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Machine Code

This talk is about machine-code verification.

0: E3A00000
4: E3510000
3: 12800001
12: 15911000
16: 1AFFFFFB
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Verification of Machine Code

Challenges:

machine code

cote )

ARM/x86/PowerPC model
(1000...10,000 lines each)

Contribution: tools/methods which
e expose as little as possible of the big models to the user
* makes non-automatic proofs independent of the models

correctness

{P} code {Q}



Decompilation into Logic

Example: given some (hard-to-read) ARM machine code

O: E3A00000 mov rO, #0O

4: E3510000 L: cmp r1, #0

8: 12800001 addne rO, rO, #1
12: 15911000 ldrne r1, [ri]
16: 1AFFFFFB bne L



Decompilation into Logic

Example: given some (hard-to-read) ARM machine code

O: E3A00000 mov rO, #0O

4: E3510000 L: cmp r1, #0

8: 12800001 addne rO, rO, #1
12: 15911000 ldrne r1, [ri]
16: 1AFFFFFB bne L

our decompiler produces a readable function in HOL:

f(ro,ri,m) = let o =20in g(rg, 1, m)

g(ro,r1,m) = if 1 =0 then (rg, r1, m) else
let rp = rp+1 in
let 1 = m(ry) in
g(ro, ri, m)



Certificate Theorems

Decompiler automatically proves a certificate theorem, which
states that {f describes the effect of the ARM code:

fore( 1o, ri, m) =

{(RO,R1,M) is (rg,r1,m)*x PCpxS}

p : E3BA00000 E3510000 12800001 15911000 1AFFFFFB
{(RO,R1,M) is f(rg,ri,m)* PC(p+20)xS}

Read informally:
if initially reg 0, reg | and memory described by (r, 1, m) , then

the code terminates with reg 0, reg |, memory as f(r, r1, m)



Preconditions

Precondition f,.. keeps track of side conditions:

f_pre(rg,ri,m) = let p =0 in g_pre(ry, r1, m)

if r1 = 0 then true else
let rp = rp+1 in
let cond = r; € domain m A aligned(ry) in
let 1 = m(ry) in
g_pre(rp, ri, m) A cond

g—pre(r07 r, m)



Decompilation into Logic

Strengths:

[ separates definition of ISA model from program verification
(program verification is done based on decompiler output)

[ can implement proof-producing program synthesis from
HOL based on decompilation (translation validation)

[A has been shown to scale to large verification projects:

functional correctness of garbage collectors,
Lisp implementations (ARM, x86, PowerPC), and
the seL4 microkernel (approx. 12,000 lines of ARM)



Performance Ignored...

Weaknesses:

® unnecessarily complicated (for historical reasons, uses ideas
from separation logic that are irrelevant to decompilation)

® sometimes very slow (never optimised for speed, separation
logic composition rule slow to execute in LCF-style prover)

decompilation of the seL4 microkernel (approx. 12,000
lines of ARM) takes 8 hours (for gcc -O2 output)

@ not applicable to code with general-purpose code pointers,
e.g. jump to code pointer.



HOL.: fully-expansive
LCF-style prover

Proofs are performed in HOL4 — a fully expansive theorem prover

HOL4 theorem prover
(incl. decompiler)

HOL4 kernel

All proofs expand at runtime

into primitive inferences in
the HOL4 kernel.

The kernel implements the
axioms and inference rules
of higher-order logic.



HOL.: fully-expansive
LCF-style prover

Proofs are performed in HOL4 — a fully expansive theorem prover

HOL4 theorem prover
(incl. decompiler)

HOL4 kernel

All proofs expand at runtime

into primitive inferences in
the HOL4 kernel.

The kernel implements the
axioms and inference rules
of higher-order logic.

Example: proving |0+ =11 using the simplifier requires 85 primitive
inferences (0.0003 seconds). No hope of producing a very fast tool...
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This Talk:
Improving Decompilation

Weaknesses of old approach: Contribution:
@ unnecessarily complicated [ simpler Hoare logic
@ sometimes very slow A revised approach for better speed

@ cannot handle code pointers i support for code pointers
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New Hoare triple

Decompiler performs proofs in terms Hoare triples:

{pre} code { post }

Semantics parametrised by gssert and next:

Vstate c. assert (code U c,pre) state =

program counter value is explicitly part of pre/post j

j

We instantiate these fCL p\ IE/post are tuples, allows fast composition )
V' Vv

arm_assert (code, pc,rg,71,...,cond) state =
(cond = code is in memory of state and

/\ the PC of state is pc and ...)

( side-condition is accumulated in ‘postcondition’ )




Function extraction

Decompilation algorithm:

Step |: evaluate underlying ISA model
(prove Hoare triples for each instruction)

Step 2: construct CFG and find ‘decompilation rounds’
(usually one round per loop)

Step 3: for each round, compose a Hoare triple theorem:

{prelvg ...v,]}
code

{let (v{,...v]) = f(vg...v,)inpost[v]...v ]}

if the code contains a loop, apply a loop rule (next slide...)



Function extraction

Decompilation algorithm:

Step |: evaluate underlying ISA model
(prove Hoare triples for each instruction)

Step 2: construct CFG and find ‘decompilation rounds’
(usually one round per loop)

Step 3: for each round, compose a Hoare triple theorem:

{prelvg ...v,]}
code

{let (vg...vy,) = f(vo...vn)inpostlvy ... v, [}
A\
if the COd{ collects both update and side-conditions )




Loop Rule

If there are loops in the code then apply:
(Va. {pre x} code {if g x then pre (f x) else post (d x)}

—
(V. {pre x} code {post (tailrec g f d x))}

where tailrec is a function format that satisfies:

tailrec g f d x =if g x thentailrec g f d (f =) elsed x

Definition of tailrec is in the paper.



Example

Assembly code: LO: 1ldr rl, [r2,r3] ; load mem[r2+r3] into rl
Ll: add r0,rl ; add rl to r0
L2: subs r3, #4 ; decrement r3 by 4
L3: bne LO ; goto LO if r3 #0

L4 :



Assembly code:

Extracted function:

Example

LO:
Ll:
L2:
L3:

1dr rl, [r2,r3] ; load mem[r2+r3] into rl
add r0,rl ; add rl to r0

subs r3, #4 ; decrement r3 by 4

bne LO ; goto LO if r3 #0

L4 :

sum(cond, ro,T1,72,73, M) =

let cond = cond A valid_address (ry + r3) m in
let 1y = m(re + 73) in
let ro = rg + 1 In
let r3 = 73 — 4 in
if r3 = 0 then (cond, rg, 11,72, 73, M)
else sum(cond, ro, 71,712,173, M)
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Example

Assembly code: LO: 1dr rl, [r2,r3] ; load mem[r2+r3] into rl
Ll: add r0,rl ; add rl to r0
L2: subs r3, #4 ; decrement r3 by 4
L3: bne LO ; goto LO if r3 #0
L4:
Extracted function: sum(cond, rg,r1,T2,73, M) =

let cond = cond A valid_address (ry + r3) m in

, N , letry = m(rg +r3) In
C5|de-condltlons part of function 7 ! (2 . 3)
let ro = rg + 1 In
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Example

Assembly code: LO: 1dr rl, [r2,r3] ; load mem[r2+r3] into rl
Ll: add r0,rl ; add rl to r0
L2: subs r3, #4 ; decrement r3 by 4
L3: bne LO ; goto LO if r3 #0
L4:
Extracted function: sum(cond, rg,r1,T2,73, M) =

let cond = cond A valid_address (ry + r3) m in

. . , let 11 = m(ra +r3) in

C5|de-condltlons part of functlon7I ; b (rs - 5 . .
etro =ro+ 71N side-conditions must be true )
let r3 = 73 — 4 in

if r3 = 0 then (cond, r{ fri,7r2,7r3, m)
else sum(cond|} ro, 71, 72,73, M)

Certificate theorem: (sum(c,rg, 71,72, 73, m) = (true, v}, ry,r5,rh,m')) =
{ ARM state holds (rg,r1,72,73,m) }
E7921003 E0300001 E2533004 1AFFFFFEB
{ ARM state holds (r(, 7,75, 75, m’') }



Code pointers

Assembly code:

LO:
Ll:
L2:
L3:
L4 :

ldr r4, [r5,r06]
blx r4

subs ro6, #4
bne LO

load mem[r5+r6] into r4
call code-pointer r4
decrement r6 by 4

goto LO if r6 #0
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Code pointers

Assembly code: LO: 1dr r4, [r5,r6] ; load mem[r5+r6] into r4
Ll: blx r4 ; call code-pointer r4
7L2: subs r6, #4 ; decrement r6 by 4
C call to code pointer L3: bne LO ; goto LO if r6 # 0
L4:
Extracted function: calls(cond, pc,r4,75,76, 714, M) =
If pc = LO then

let cond = cond A valid_address (75 + 76) m in
let ry = m(rs + rg) in
let cond = cond N word_aligned_address r4 in
let (pc, r14) = (r4,L2) 0N
(cond, pc,r4,75,76,714, M)
else if pc = L2 then
let r¢ = 16 —41in
if r¢ = 0then (cond,L4,74,75,76,T14, M)
else (cond, L0, 74,75,T6, T14, M)
else (cond, pc,r4,75,76,T14, M)



Code pointers

Assembly code: LO: 1dr r4,[r5,r6] ;
Ll: blx r4 ;

~ L2: subs ro, #4 ;
C call to code pointer L3: bne LO ;

load mem[r5+r6] into r4
call code-pointer r4
decrement r6 by 4

goto LO if r6 #0

L4:
Z PC is an input )

Extracted function: calls(cond, pc; T4, 75, 16, T4, M) =

If pc = LO then

let cond = cond A valid_address (75 + 76) m in

let ry = m(rs + rg) in

let cond = cond N word_aligned_address r4 in

let (pc, r14) = (r4,L2) 0N
(CO??,CZ, PC,T4,75,T6,714, m)

else if pc = L2 then
let r¢ = 16 —41in

if r¢ = 0then (cond,L4,74,75,76,T14, M)
else (cond, L0, 74,75,T6, T14, M)
else (COnd7 PC,T4,T5,T6,T14, m)



Code pointers

Assembly code: LO: 1dr r4, [r5,r6] ; load mem[r5+r6] into r4
Ll: blx r4 ; call code-pointer r4
7L2: subs r6, #4 ; decrement r6 by 4

C call to code pointer L3: bne LO ; goto LO if r6 # 0

L4:

Z PC is an input )
Extracted function: calls(cond, pc,r4,75,76,T14, M) =
If pc = LO then

let cond = cond A valid_address (75 + 76) m in

( test for value of PC 7 let ry = m(rs + rg) in

let cond = cond N word_aligned_address r4 in

let (pc, r14) = (r4,L2) 0N
(CO??,CZ, PC,T4,75,T6,714, m)

else if pc = L2 then
let r¢ = 16 —41in

if r¢ = 0then (cond,L4,74,75,76,T14, M)
else (cond, L0, 74,75,T6, T14, M)
else (COnd7 PC,T4,T5,T6,T14, m)



Code pointers

Assembly code: LO: 1dr r4, [r5,r6] ; load mem[r5+r6] into r4
Ll: blx r4 ; call code-pointer r4
7L2: subs r6, #4 ; decrement r6 by 4

C call to code pointer L3: bne LO ; goto LO if r6 # 0

L4:

Z PC is an input )
Extracted function: calls(cond, pc,r4,75,76,T14, M) =
If pc = LO then

- let cond = cond A valid_address (r5 + rg) m in
( test for value of PC let r4 = m(rs +176) in

let cond = cond N word_aligned_address r4 in
let (pc, r14) = (r4,L2) 0N

(cond, PC,T4,75,T6,714, m)
C PC updated else if pc = L2 then

let r¢ = 16 —41in
if r¢ = 0then (cond,L4,74,75,76,T14, M)
else (cond, L0, 74,75,T6, T14, M)
else (cond, pc,r4,75,76,T14, M)




Code pointers

Assembly code: LO: 1dr r4, [r5,r6] ; load mem[r5+r6] into r4
Ll: blx r4 ; call code-pointer r4
7L2: subs r6, #4 ; decrement r6 by 4

C call to code pointer L3: bne LO ; goto LO if r6 # 0

L4:

Z PC is an input )
Extracted function: calls(cond, pc,r4,75,76,T14, M) =
If pc = LO then

- let cond = cond A valid_address (r5 + rg) m in
C test for value of PC let ry = m(rs + rg) in

let cond = cond N word_aligned_address r4 in
le_t (pca T14) — (T47 LZ) in

Certificate theorem: (calls(c, pc, T4, 75,76, 714, m) = (true,pc’,ry,...)) =
{ ARM state holds (74,75, 76,714, m) and PC is pc }
E7954006 E12FFF34 E2566004 1AFFFFFEB
{ ARM state holds (r), 75,75, 714, m') and PC is pc’ }



Performance Numbers

Comparison between new and old approach.

Cost given in seconds (s) and HOL inference rules (i).

ARM machine code 1nstr. time/cost of old time/cost of new reduction model eval.
sum of array (Sec. I-A) 4 2.5 s (73,039 1) 0.3s@4,0191) 86 % (94 %) 7.8 s (1.5 Mi)
copying garbage collector [10] 89 50 s (1,526,281 1) 6.0 s (53,301 1) 88 % (97 %) 173 s (40 Mi)
1024-bit multiword addition 224 70 s (1,029,685 1) 1.2 s (10,802 1) 98 % (99 %) 37 s (8.9 Mi)
256-bit Skein hash function 1,352 | 5,366 s (21,432,926 1) 56 s (1,842,6421) 99 % (91 %) | 500 s (105 Mi)

Cost of evaluating the ISA model is separate as this cost
is independent of decompilation approach.
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Comparison between new and old approach.

Cost given in seconds (s) and HOL inference rules (i).

ARM machine code 1nstr. time/cost of old time/cost of new reduction model eval.
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More efficient ISA models...

Better, faster ISA models are in the pipeline...

TP’ 12

Directions in ISA Specification

Anthony Fox

Computer Laboratory, University of Cambridge, UK

Abstract. This rough diamond presents a new domain-specific language
(DSL) for producing detailed models of Instruction Set Architectures,
such as ARM and x86. The language’s design and methodology is dis-
cussed and we propose future plans for this work. Feedback is sought
from the wider theorem proving community in helping establish future
directions for this project. A parser and interpreter for the DSL has been
developed in Standard ML, with an ARMv7 model used as a case study.

This paper describes recent work on developing a domain-specific language
(DSL) for Instruction Set Architecture (ISA) specification. Various theorem
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Summary

Decompilation:

[ extracts functions from machine code (ARM, x86, PowerPC)
[ proves that the extracted functions are faithful to the code
[ useful in proof of full functional correctness (e.g. seL4, Lisp)

Improvements in this paper:

i simplified Hoare logic for easier mechanisation/automation
i significantly improved performance
[ now more widely applicable (support for code pointers)

Questions!



