
Extensible proof-producing compilation

Magnus O. Myreen, Konrad Slind, Michael J. C. Gordon

CC 2009



Motivation

This talk is about compiling functions from the HOL4 theorem
prover to machine code.

What is HOL4?

I an interactive and programmable proof assistant

I implements higher-order logic

I used for formalising maths, verification of hardware and
software ... (e.g. Anthony Fox has used it for verifying the
hardware of an ARM processor)

Aim: user verifies an algorithm, clicks a button and then receives
machine code, which is guaranteed (via proof in HOL4) to
correctly implement the algorithm.



Motivation

This talk is about compiling functions from the HOL4 theorem
prover to machine code.

What is HOL4?

I an interactive and programmable proof assistant

I implements higher-order logic

I used for formalising maths, verification of hardware and
software ... (e.g. Anthony Fox has used it for verifying the
hardware of an ARM processor)

Aim: user verifies an algorithm, clicks a button and then receives
machine code, which is guaranteed (via proof in HOL4) to
correctly implement the algorithm.



Motivation

This talk is about compiling functions from the HOL4 theorem
prover to machine code.

What is HOL4?

I an interactive and programmable proof assistant

I implements higher-order logic

I used for formalising maths, verification of hardware and
software ... (e.g. Anthony Fox has used it for verifying the
hardware of an ARM processor)

Aim: user verifies an algorithm, clicks a button and then receives
machine code, which is guaranteed (via proof in HOL4) to
correctly implement the algorithm.



Example

Given function f as input

f (r1) = if r1 < 10 then r1 else let r1 = r1 − 10 in f (r1)

the compiler generates ARM machine code:

E351000A L: cmp r1,#10
2241100A subcs r1,r1,#10
2AFFFFFC bcs L

and automatically proves a certificate HOL4 theorem, which states
that f is executed by machine code:

` {r1 r1 ∗ pc p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{r1 f (r1) ∗ pc (p+12) ∗ s}



Example

Given function f as input

f (r1) = if r1 < 10 then r1 else let r1 = r1 − 10 in f (r1)

the compiler generates ARM machine code:

E351000A L: cmp r1,#10
2241100A subcs r1,r1,#10
2AFFFFFC bcs L

and automatically proves a certificate HOL4 theorem, which states
that f is executed by machine code:

` {r1 r1 ∗ pc p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{r1 f (r1) ∗ pc (p+12) ∗ s}



Example, cont.

One can prove properties of f since it lives in HOL4:

` ∀x . f (x) = x mod 10

Here mod is modulus over unsigned machine words.

Properties proved of f translate to properties of the machine code:

` {r1 r1 ∗ pc p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{r1 (r1 mod 10) ∗ pc (p+12) ∗ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in



Example, cont.

One can prove properties of f since it lives in HOL4:

` ∀x . f (x) = x mod 10

Here mod is modulus over unsigned machine words.

Properties proved of f translate to properties of the machine code:

` {r1 r1 ∗ pc p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{r1 (r1 mod 10) ∗ pc (p+12) ∗ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in



Example, cont.

One can prove properties of f since it lives in HOL4:

` ∀x . f (x) = x mod 10

Here mod is modulus over unsigned machine words.

Properties proved of f translate to properties of the machine code:

` {r1 r1 ∗ pc p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{r1 (r1 mod 10) ∗ pc (p+12) ∗ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in



Talk outline

1. how is the proof-producing compiler implemented?

2. how do extensions work? example: LISP interpreter

3. design decisions and related work



Methodology

To compile function f :

1. code generation:
generate, without proof, machine code from input f ;

2. decompilation:
derive, via proof, a function f ′ describing the machine code;

3. certification:
prove f = f ′.

In TACAS’98, Pnueli et al. call this method translation validation.



Example, code generation

When compiling function f :

f (r0, r1,m) =
if r0 = 0 then (r0, r1,m) else

let r1 = m(r1) in
let r0 = r0 − 1 in

f (r0, r1,m)

Code generation produces x86 assembly:



Example, code generation

When compiling function f :

f (r0, r1,m) =
if r0 = 0 then (r0, r1,m) else

let r1 = m(r1) in
let r0 = r0 − 1 in

f (r0, r1,m)

Code generation produces x86 assembly:

L1: test eax, eax
jz L2
mov ecx,[ecx]
dec eax
jmp L1

L2:



Example, code generation

When compiling function f :

f (r0, r1,m) =
if r0 = 0 then (r0, r1,m) else

let r1 = m(r1) in
let r0 = r0 − 1 in

f (r0, r1,m)

Code generation produces x86 assembly, which NASM translates:

0: 85C0 L1: test eax, eax
2: 7405 jz L2
4: 8B09 mov ecx,[ecx]
6: 48 dec eax
7: EBF7 jmp L1

L2:



Initial input language

The initial input language is designed for ease of code generation:

I all variables must have names of registers r0, r1, r2, stack
locations s1, s2, or memory functions m, m1, m2 etc.

I basic operations over registers are permitted, e.g.
let r1 = r2 + r4 in ...
let r3 = 50 in ...

I simple comparisons are supported, e.g.
if (r2 = 5) ∧ (r3 & 3 = 0) then ... else ...

I tail-recursive function calls allowed.

This language is very restrictive, but can be used as compiler
back-end, or extended directly (see later slides).



Example, decompilation

Returning to our example... the second stage of compilation is
decompilation of the generated code (FMCAD 2008).

Decompilation: derive a function f ′ describing the code.

First, theorems describing one pass through the code are derived:

eax & eax = 0⇒
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip (p+9) ∗ s }

eax & eax 6= 0 ∧ ecx ∈ domain m ∧ (ecx & 3 = 0)⇒
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is (eax−1,m(ecx),m) ∗ eip p ∗ s }



Example, decompilation

Returning to our example... the second stage of compilation is
decompilation of the generated code (FMCAD 2008).

Decompilation: derive a function f ′ describing the code.

First, theorems describing one pass through the code are derived:

eax & eax = 0⇒
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip (p+9) ∗ s }

eax & eax 6= 0 ∧ ecx ∈ domain m ∧ (ecx & 3 = 0)⇒
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is (eax−1,m(ecx),m) ∗ eip p ∗ s }



Example, decompilation, cont.

A special loop rule is used to introduce a tail recursion.

∀res res’ c . (∀x . P x ∧ G x ⇒ {res x} c {res (F x)}) ∧
(∀x . P x ∧ ¬(G x)⇒ {res x} c {res′ (D x)})⇒
(∀x . pre x ⇒ {res x} c {res′ (tailrec x)})

where tailrec and pre are:

tailrec x = if (G x) then tailrec (F x) else (D x)

pre x = P x ∧ (G x ⇒ pre (F x))



Example, decompilation, cont.

With appropriate instantiations of variables, tailrec satisfies:

tailrec(eax , ecx ,m) =
if eax & eax = 0 then (eax , ecx ,m) else

let ecx = m(ecx) in
let eax = eax − 1 in

tailrec(eax , ecx ,m)

and we have a certificate theorem:

pre(eax , ecx ,m)⇒
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is tailrec(eax , ecx ,m) ∗ eip (p+9) ∗ s }

We define decompilation f ′ = tailrec.



Certification

To compile function f :

1. code generation:
generate, without proof, machine code from input f ;

2. decompilation:
derive, via proof, a function f ′ describing the machine code;

3. certification:
prove f = f ′.



Example, certification

Since f and f ′ are instances of tailrec,

tailrec x = if (G x) then tailrec (F x) else (D x)

it is sufficient to prove their components equivalent, in this case:

(λ(r0, r1,m). r0 6= 0) = (λ(eax , ecx ,m). eax & eax 6= 0)

(λ(r0, r1,m). (r0−1,m(r1),m)) = (λ(eax , ecx ,m). (eax−1,m(ecx),m))

(λ(r0, r1,m). (r0, r1,m)) = (λ(eax , ecx ,m). (eax , ecx ,m))

Lightweight optimisations are undone:

I small tweaks, like eax & eax = eax ;

I some instruction reordering;

I conditional execution (for ARM and x86);

I dead-code removal;

I shared-tail elimination (next slides)



Example, certification

Since f and f ′ are instances of tailrec,

tailrec x = if (G x) then tailrec (F x) else (D x)

it is sufficient to prove their components equivalent, in this case:

(λ(r0, r1,m). r0 6= 0) = (λ(eax , ecx ,m). eax & eax 6= 0)

(λ(r0, r1,m). (r0−1,m(r1),m)) = (λ(eax , ecx ,m). (eax−1,m(ecx),m))

(λ(r0, r1,m). (r0, r1,m)) = (λ(eax , ecx ,m). (eax , ecx ,m))

Lightweight optimisations are undone:

I small tweaks, like eax & eax = eax ;

I some instruction reordering;

I conditional execution (for ARM and x86);

I dead-code removal;

I shared-tail elimination (next slides)



Shared-tail elimination

The assignment to r1 is shared:

f (r1, r2) = if r1 = 0 then let r2 = 23 in let r1 = 4 in (r1, r2)
else let r2 = 56 in let r1 = 4 in (r1, r2)

Another formulation:

g(r1, r2) = let (r1, r2) = g2(r1, r2) in let r1 = 4 in (r1, r2)

g2(r1, r2) = if r1 = 0 then let r2 = 23 in (r1, r2)
else let r2 = 56 in (r1, r2)

Both produce ARM code:

0: E3510000 cmp r1,#0
4: 03A02017 moveq r2,#23
8: 13A02038 movne r2,#56

12: E3A01004 mov r1,#4



Talk outline

1. how to implement basic proof-producing compiler?

2. how do extensions work? LISP interpreter.

3. design decisions and related work



Extensions

The introduction showed how to prove:

{r1 r1 ∗ pc p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{r1 (r1 mod 10) ∗ pc (p+12) ∗ s}

Such theorems can be used to extend the compiler’s input
language, in this case with:

let r1 = r1 mod 10 in



Extensions, cont.

Example. The extension allows us to compile:

f (r1, r2, r3) = let r1 = r1 + r2 in
let r1 = r1 + r3 in
let r1 = r1 mod 10 in

r1

Code generation produces “tagged-code”:

E0811002 E0811003 E351000A 2241100A 2AFFFFFC

The decompiler will know to use the supplied theorem for tagged
code blocks. The certification stage is unchanged.



Extensions, cont.

The one-pass theorem is derived using the supplied theorem:

{r1 r1 ∗ pc p ∗ s}
p : E0811002 E0811003 E351000A 2241100A 2AFFFFFC

{r1 ((r1 + r2 + r3) mod 10) ∗ pc (p+20) ∗ s}

Previously proved theorems are used a building blocks.



Example, LISP interpreter

Abstract extensions can also be made.

As a case study, we compiled a small LISP interpreter.

Theorems were proved for primitive LISP operations, e.g.

(∃x y . v1 = Dot x y) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E5933000
{ lisp (car v1, v2, v3, v4, v5, v6, l) ∗ pc (p + 4) }

(size v1 + size v2 + size v3 + size v4 + size v5 + size v6) < l ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ s ∗ pc p }
p : E50A3018 E50A4014 E50A5010 ... E51A7008 E51A8004

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ∗ s ∗ pc (p + 328) }

Here v1...v6 are abstract s-expressions and lisp is a heap invariant.



Example, LISP interpreter, cont.

LISP evaluation was defined as a tail-recursive function lisp eval
using only variables v1...v6, and operations for which the code
generator has verified building blocks.

Compilation proceeds as normal and produces:

lisp eval pre(v1, v2, v3, v4, v5, v6, l) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ s ∗ pc p }
p : ... the generated code ...
{ lisp (lisp eval(v1, v2, v3, v4, v5, v6, l)) ∗ s ∗ pc (p + 3012) }

This case study has evolved from the one reported in the
proceeding. Ask, and I’ll tell more about the status of this project.



Talk outline

1. how to implement basic proof-producing compiler?

2. how do extensions work? LISP interpreter.

3. design decisions and related work



Design decisions and related work

Why not verify the compiler? 1

I Verified compilers are harder to produce. Also requires
defining the input language, which restricts the extensibility.

Why not instrument the code generation to produce proofs? 2,3

I It is easier to keep the prover separate and small. That way
external tools GAS and NASM can be used.

Does the compiler use heuristics to find the proofs? 4

I No, the input language and optimisations are simple so that
the prover need not guess what the compiler does.

Other questions?

1Leroy, POPL 2006; 2Pnueli, TACAS 1998; 3Rinard, CC 1999; 4Necula, PLDI 2000



Design decisions and related work

Why not verify the compiler? 1

I Verified compilers are harder to produce. Also requires
defining the input language, which restricts the extensibility.

Why not instrument the code generation to produce proofs? 2,3

I It is easier to keep the prover separate and small. That way
external tools GAS and NASM can be used.

Does the compiler use heuristics to find the proofs? 4

I No, the input language and optimisations are simple so that
the prover need not guess what the compiler does.

Other questions?

1Leroy, POPL 2006; 2Pnueli, TACAS 1998; 3Rinard, CC 1999; 4Necula, PLDI 2000



Design decisions and related work

Why not verify the compiler? 1

I Verified compilers are harder to produce. Also requires
defining the input language, which restricts the extensibility.

Why not instrument the code generation to produce proofs? 2,3

I It is easier to keep the prover separate and small. That way
external tools GAS and NASM can be used.

Does the compiler use heuristics to find the proofs? 4

I No, the input language and optimisations are simple so that
the prover need not guess what the compiler does.

Other questions?

1Leroy, POPL 2006; 2Pnueli, TACAS 1998; 3Rinard, CC 1999; 4Necula, PLDI 2000



Design decisions and related work

Why not verify the compiler? 1

I Verified compilers are harder to produce. Also requires
defining the input language, which restricts the extensibility.

Why not instrument the code generation to produce proofs? 2,3

I It is easier to keep the prover separate and small. That way
external tools GAS and NASM can be used.

Does the compiler use heuristics to find the proofs? 4

I No, the input language and optimisations are simple so that
the prover need not guess what the compiler does.

Other questions?

1Leroy, POPL 2006; 2Pnueli, TACAS 1998; 3Rinard, CC 1999; 4Necula, PLDI 2000



Design decisions and related work

Why not verify the compiler? 1

I Verified compilers are harder to produce. Also requires
defining the input language, which restricts the extensibility.

Why not instrument the code generation to produce proofs? 2,3

I It is easier to keep the prover separate and small. That way
external tools GAS and NASM can be used.

Does the compiler use heuristics to find the proofs? 4

I No, the input language and optimisations are simple so that
the prover need not guess what the compiler does.

Other questions?

1Leroy, POPL 2006; 2Pnueli, TACAS 1998; 3Rinard, CC 1999; 4Necula, PLDI 2000


