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Motivation

This talk is about compiling functions from the HOL4 theorem
prover to machine code.

What is HOL4?

I an interactive and programmable proof assistant

I implements higher-order logic

I used for formalising maths, verification of hardware and
software ... (e.g. Anthony Fox has used it for verifying the
hardware of an ARM processor)

Aim: user verifies an algorithm, clicks a button and then receives
machine code, which is guaranteed (via proof in HOL4) to
correctly implement the algorithm.
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Example

Given function f as input

f (r1) = if r1 < 10 then r1 else let r1 = r1 − 10 in f (r1)

the compiler generates ARM machine code:

E351000A L: cmp r1,#10
2241100A subcs r1,r1,#10
2AFFFFFC bcs L

and automatically proves a certificate HOL4 theorem, which states
that f is executed by machine code:

` {r1 r1 ∗ pc p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{r1 f (r1) ∗ pc (p+12) ∗ s}
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Example, cont.

One can prove properties of f since it lives in HOL4:

` ∀x . f (x) = x mod 10

Here mod is modulus over unsigned machine words.

Properties proved of f translate to properties of the machine code:

` {r1 r1 ∗ pc p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{r1 (r1 mod 10) ∗ pc (p+12) ∗ s}

Additional feature: the compiler can use the above theorem to
extend its input language with: let r1 = r1 mod 10 in
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Talk outline

1. how is the proof-producing compiler implemented?

2. how do extensions work? example: LISP interpreter

3. design decisions and related work



Methodology

To compile function f :

1. code generation:
generate, without proof, machine code from input f ;

2. decompilation:
derive, via proof, a function f ′ describing the machine code;

3. certification:
prove f = f ′.

In TACAS’98, Pnueli et al. call this method translation validation.



Example, code generation

When compiling function f :

f (r0, r1,m) =
if r0 = 0 then (r0, r1,m) else

let r1 = m(r1) in
let r0 = r0 − 1 in

f (r0, r1,m)

Code generation produces x86 assembly:
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Example, code generation

When compiling function f :

f (r0, r1,m) =
if r0 = 0 then (r0, r1,m) else

let r1 = m(r1) in
let r0 = r0 − 1 in

f (r0, r1,m)

Code generation produces x86 assembly, which NASM translates:

0: 85C0 L1: test eax, eax
2: 7405 jz L2
4: 8B09 mov ecx,[ecx]
6: 48 dec eax
7: EBF7 jmp L1

L2:



Initial input language

The initial input language is designed for ease of code generation:

I all variables must have names of registers r0, r1, r2, stack
locations s1, s2, or memory functions m, m1, m2 etc.

I basic operations over registers are permitted, e.g.
let r1 = r2 + r4 in ...
let r3 = 50 in ...

I simple comparisons are supported, e.g.
if (r2 = 5) ∧ (r3 & 3 = 0) then ... else ...

I tail-recursive function calls allowed.

This language is very restrictive, but can be used as compiler
back-end, or extended directly (see later slides).



Example, decompilation

Returning to our example... the second stage of compilation is
decompilation of the generated code (FMCAD 2008).

Decompilation: derive a function f ′ describing the code.

First, theorems describing one pass through the code are derived:

eax & eax = 0⇒
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip (p+9) ∗ s }

eax & eax 6= 0 ∧ ecx ∈ domain m ∧ (ecx & 3 = 0)⇒
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is (eax−1,m(ecx),m) ∗ eip p ∗ s }
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Example, decompilation, cont.

A special loop rule is used to introduce a tail recursion.

∀res res’ c . (∀x . P x ∧ G x ⇒ {res x} c {res (F x)}) ∧
(∀x . P x ∧ ¬(G x)⇒ {res x} c {res′ (D x)})⇒
(∀x . pre x ⇒ {res x} c {res′ (tailrec x)})

where tailrec and pre are:

tailrec x = if (G x) then tailrec (F x) else (D x)

pre x = P x ∧ (G x ⇒ pre (F x))



Example, decompilation, cont.

With appropriate instantiations of variables, tailrec satisfies:

tailrec(eax , ecx ,m) =
if eax & eax = 0 then (eax , ecx ,m) else

let ecx = m(ecx) in
let eax = eax − 1 in

tailrec(eax , ecx ,m)

and we have a certificate theorem:

pre(eax , ecx ,m)⇒
{ (eax, ecx,m) is (eax , ecx ,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is tailrec(eax , ecx ,m) ∗ eip (p+9) ∗ s }

We define decompilation f ′ = tailrec.



Certification

To compile function f :

1. code generation:
generate, without proof, machine code from input f ;

2. decompilation:
derive, via proof, a function f ′ describing the machine code;

3. certification:
prove f = f ′.



Example, certification

Since f and f ′ are instances of tailrec,

tailrec x = if (G x) then tailrec (F x) else (D x)

it is sufficient to prove their components equivalent, in this case:

(λ(r0, r1,m). r0 6= 0) = (λ(eax , ecx ,m). eax & eax 6= 0)

(λ(r0, r1,m). (r0−1,m(r1),m)) = (λ(eax , ecx ,m). (eax−1,m(ecx),m))

(λ(r0, r1,m). (r0, r1,m)) = (λ(eax , ecx ,m). (eax , ecx ,m))

Lightweight optimisations are undone:

I small tweaks, like eax & eax = eax ;

I some instruction reordering;

I conditional execution (for ARM and x86);

I dead-code removal;

I shared-tail elimination (next slides)
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Shared-tail elimination

The assignment to r1 is shared:

f (r1, r2) = if r1 = 0 then let r2 = 23 in let r1 = 4 in (r1, r2)
else let r2 = 56 in let r1 = 4 in (r1, r2)

Another formulation:

g(r1, r2) = let (r1, r2) = g2(r1, r2) in let r1 = 4 in (r1, r2)

g2(r1, r2) = if r1 = 0 then let r2 = 23 in (r1, r2)
else let r2 = 56 in (r1, r2)

Both produce ARM code:

0: E3510000 cmp r1,#0
4: 03A02017 moveq r2,#23
8: 13A02038 movne r2,#56

12: E3A01004 mov r1,#4



Talk outline

1. how to implement basic proof-producing compiler?

2. how do extensions work? LISP interpreter.

3. design decisions and related work



Extensions

The introduction showed how to prove:

{r1 r1 ∗ pc p ∗ s}
p : E351000A 2241100A 2AFFFFFC

{r1 (r1 mod 10) ∗ pc (p+12) ∗ s}

Such theorems can be used to extend the compiler’s input
language, in this case with:

let r1 = r1 mod 10 in



Extensions, cont.

Example. The extension allows us to compile:

f (r1, r2, r3) = let r1 = r1 + r2 in
let r1 = r1 + r3 in
let r1 = r1 mod 10 in

r1

Code generation produces “tagged-code”:

E0811002 E0811003 E351000A 2241100A 2AFFFFFC

The decompiler will know to use the supplied theorem for tagged
code blocks. The certification stage is unchanged.



Extensions, cont.

The one-pass theorem is derived using the supplied theorem:

{r1 r1 ∗ pc p ∗ s}
p : E0811002 E0811003 E351000A 2241100A 2AFFFFFC

{r1 ((r1 + r2 + r3) mod 10) ∗ pc (p+20) ∗ s}

Previously proved theorems are used a building blocks.



Example, LISP interpreter

Abstract extensions can also be made.

As a case study, we compiled a small LISP interpreter.

Theorems were proved for primitive LISP operations, e.g.

(∃x y . v1 = Dot x y) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E5933000
{ lisp (car v1, v2, v3, v4, v5, v6, l) ∗ pc (p + 4) }

(size v1 + size v2 + size v3 + size v4 + size v5 + size v6) < l ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ s ∗ pc p }
p : E50A3018 E50A4014 E50A5010 ... E51A7008 E51A8004

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ∗ s ∗ pc (p + 328) }

Here v1...v6 are abstract s-expressions and lisp is a heap invariant.



Example, LISP interpreter, cont.

LISP evaluation was defined as a tail-recursive function lisp eval
using only variables v1...v6, and operations for which the code
generator has verified building blocks.

Compilation proceeds as normal and produces:

lisp eval pre(v1, v2, v3, v4, v5, v6, l) ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ s ∗ pc p }
p : ... the generated code ...
{ lisp (lisp eval(v1, v2, v3, v4, v5, v6, l)) ∗ s ∗ pc (p + 3012) }

This case study has evolved from the one reported in the
proceeding. Ask, and I’ll tell more about the status of this project.
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Design decisions and related work

Why not verify the compiler? 1

I Verified compilers are harder to produce. Also requires
defining the input language, which restricts the extensibility.

Why not instrument the code generation to produce proofs? 2,3

I It is easier to keep the prover separate and small. That way
external tools GAS and NASM can be used.

Does the compiler use heuristics to find the proofs? 4

I No, the input language and optimisations are simple so that
the prover need not guess what the compiler does.

Other questions?

1Leroy, POPL 2006; 2Pnueli, TACAS 1998; 3Rinard, CC 1999; 4Necula, PLDI 2000
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