions. This relation
is used in the definition of compiler inv, which crosses the three
languages (CakeML, IL, Bytecode). The theorem below depends
only on the IL and the bytecode.

Theorem 12. If the IL semantics says Cexp evaluates in environ-
ment Cenv and store Cs to a new store Cs 0 and result Cres , and all
the values in the context are fully annotated, then for all bytecode
machine states bs satisfying IL inv with Cenv and Cs (and proof
information including l and r), then
• If Cres is a value, Cv , then

Running bs with code from compiling Cexp in non-tail
position leads the bytecode machine to terminate in a new
state bs

0 such that IL inv holds of Cenv , Cs 0, and bs

0, and
bs

0.stack = bv :: bs.stack with l, r0,Cv |= bv ; and,

compilation

Correctness:

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

Shape of correctness theorem:

Proved in the direction of compilation.

Bytecode semantics step relation

What about divergence?
We want: generated code diverges

if and only if source code diverges

Big-step semantics:
• has an optional clock component
• clock ‘ticks’ decrements every time a function is applied
• once clock hits zero, execution stops with a TimeOut

Why do this?

• because now big-step semantics describes both
terminating and non-terminating evaluations

8exp env clock . 9res. (exp, env , Some clock) +ev res

for every exp env clock there is some result

produced by the semantics

either: Result
or TimeOut

Idea: add logical clock

Evaluation diverges if

8clock . (exp, env , Some clock) +ev TimeOut

TimeOut happensfor all clock values

Divergence

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

Compiler correctness proved in conventional forward direction:

Bytecode has clock … that stays in sync with CakeML clock

Theorem: bytecode diverges if and only if CakeML eval diverges

Step 3: production of verified x86-64 code

Verified x86-64 Implementation

Real executable also has 30-line unverified C wrapper.

parsing

type inference

compilation

re
ad

-e
va

l-p
rin

t-l
oo

p

bytecode execution

garbage collector

bignum library

lexer

hand-crafted verified
machine code based
on previous work.

verified x86-64 code
generated using
bootstrapping of the
verified compiler.

JIT: translates Bytecode to
machine code; jumps to

generated machine code.

Translation into x86-64

• the rest of the bytecode stack is kept in the x86-64 stack, i.e., all
values in the x86-64 stack are roots for the garbage collector,

• the stack is accessed through the normal stack and base point-
ers, registers rsp and rbp;

• other registers and state keep track of temporary values, the
state of the allocator and system configuration.

• output is produced via calls to a special code pointer, for which
we have an assumption that each call to this code pointer puts a
character onto some external stream (in practice we link to C’s
putc routine). Input is handled similarly (using getc).

• memory contains code for supporting routines: the verified
garbage collector, arbitrary-precision arithmetic library etc.

The garbage collector updates the heap and the stack (i.e., the roots
for the heap), both of which can contain code pointers and stack
pointers. In order for the garbage collector to distinguish between
data pointers and code/stack pointers all code/stack pointers must
have zero as the least significant bit (i.e., appear to be small inte-
gers). We ensure that all code pointers end with zero as the least
significant bit by making sure that each bytecode instruction is
mapped into x86-64 machine code that is of even length.

Implementation of CakeML Bytecode Having formalised the
representation of bytecode states, we define a function that maps
CakeML Bytecode instructions into concrete x86-64 machine in-
structions (i.e. lists of bytes). Here i is the index of the instruction
that is to be translated (i is used for the translation of branch in-
structions, such as Jump).

x64 i (Stack Pop) = [0x48, 0x58]
x64 i (Stack Add) = [0x48, . . .]

...

Entire bytecode programs are translated by x64 code:
x64 code i [] = []

x64 code i (x :: xs) = let c = x64 i x in

c @ x64 code (i+ length c) xs

We prove a few key lemmas about the execution of the gener-
ated x86-64 machine code.

Theorem 21 (x64 code Implements Bytecode Steps). The code
generated by x64 code is faithful to the execution of each of
the CakeML Bytecode instructions. Each instruction executes
at least one x86-64 instruction (hence later). Note that exe-
cution must either reach the target state or resort to an error
(out of memory error).

bs ! bs

0 =)
temporal {(base, x64 code 0 bs.code)}
(now (bc heap bs (base, aux)))

later (now (bc heap bs

0 (base, aux))
_ now (out of memory error aux)))

Proof sketch. For simple cases of the bytecode step relation
(!), the proof was manual using the programming logic from
Myreen [19]. More complex instruction snippets (such as the sup-
porting routines) were produced using a combination of manual
proof and proof-producing synthesis (e.g. [20]).

Theorem 22 (x64 code Implements Terminating Bytecode Execu-
tions). Same as the theorem above, but with +

bc

instead of !.

Proof sketch. Induction on the number of steps.

Theorem 23 (x86-64 Implementation of REPL
i

step). Executing
the x64 code-generated code for the result of the bootstrapping (i.e.
bytecode) and the bytecode snippet that calls repl step has the
desired effect w.r.t. bc heap.

Proof sketch. Follows from theorems 18, 19 and 22.

The only source of possible divergence in our x86-64 imple-
mentation of REPL

i

is the execution performed by bc eval. When
the logic function bc eval returns None, we want to know that the
underlying machine gets stuck in an infinite loop and that the output
stays the same. (Only the top-level loop is able to print output.)

repl diverged out aux =
⇤⌃(now (9bs. bc heap bs aux ⇤ (bs.output = out)))

Theorem 24 (x86-64 Divergence). For any bs , such that
bc eval bs = None, we have:

(8bs 0. bs !⇤
bs

0 =) bs.output = bs

0
.output) =)

temporal {(base, x64 code 0 bs.code)}
(now (bc heap bs (base, aux)))

later (repl diverged bs.output aux)
_ now (out of memory error aux)))

Proof sketch. Theorem 21 and temporal logic.

Top-level Correctness Theorem The top-level theorem for the
entire x86-64 implementation is stated as follows.

Theorem 25 (x86-64 Implementation of REPL
s

). If the state starts
from a good initial state (init), then execution behaves according to
REPL

s

l for some list l of type inference failures.

temporal entire machine code implementation

(now (init inp aux))
later ((9l res. repl returns (out res) aux ^

(REPL
s

l inp res ^ terminates res))
_
(9l res. repl diverged (out res) aux ^

(REPL
s

l inp res ^ ¬terminates res))
_
now (out of memory error aux)))

Here repl returns states that control is returned to the return pointer
of aux , and out and terminates are defined as follows.

out Terminate = ""

out Diverge = ""

out (Result str rest) = str @ out rest

terminates Terminate = true

terminates Diverge = false

terminates (Result str rest) = terminates rest

Proof sketch. The execution of bytecode is verified as sketched
above. The other parts of the x86-64 implementation (the setup
code, the lexer and the code that ties together the top-level loop)
was verified, again, using a combination of manual Hoare logic
reasoning and proof-producing synthesis. Theorem 14 was used to
replace REPL

i

by the top-level specification REPL

s

.

11. Small Benchmarks
To run the verified x86-64 machine code, we inline the code into a
30-line C program, which essentially just allocates memory (with
execute permissions enabled) then runs it (passing in function
pointers for getc and putc).

The result of running a few benchmarks is shown below. Exe-
cution times are compared with interpreted OCaml: CakeML runs
the Fibonacci example 2.2 times faster than interpreted OCaml.

compiled OCaml Poly/ML CakeML
Fibonacci 7.9 4.6 2.2
Quicksort 3.1 10.0 0.6
Batched queue 2.0 12.9 0.4
Binary tree 4.3 5.6 0.6

The Fibonacci benchmark computes the 31st Fibonacci number

Correctness:

Each Bytecode instruction is correctly executed by
generated x86-64 code.

heap invariant / memory abstraction

Extract of definition:

x64 i Pop = [0x48, 0x58]

x64_code i (x::xs) = x64 i x @ x64_code (i + …) xs

each bytecode inst. maps to some x86

Bootstrapping the verified compiler

CakeML program (COMPILE) such that:
⊢ COMPILE implements compile

by proof-producing synthesis [ICFP’12]

parsing

type inference

compilation

function in logic: compile

Production of verified x86-64

⊢ compile-to-x64 COMPILE = x64-code
Proof by evaluation inside the logic:

Combination of theorems:
⊢ x64-code implements compile

⊢ ∀prog. compile-to-x64 prog implements prog
Compiler correctness theorem:

Top-level theorem

• the rest of the bytecode stack is kept in the x86-64 stack, i.e., all
values in the x86-64 stack are roots for the garbage collector,

• the stack is accessed through the normal stack and base point-
ers, registers rsp and rbp;

• other registers and state keep track of temporary values, the
state of the allocator and system configuration.

• output is produced via calls to a special code pointer, for which
we have an assumption that each call to this code pointer puts a
character onto some external stream (in practice we link to C’s
putc routine). Input is handled similarly (using getc).

• memory contains code for supporting routines: the verified
garbage collector, arbitrary-precision arithmetic library etc.

The garbage collector updates the heap and the stack (i.e., the roots
for the heap), both of which can contain code pointers and stack
pointers. In order for the garbage collector to distinguish between
data pointers and code/stack pointers all code/stack pointers must
have zero as the least significant bit (i.e., appear to be small inte-
gers). We ensure that all code pointers end with zero as the least
significant bit by making sure that each bytecode instruction is
mapped into x86-64 machine code that is of even length.

Implementation of CakeML Bytecode Having formalised the
representation of bytecode states, we define a function that maps
CakeML Bytecode instructions into concrete x86-64 machine in-
structions (i.e. lists of bytes). Here i is the index of the instruction
that is to be translated (i is used for the translation of branch in-
structions, such as Jump).

x64 i (Stack Pop) = [0x48, 0x58]
x64 i (Stack Add) = [0x48, . . .]

...

Entire bytecode programs are translated by x64 code:
x64 code i [] = []

x64 code i (x :: xs) = let c = x64 i x in

c @ x64 code (i+ length c) xs

We prove a few key lemmas about the execution of the gener-
ated x86-64 machine code.

Theorem 21 (x64 code Implements Bytecode Steps). The code
generated by x64 code is faithful to the execution of each of
the CakeML Bytecode instructions. Each instruction executes
at least one x86-64 instruction (hence later). Note that exe-
cution must either reach the target state or resort to an error
(out of memory error).

bs ! bs

0 =)
temporal {(base, x64 code 0 bs.code)}
(now (bc heap bs (base, aux)))

later (now (bc heap bs

0 (base, aux))
_ now (out of memory error aux)))

Proof sketch. For simple cases of the bytecode step relation
(!), the proof was manual using the programming logic from
Myreen [19]. More complex instruction snippets (such as the sup-
porting routines) were produced using a combination of manual
proof and proof-producing synthesis (e.g. [20]).

Theorem 22 (x64 code Implements Terminating Bytecode Execu-
tions). Same as the theorem above, but with +

bc

instead of !.

Proof sketch. Induction on the number of steps.

Theorem 23 (x86-64 Implementation of REPL
i

step). Executing
the x64 code-generated code for the result of the bootstrapping (i.e.
bytecode) and the bytecode snippet that calls repl step has the
desired effect w.r.t. bc heap.

Proof sketch. Follows from theorems 18, 19 and 22.

The only source of possible divergence in our x86-64 imple-
mentation of REPL

i

is the execution performed by bc eval. When
the logic function bc eval returns None, we want to know that the
underlying machine gets stuck in an infinite loop and that the output
stays the same. (Only the top-level loop is able to print output.)

repl diverged out aux =
⇤⌃(now (9bs. bc heap bs aux ⇤ (bs.output = out)))

Theorem 24 (x86-64 Divergence). For any bs , such that
bc eval bs = None, we have:

(8bs 0. bs !⇤
bs

0 =) bs.output = bs

0
.output) =)

temporal {(base, x64 code 0 bs.code)}
(now (bc heap bs (base, aux)))

later (repl diverged bs.output aux)
_ now (out of memory error aux)))

Proof sketch. Theorem 21 and temporal logic.

Top-level Correctness Theorem The top-level theorem for the
entire x86-64 implementation is stated as follows.

Theorem 25 (x86-64 Implementation of REPL
s

). If the state starts
from a good initial state (init), then execution behaves according to
REPL

s

l for some list l of type inference failures.

temporal entire machine code implementation

(now (init inp aux))
later ((9l res. repl returns (out res) aux ^

(REPL
s

l inp res ^ terminates res))
_
(9l res. repl diverged (out res) aux ^

(REPL
s

l inp res ^ ¬terminates res))
_
now (out of memory error aux)))

Here repl returns states that control is returned to the return pointer
of aux , and out and terminates are defined as follows.

out Terminate = ""

out Diverge = ""

out (Result str rest) = str @ out rest

terminates Terminate = true

terminates Diverge = false

terminates (Result str rest) = terminates rest

Proof sketch. The execution of bytecode is verified as sketched
above. The other parts of the x86-64 implementation (the setup
code, the lexer and the code that ties together the top-level loop)
was verified, again, using a combination of manual Hoare logic
reasoning and proof-producing synthesis. Theorem 14 was used to
replace REPL

i

by the top-level specification REPL

s

.

11. Small Benchmarks
To run the verified x86-64 machine code, we inline the code into a
30-line C program, which essentially just allocates memory (with
execute permissions enabled) then runs it (passing in function
pointers for getc and putc).

The result of running a few benchmarks is shown below. Exe-
cution times are compared with interpreted OCaml: CakeML runs
the Fibonacci example 2.2 times faster than interpreted OCaml.

compiled OCaml Poly/ML CakeML
Fibonacci 7.9 4.6 2.2
Quicksort 3.1 10.0 0.6
Batched queue 2.0 12.9 0.4
Binary tree 4.3 5.6 0.6

The Fibonacci benchmark computes the 31st Fibonacci number

• the rest of the bytecode stack is kept in the x86-64 stack, i.e., all
values in the x86-64 stack are roots for the garbage collector,

• the stack is accessed through the normal stack and base point-
ers, registers rsp and rbp;

• other registers and state keep track of temporary values, the
state of the allocator and system configuration.

• output is produced via calls to a special code pointer, for which
we have an assumption that each call to this code pointer puts a
character onto some external stream (in practice we link to C’s
putc routine). Input is handled similarly (using getc).

• memory contains code for supporting routines: the verified
garbage collector, arbitrary-precision arithmetic library etc.

The garbage collector updates the heap and the stack (i.e., the roots
for the heap), both of which can contain code pointers and stack
pointers. In order for the garbage collector to distinguish between
data pointers and code/stack pointers all code/stack pointers must
have zero as the least significant bit (i.e., appear to be small inte-
gers). We ensure that all code pointers end with zero as the least
significant bit by making sure that each bytecode instruction is
mapped into x86-64 machine code that is of even length.

Implementation of CakeML Bytecode Having formalised the
representation of bytecode states, we define a function that maps
CakeML Bytecode instructions into concrete x86-64 machine in-
structions (i.e. lists of bytes). Here i is the index of the instruction
that is to be translated (i is used for the translation of branch in-
structions, such as Jump).

x64 i (Stack Pop) = [0x48, 0x58]
x64 i (Stack Add) = [0x48, . . .]

...

Entire bytecode programs are translated by x64 code:
x64 code i [] = []

x64 code i (x :: xs) = let c = x64 i x in

c @ x64 code (i+ length c) xs

We prove a few key lemmas about the execution of the gener-
ated x86-64 machine code.

Theorem 21 (x64 code Implements Bytecode Steps). The code
generated by x64 code is faithful to the execution of each of
the CakeML Bytecode instructions. Each instruction executes
at least one x86-64 instruction (hence later). Note that exe-
cution must either reach the target state or resort to an error
(out of memory error).

bs ! bs

0 =)
temporal {(base, x64 code 0 bs.code)}
(now (bc heap bs (base, aux)))

later (now (bc heap bs

0 (base, aux))
_ now (out of memory error aux)))

Proof sketch. For simple cases of the bytecode step relation
(!), the proof was manual using the programming logic from
Myreen [19]. More complex instruction snippets (such as the sup-
porting routines) were produced using a combination of manual
proof and proof-producing synthesis (e.g. [20]).

Theorem 22 (x64 code Implements Terminating Bytecode Execu-
tions). Same as the theorem above, but with +

bc

instead of !.

Proof sketch. Induction on the number of steps.

Theorem 23 (x86-64 Implementation of REPL
i

step). Executing
the x64 code-generated code for the result of the bootstrapping (i.e.
bytecode) and the bytecode snippet that calls repl step has the
desired effect w.r.t. bc heap.

Proof sketch. Follows from theorems 18, 19 and 22.

The only source of possible divergence in our x86-64 imple-
mentation of REPL

i

is the execution performed by bc eval. When
the logic function bc eval returns None, we want to know that the
underlying machine gets stuck in an infinite loop and that the output
stays the same. (Only the top-level loop is able to print output.)

repl diverged out aux =
⇤⌃(now (9bs. bc heap bs aux ⇤ (bs.output = out)))

Theorem 24 (x86-64 Divergence). For any bs , such that
bc eval bs = None, we have:

(8bs 0. bs !⇤
bs

0 =) bs.output = bs

0
.output) =)

temporal {(base, x64 code 0 bs.code)}
(now (bc heap bs (base, aux)))

later (repl diverged bs.output aux)
_ now (out of memory error aux)))

Proof sketch. Theorem 21 and temporal logic.

Top-level Correctness Theorem The top-level theorem for the
entire x86-64 implementation is stated as follows.

Theorem 25 (x86-64 Implementation of REPL
s

). If the state starts
from a good initial state (init), then execution behaves according to
REPL

s

l for some list l of type inference failures.

temporal entire machine code implementation

(now (init inp aux))
later ((9l res. repl returns (out res) aux ^

(REPL
s

l inp res ^ terminates res))
_
(9l res. repl diverged (out res) aux ^

(REPL
s

l inp res ^ ¬terminates res))
_
now (out of memory error aux)))

Here repl returns states that control is returned to the return pointer
of aux , and out and terminates are defined as follows.

out Terminate = ""

out Diverge = ""

out (Result str rest) = str @ out rest

terminates Terminate = true

terminates Diverge = false

terminates (Result str rest) = terminates rest

Proof sketch. The execution of bytecode is verified as sketched
above. The other parts of the x86-64 implementation (the setup
code, the lexer and the code that ties together the top-level loop)
was verified, again, using a combination of manual Hoare logic
reasoning and proof-producing synthesis. Theorem 14 was used to
replace REPL

i

by the top-level specification REPL

s

.

11. Small Benchmarks
To run the verified x86-64 machine code, we inline the code into a
30-line C program, which essentially just allocates memory (with
execute permissions enabled) then runs it (passing in function
pointers for getc and putc).

The result of running a few benchmarks is shown below. Exe-
cution times are compared with interpreted OCaml: CakeML runs
the Fibonacci example 2.2 times faster than interpreted OCaml.

compiled OCaml Poly/ML CakeML
Fibonacci 7.9 4.6 2.2
Quicksort 3.1 10.0 0.6
Batched queue 2.0 12.9 0.4
Binary tree 4.3 5.6 0.6

The Fibonacci benchmark computes the 31st Fibonacci number

Top-level specification:

Correctness theorem:

input string

result output: list of strings that ends
in either Terminate or Diverge

large due to bootstrapping

Numbers
Performance:

Slow: interpreted OCaml is 1x faster (… future work!)

Effort:
~70k lines of proof script in HOL4

Size:
875,812 instructions of verified x86-64 machine code

< 5 man-years, but builds on a lot of previous work

implementation generates
more instructions at runtime

This talk

Part 1: verified implementation of CakeML

Part 2: current status, HOL light, future

Current status

Current compiler:

string tokens AST IL bytecode x86

huge step huge step

Bytecode simplified proofs of
read-eval-print loop, but made

optimisation impossible.

Future plans
Refactored compiler:

string tokens AST IL-1

IL-2

IL-N

…

ASM

split into more conventional compiler phases

ARM

x86-64

MIPS-64

asm.jsAnthony Fox joins project and helps with final phases

closure compilation

removal of memory abstraction

register allocation

module compilation

pattern-match compilation

… as separate phases.

Verified examples on CakeML

Verification infrastructure:

for developing cool verified examples.

• have: synthesis tool that maps HOL into CakeML [ICFP’12]
• future: integration with Arthur Charguéraud’s characteristic

formulae technology [ICFP’10, ICFP’11]

Big example: verified HOL light

ML was originally developed to host theorem provers.

Aim: verified HOL theorem prover.

We have:
• syntax, semantics and soundness of HOL (stateful, stateless)
• verified implementation of the HOL light kernel in CakeML

(produced through synthesis)

Still to do:
• soundness of kernel ⇒ soundness of entire HOL light

• run HOL light standard library on top of CakeML

Freek Wiedijk is translating HOL light sources to CakeML

First(?) bootstrapping of a formally verified compiler.

Summary

Contributions so far:

New lightweight method for divergence preservation.

Questions? Suggestions?

Long-term aim:
An ecosystem of tools and proofs around CakeML lang.

Current work:

Verified I/O (foreign-function interface). seL4.
Formally verified implementation of HOL light.

Compiler improvements (new ILs, opt, targets).

