
Reusable verification of a copying collector

Magnus O. Myreen

Computer Laboratory, University of Cambridge, UK

Abstract. Garbage collectors are very hard to implement correctly due
to their low-level manipulation of memory. In this paper, we construct a
copying garbage collector which we have proved to be functionally cor-
rect. Our verification proof is structured as a sequence of refinements to
aid clarity and proof reuse; it is the first to map implementations into
three different machine languages and, unlike some noteworthy published
proofs, our verified implementations of memory allocation handle termi-
nation and the ‘out-of-memory’ case properly. The work presented here
has been developed in the HOL4 theorem prover.

1 Introduction

Garbage collectors are important cornerstones of any implementation of a func-
tional programming language and most object-oriented programming languages.
They are hard to implement correctly due to their low-level manipulation of
memory and very hard to test for faults since the property of a correct execu-
tion is rather abstract: every execution must produce a heap which is,

– isomorphic to the original heap, i.e. must be equivalent to the original heap
modulo renaming of addresses, and

– minimal in the sense that it must not contain unnecessary heap elements,
i.e. elements that are not reachable from root addresses.

In this paper we present the construction of a copying collector that we have
proved formally correct, i.e. for which we know that the above properties hold
for every possible execution of the verified code. A sample of the verified ARM,
x86 and PowerPC code is listed in Figure 6.

There are numerous publications on the topic of garbage collector verification
and some very impressive recent work on proving the correctness of assembly
and C-like implementations of copying garbage collectors. These proofs, which
we will describe in Section 2, are unfortunately tied to specific programming log-
ics and mix reasoning for why the algorithm is correct (how heap isomorphism
is achieved) with implementation specific details (such as how specific heap ele-
ments are represented in memory). As a result published proofs are cumbersome
to adapt to new settings.

This paper attempts to remedy these shortcomings by presenting a verifica-
tion proof which has been carefully designed to be reusable for any stop-the-world
copying collector. The main contributions of this paper are as follows:

– We present a verification proof which is sufficient for proving low-level im-
plementations correct and at the same time independent of any particular
programming logic. The proof cleanly separates reasoning about the correct-
ness of the core algorithm from all implementation specific details.

– Data refinement is used to map our proofs down to the level of verified ARM,
x86 and PowerPC machine code. This is the first paper to construct garbage
collectors that have been proved correct with respect to realistic models of
machine languages.

– These collectors are the first verified collectors to be used as mere building
blocks in a much larger verification effort: our verified garbage collectors are
part of verified implementations of Lisp.1

– Our verified implementations of allocation handle the ‘out-of-memory’ case
properly. They terminate with an error message in case there is an insufficient
amount of memory available after a full garbage collection. This is in contrast
to noteworthy published work [3, 12] which only prove partial correctness of
code that diverges in the ‘out-of-memory’ case.

The work presented here has been developed inside the HOL4 theorem prover.2

2 Related work

There are number of publications on the topic of specification and verification of
garbage collection routines, e.g. [5–7, 11, 16]. However, few have proved copying
collectors correct with respect to detailed models of realistic execution environ-
ments. Notable exceptions are work by Birkedal et al. [3], McCreight et al. [12],
and Hawblitzel and Petrank [9].

Birkedal et al. used a version of separation logic to verify, on paper it seems,
the correctness of a C-like program implementing the Cheney algorithm for a
stop-the-world copying collector. McCreight et al. developed a general framework
for collector proofs, in Coq, and verified MIPS-like code for several different col-
lector algorithms, including two copying collector, one of which was incremental.
The allocators verified by McCreight et al. and Birkedal et al. enter an infinite
loop in case the heap is full after a complete collection cycle. In contrast, the
allocators verified here have been proved to terminate: they terminate in the
‘out-of-memory’ case by jumping to code that can produce an appropriate er-
ror message.

In some very impressive recent work by Hawblitzel and Petrank, a copying
collector and a mark-and-sweep collector, with competitive real-world perfor-
mance, were verified mechanically. They did not use a theorem prover, instead
they used the Boogie verification generator which links to the Z3 SMT solver.
This system proved their x86-like implementations correct automatically given
low-level code decorated with a substantial amount of annotations. They did

1 Our work on verified Lisp interpreters has been published before [13], but the proof
of its garbage collectors is published here for the first time.

2 Our proofs are available at hol.sf.net in SVN under HOL/examples/machine-code.

not prove termination but were able to run a suite of benchmarks which showed
that their collectors have competitive performance compared with other collec-
tors. Similar proofs might be possible in theorem provers in the future, even in
LCF-style provers, as their support for SMT solvers is starting to mature [4].

None of the above mentioned verified copying collectors have been used as
a building block inside a verified run-time, i.e. it has not been tried whether
the resulting correctness theorems are usable as components in further formal
developments. Our verified garbage collectors have been used inside verified Lisp
interpreters [13]. However, these Lisp interpreters fall short of being practically
useful at present due to the restrictive subset of Lisp which they implement. As
far as we know, the VLISP project [8] is the only project which has successfully
built a usable verified run-time which included a verified garbage collector. The
VLISP verification consists of lengthy pen-and-paper-style proofs.

Novel work by Benton on specification and verification of a memory alloca-
tor [1] should also be mentioned. Benton verified, using Coq, an implementation
of an allocator in an invented assembly language. Instead of using conventional
unary predicates for describing program properties, he used quantified binary
relations and stated program properties in terms of contextual equivalence. This
allowed him to show that his allocator transfers ownership of memory states to
the client program and that the client program is parametrised by the allocator.
The allocator specification presented here does not provide such clean logical
separation, instead the allocator always ‘owns’ the allocated memory and the
client is forced to view the heap as an abstraction of the real memory. However,
it remains unclear whether the cost of adding these extra features to the specifi-
cations is worth the effort since Benton’s proofs seem to have been frustratingly
hard work, as he commented in a separate note [2]. However, this might have
been caused the fact that this was the first time Benton seriously used a theorem
prover, instead of any feature in his approach that might have made it ill-suited
for the automation provided by modern theorem provers.

3 Method

This paper presents verified garbage collectors which have been constructed
through a sequence of refinements, starting from a high-level specification and
going down to concrete machine code. We use the following refinement layers.

L1. We start with a specification which states what a full garbage collection is to
achieve, namely, to remove unreachable heap elements and rename addresses
in a consistent manner. At this level of abstraction, which we call L1, garbage
collection is a single transition.

L2. At the second level of abstraction, we provide an abstract implementation of
L1 as the transitive closure of a step relation. We prove that any complete
execution of these steps implements L1. This proof, which is only 300 lines
long, verifies the core idea behind the correctness of copying collection.

L3. At the third level of abstraction, we refine the non-deterministic implemen-
tation from L2 into a deterministic function which operates over a more
concrete notion of memory: heap elements now have sizes and temporary
reference cells are stored in memory alongside heap elements.

L4. At the next level, we introduce actual implementation types, e.g. addresses
become real machine addresses (aligned 32-bit words). We also subdivide
memory accesses into individual 32-bit memory reads and writes.

L5. At the lowest level of abstraction, we have the concrete ARM, x86 and
PowerPC machine code. These implementations are automatically synthe-
sised from the L4 implementation using a previously developed compiler
which produces a proof of correspondence for each compilation.

Each refinement is proved correct with respect to the layers above it. The sizes
of the manual proofs are approximately 300, 800 and 700 lines for L1/L2, L2/L3
and L3/L4, respectively. In total these proofs are less than half of the length of
the proofs described in McCreight et al. [12].

3.1 Specification – L1

We start by formalising what we mean by garbage collection in terms of a heap
represented as a finite partial (⇀) mapping h where addresses are natural num-
bers. The domain of h is a finite subset of N and the codomain of h consists of
pairs (as, d) where as is a list of addresses and d is some data. The type of heap
h is defined as the following using two type variables null and data. We let null
pointers be of arbitrary type so that later refinements can store data inside null
pointers, which is often done in practice.

N ⇀ (N + null) list× data

We define the set of reachable addresses as the smallest inductively defined
set such that a is reachable whenever a is a root or a is pointed to by some
reachable element b. Let set as be the set of non-null addresses in the list as.

a ∈ set roots

a ∈ reach (h, roots)

b ∈ reach (h, roots) ∧ h(b) = (as, data) ∧ a ∈ set as

a ∈ reach (h, roots)

The most abstract notion of garbage collection can now simply be defined
as a function filter which restricts (�) the domain of a heap mapping h to only
elements reachable from the root nodes.

filter (h, roots) = (h�(reach (h, roots)), roots)

In this paper we consider the verification of a copying garbage collector, i.e.
one which must also have the right to rearrange heap elements. For this we
define a function rename which updates all addresses in h by a given function
f : N→ N. Let map f update all non-null addresses of a list by application of f .

domain (rename f h) = image f (domain h)

(rename f h)(f(x)) = (map f as, d) whenever h(x) = (as, d)

Using rename, we define a valid rearrangement as a relation translate−→ which relates
two heaps whenever one heap can be converted into the other by applying a
global swap function f , i.e. a function such that f ◦ f = id.

f ◦ f = id

(h, roots) translate−→ (rename f h,map f roots)

We can now define that a garbage collection is a relation gc−→ which filters
out unreachable heap elements and renames the addresses.

x gc−→ y = (filter x) translate−→ y

3.2 Abstract implementation – L2

Our first refinement is to split the single-step implementation of garbage collec-
tion from L1 into a sequence of small step updates, and prove that the transitive
closure of this step update implements L1. The step relation step−→ is defined,
below, using three rules that operate over a state which consists of:

h — the heap, a finite partial mapping, mentioned above for L1,
x — address set: completely processed heap elements,
y — address set: moved elements with pointers to not-yet-moved elements,
z — address set: elements that are still to be moved,
f — a function which records where elements have been moved: N→ N

The main operation performed by the collector is to move an element a ∈ z
to a new unused location b 6∈ domain h. The source and target location must not
have been part of earlier move operations, i.e. we must have f(a) = a∧f(b) = b.
The new address b is inserted into the set of moved but not complete elements
y, the addresses as stored at h(a) are inserted into the set of addresses to be
moved z and the swap of addresses a↔ b is recorded in function f .

a ∈ z ∧ b 6∈ domain h ∧ f(a) = a ∧ f(b) = b ∧ h(a) = (as, d)

(h, x, y, z, f) step−→ (h[b 7→ (as, d)]�{a}c, x, y ∪ {b}, z ∪ set as, f [a 7→ b][b 7→ a])

Addresses a that have been moved, i.e. for which f(a) 6= a, but which are still
in the set of addresses that are to be moved z can be deleted from set z.

a ∈ z ∧ f(a) 6= a

(h, x, y, z, f) step−→ (h, x, y, z − {a}, f)

Once all of the addresses as, stored at some heap location b ∈ y, have been
removed from set z, i.e. set as ∩ z = {}, then we can finalise this heap element
h(b) by updating the addresses as with mapping f and moving address b from
set y to set x.

b ∈ y ∧ h(b) = (as, d) ∧ set as ∩ z = {}
(h, x, y, z, f) step−→ (h[b 7→ (map f as, d)], x ∪ {b}, y − {b}, z, f)

Correctness. The formal connection between L1 and L2 is summed up in the
following theorem, which states that any execution of the transitive closure of
the step relation step−→∗, which starts with x = y = {} and z initialised to the
root addresses and ends in a state y = z = {}, is in fact a correct execution of
the garbage collector gc−→ defined for L1. The domain of the resulting heap h2 is
restricted to the set of moved addresses x, i.e. h2�x.

∀h h2 roots x f.
(h, {}, {}, set roots, id) step−→∗ (h2, x, {}, {}, f) ∧ ok heap (h, roots) =⇒
(h, roots) gc−→ (h2�x,map f roots)

where ok heap (h, roots) = pointers h ∪ set roots ⊆ domain h

pointers h = { x | ∃a as d. x ∈ set as ∧ h(a) = (as, d) }

Invariant. Instead of delving into the details of our proof, we present the in-
variant inv which allows us to prove the above theorem.

∀x s t. inv x s ∧ s step−→ t =⇒ inv x t

The full definition of our invariant is shown in Figure 1. It took approximately
one week to get this invariant completely right. We believe that this invariant is
sufficiently independent of the lower-level implementations L3, L4, L5 to be of
use also in verification proofs of significantly different versions of L3, L4 and L5.
A complete understanding of the invariant is not necessary to follow the rest of
this paper. However, for those who are interested: line 0 defines an abbreviation
old to denote the set of addresses that were originally the domain of h; line 1
states that x and y are disjoint and that f must be its own inverse; line 2 states
that all pointers from within h restricted to addresses x must point to heap
elements in x or y; line 3 ensures that all pointers outside of h restricted to x,
i.e. inside h restricted to the complement of x, are in the set of old addresses;

inv (h0, roots) (h, x, y, z, f) =
0 let old = (domain h ∪ { a | f(a) 6= a })− (x ∪ y) in
1 (x ∩ y = {}) ∧ (f ◦ f = id) ∧
2 pointers (h�x) ⊆ x ∪ y ∧
3 pointers (h�xc) ⊆ old ∧
4 pointers (h�y) ∪ set roots ⊆ image f (x ∪ y) ∪ z ⊆ reach (h0, roots) ∧
5 (∀a. a ∈ z =⇒ if f(a) = a then a ∈ old else f(a) ∈ x ∪ y) ∧
6 (∀a. f(a) 6= a =⇒ ¬(a ∈ x ∪ y ⇐⇒ f(a) ∈ x ∪ y)) ∧
7 (∀a. a ∈ x ∪ y ⇐⇒ f(a) 6= a ∧ a ∈ domain h) ∧
8 domain h = image f (domain h0) ∧
9 (∀a as d. f(a) ∈ domain h ∧ h(f(a)) = (as, d) =⇒

h0(a) = if f(a) ∈ x then (map f as, d) else (as, d))

Fig. 1. The invariant used for proving a connection between L1 and L2.

line 4 guarantees that elements from x, y and z are reachable; lines 5-6 state
when f is allowed to point into x ∪ y; line 7 states that x ∪ y is the set of new
addresses; lines 8-9 ensure that f relates h to h0.

Our proofs using this invariant are relatively small, the proof connecting L1
and L2 is approximately 300 lines long. We achieve this brevity by stating the
invariant in terms of sets and set operations, which leads to subgoals that are
easily discharged using a standard first-order prover [10].

3.3 Implementation with memory – L3

The next refinement introduces a memory which makes the memory layout con-
crete. At this level of abstraction intermediate reference cells, called Ref elements,
keep a record of renaming function f in memory alongside data stored in Block
elements. The memory, we call it m, is a mapping from N to a data-type with
type constructors:

Block (as, l, d) — a block of length l which contains addresses as and data d
Ref a — a reference cell containing the address a
Emp — an empty location or ‘don’t care’

Memory m is a correct representation of h and f whenever, for any a:

m(a) = Block (h(a)) if a ∈ domain h
m(a) = Ref (f(a)) if a 6∈ domain h and f(a) 6= a
m(a) = Emp if a 6∈ domain h and f(a) = a

Here the type variable data in the type of h has been instantiated to N×data to
make h(a) a triple of type: (N+ null) list×N× data. We will refer to the above
relation between m, h and f as ref mem (h, f,m).

As mentioned above, each m(a) = Block (as, l, data) stores a length l. Based
on this we have a well-formedness criteria which states that the next l memory
locations m(a+1),m(a+2), . . . ,m(a+l) must be Emp.

empty (a, l) m = ∀i ∈ N. i < l =⇒ m(a+ i+ 1) = Emp

We formalise this criterion as an inductively defined relation part heap (a, b) m k
which states that the memory locations in the range a...b (we write a...b to mean
{ n ∈ N | a ≤ n ∧ n < b }) form a well-formed heap containing blocks of data
that have a combined length of k.

part heap (a, a) m 0

m(a) = Block (as, l, data) ∧ empty (a, l) m ∧ part heap (a+ l + 1, b) m k

part heap (a, b) m (l + 1 + k)

(m(a) = Ref i ∨ m(a) = Emp) ∧ part heap (a+ 1, b) m k

part heap (a, b) m k

move (RHS n, j,m) = (RHS n, j,m)
move (LHS a, j,m) = case m(a) of

Ref i→ (LHS i, j,m)
| Block (as, l, d)→

let m = m[a 7→ Ref j] in
let m = m[j 7→ Block (as, l, d)] in

(LHS j, j + l + 1,m)

move list ([], j,m) = ([], j,m)
move list (r::rs, j,m) =

let (r, j,m) = move (r, j,m) in
let (rs, j,m) = move list (rs, j,m) in

(r::rs, j,m)

readBlock (Block x) = x
cut (i, j) m = λk. if i ≤ k ∧ k < j then m j else Emp

loop (i, j,m) =
if i = j then (i,m) else
let (as, l, d) = readBlock (m i) in
let (as, j,m) = move list (as, j,m) in
let m = m[i 7→ Block (as, l, d)] in
loop (i+ l + 1, j,m)

collector (roots, b, i, e, b2, e2,m) =
1 let (b2, e2, b, e) = (b, e, b2, e2) in
2 let (roots, j,m) = move list (roots, b,m) in
3 let (i,m) = loop (b, j,m) in
4 let m = cut (b, i) m in

(roots, b, i, e, b2, e2,m)

Fig. 2. Implementation at level L3.

Finally, the memory is split into two disjoint spaces, the so called to-space
and from-space. During execution heap blocks are moved from the from-space
into the to-space. The to-space consists of locations b...e and the from-space are
at locations b2...e2.

Our implementation of copying collection is listed in Figure 2. The top-level
function is called collector. We give a brief overview of how it works here. Line
1 flips the meaning of the to-space and the from-space, i.e. what used to be
the to-space is now the from-space. All elements are assumed to lie within the
from-space at this stage. Line 2 then moves all heap elements pointed to by root
addresses into the to-space. Line 3 starts a loop which moves all other reachable
elements from the from-space into the to-space. Finally line 4 overwrites the
entire from-space with ‘don’t care’ elements Emp.

Correctness. We have proved that our implementation at level L3, listed in
Figure 2, is correct with respect to our definition at level L1, via L2. In order
to state this formally, we define ok mem heap to assert what suffices as a valid
initial/final state of memory as follows. Line 1: the heap must be split into two
disjoint semi-heaps, b . . . e and b2 . . . e2, of equal size, with an index i into heap
b . . . e. Line 2: the memory inside of b...i must form a well-formed heap and all
other parts of the heap are empty. And line 3: the memory m must be related
to some well-formed heap h according to ref mem and ok heap.

ok mem heap (h, roots) (b, i, e, b2, e2,m) =
1 b ≤ i ≤ e ∧ b2 ≤ e2 ∧ e2 − b2 = e− b ∧ (e < b2 ∨ e2 < b) ∧
2 (∃k. part heap (b, i) m k) ∧ (∀a. a 6∈ b...i =⇒ m(a) = Emp) ∧
3 ref mem (h, id) m ∧ ok heap (h, roots)

The guarantee for the final state is slightly stronger: the final state satisfies
part heap (b, i) m (i− b). Let precise (b, i, . . . ,m) = part heap (b, i) m (i− b).

The correctness of our L3 implementation is now stated as the following theo-
rem: for any valid initial state x, which is related to high-level state (h, roots), an
execution of collector produces a state y, for which there exists a corresponding
abstract heap h2 such that our top-level definition of garbage collection (gc−→)
relates the initial heap h to the new heap h2.

∀h roots roots2 x y.
ok mem heap (h, roots) x ∧ collector (roots, x) = (roots2, y) =⇒
∃h2. ok mem heap (h2, roots2) y ∧ (h, roots) gc−→ (h2, roots2) ∧ precise y

The presence of precise y is important for proving allocation correct, Section 4.

Invariant. We will again not go into details of the correctness proof, but instead
only explain the invariant which was used for the proof. Our invariant, called
mem inv, was used for proving the following property of the main loop:

mem inv (h0, roots0, h, f) (b, i, j, e, b2, e2,m, pointers (h�(i...j))) ∧
loop (i, j,m) = (i2,m2) =⇒
∃h2 f2. mem inv (h0, roots0, h2, f2) (b, i2, i2, e, b2, e2,m2, {}) ∧

j ≤ i2 ∧ ∀a. f(a) 6= a =⇒ f2(a) = f(a)

The definition of our invariant mem inv is listed in Figure 3. The main idea
behind this invariant should be clear from lines 5 and 6. They state that memory
m is a refinement of (h, f) and that (h, f) is related, through the reflexive-
transitive closure of step−→, to an initial state (h0,roots0) which satisfies ok heap.
Lines 2–4 are less interesting; they ensure that the memory is correctly organised.
Line 1 states that the heap is split into two semi-heaps, and that i and j are
indexes in the to-heap.

3.4 Implementation with concrete types – L4

The previous refinements layer, called L3, produced an implementation with
memory and concrete memory layout of the heap. However, L3 made no com-
mitment to how memory elements, Block and Ref, are to be represented in actual

mem inv (h0, roots0, h, f) (b, i, j, e, b2, e2,m, z) =
1 b ≤ i ≤ j ≤ e ∧ (e < b2 ∨ e2 < b) ∧
2 (∀a. a 6∈ b2...e2 ∪ b...j =⇒ m(a) = Emp) ∧
3 part heap (b, i) m (i− b) ∧ part heap (i, j) m (j − i) ∧
4 (∃k. part heap (b2, e2) m k ∧ k ≤ e− j) ∧
5 ref mem (h, f) m ∧ ok heap (h0, roots0) ∧
6 (h0, {}, {}, set roots0, id) step−→∗ (h, domain h ∩ (b...i), domain h ∩ (i...j), z, f)

Fig. 3. The invariant which relates implementations L3 with L2.

memory. In this layer, called L4, we make all types concrete: addresses and data
are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mc move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.

∀x y z. ok mc heap x y z =⇒ ok mc heap x (collector y) (mc collector z)

mc move loop (r2, r3, r4, g) =
if r4 = 0 then (r2, r3, r4, g) else
let r5 = g(r2) in
let r4 = r4 − 1 in
let r2 = r2 + 4 in
let g = g[r3 7→ r5] in
let r3 = r3 + 4 in
mc move loop (r2, r3, r4, g)

mc move (r1, r2, r3, g) =
if (r2 & 3 6= 0) then (r1, r3, g) else
let r4 = g(r2) in
if r4 & 3 = 0 then
let g = g[r1 7→ r4] in

(r1, r3, g)
else
let g = g[r1 7→ r3] in
let g = g[r3 7→ r4] in
let g = g[r2 7→ r3] in
let r4 = r4 � 10 in
let r3 = r3 + 4 in
let r2 = r2 + 4 in
let (r2, r3, r4, g) = mc move loop (r2, r3, r4, g) in

(r1, r3, g)

Fig. 4. Part of the implementation at level L4.

Invariant. In order to keep our statements and proofs clean and concise even at
this low-level of abstraction, we will use some light-weight separation logic [15]
for memory assertions. We need the separating conjunction ∗, which we define
over sets: p ∗ q is true for set s if s can be partitioned into two sets t and u such
that p holds for t and q holds for u.

(p ∗ q) s = ∃t u. p t ∧ q u ∧ t ∪ u = s ∧ t ∩ u = {}

Now let fun2set map a partial function to a set of pairs, let one (x, y) assert the
value of a pair in such a set, and let emp assert that the set is empty:

fun2set g = { (a, g(a)) | a ∈ domain g }
one (x, y) = λs. (s = {(x, y)})

emp = λs. (s = {})
〈b〉 = λs. (s = {}) ∧ b

With these we can define ref, in Figure 5, which allows us to state that
segments of L3 memory m are present in L4 memory g, e.g. the following line
states that memory locations b...e and b2...e2 from memory m are represented
correctly in L4 memory g, i.e. both halves of the heap are correctly represented.

(ref (b, e) m ∗ ref (b2, e2) m ∗ p) (fun2set g)

ref heap addr (RHS n) = 2× n+ 1
ref heap addr (LHS a) = 4× a

one list a [] = emp
one list a (x :: xs) = one (a, x) ∗ one list (a+4) xs

header (n, b, tag) = 1024× n+ 4× tag + 2 + (if b then 1 else 0)

ref aux a Emp = ∃x. one (a, x)
ref aux a (Ref n) = one (a, 4× n)
ref aux a (Block (xs, l, (tag, b, ys))) =

let zs = (if b then map ref heap addr xs else ys) in
one (a, header (length zs, b, tag)) ∗ one list (a+4) zs

ref inc a Emp = 1
ref inc a (Ref n) = 1
ref inc a (Block (xs, l, d)) = 1 + l

ref (a, e) m =
if e ≤ a then 〈a = e〉 else

ref aux (4× a) (m(a)) ∗ ref (a+ref inc (m(a)), e) m

Fig. 5. Part of the invariant which relates L3 to L4.

The main part of each proof is to show that this type of ref-relationship is
maintained between m and g throughout execution of the two implementations.

There is still a further well-formedness criteria for memory m that needs
to be mentioned: all lists in Block elements must be of reasonable size and the
length field l must correspond to the actual payload:

ok memory m =
∀a l xs b t ys.

m(a) = Block (xs, l, (b, t, ys)) =⇒
length ys < 222 ∧ length xs < 222 ∧
if t then l = length xs else l = length ys ∧ xs = []

3.5 Machine-code implementations – L5

The final leap from low-level functional implementations (L4) to concrete ma-
chine code (L5) would be very tedious to prove manually. To avoid a manual
proof we use a previously developed compiler to produce correct machine code
automatically from the functional implementation at level L4.

Our compiler is not verified, but instead produces a proof for each compila-
tion run, i.e. the compiler steers the theorem prover to a proof which certifies
that the input function is correctly executed by the generated machine code. For
example, the following theorem is produced when the compiler compiles func-
tion mc move from Figure 4 into ARM machine code. This theorem certifies that
any execution of the machine code which starts at a state where (r1, r2, r3, g)
describes the values of registers 1, 2, 3 and memory, terminates in a state where

tst r2, #3 test ecx, 3 andi. 0, 2, 3

bne L0 jne L0 bne L0

ldr r4, [r2] mov ebx, [ecx] lwz 4, 0(2)

tst r4, #3 test ebx, 3 andi. 0, 4, 3

streq r4, [r1] jne L2 bne L2

beq L0 mov [eax], ebx stw 4, 0(1)

str r3, [r1] jmp L0 b L0

str r4, [r3] L2: mov [eax], edx L2: stw 3, 0(1)

str r3, [r2], #4 mov [edx], ebx stw 4, 0(3)

mov r4, r4, LSR #10 mov [ecx], edx stw 3, 0(2)

add r3, r3, #4 shr ebx, 10 srawi 4, 4, 10

L1: cmp r4, #0 add edx, 4 addi 3, 3, 4

beq L0 add ecx, 4 addi 2, 2, 4

ldr r5, [r2] L1: cmp ebx, 0 L1: cmplwi 4,0

sub r4, r4, #1 je L0 beq L0

add r2, r2, #4 mov edi, [ecx] lwz 5, 0(2)

str r5, [r3] dec ebx addi 4, 4, -1

add r3, r3, #4 add ecx, 4 addi 2, 2, 4

b L1 mov [edx], edi stw 5, 0(3)

L0: add edx, 4 addi 3, 3, 4

jmp L1 b L1

L0: L0:

Fig. 6. Verified ARM, x86 and PowerPC code, respectively, for mc move from Figure 4.

mc move (r1, r2, r3, g) accurately describes the value of registers 1, 3 and mem-
ory. This is stated in terms of a machine-code Hoare triple [14], and conditioned
on an automatically generated precondition mc move pre.

∀r1 r2 r3 g p.
mc move pre (r1, r2, r3, g) =⇒
{ r1 r1 ∗ r2 r2 ∗ r3 r3 ∗ r4 ∗ r5 ∗memory g ∗ s ∗ pc p }
p : E3120003 1A000010 E5924000 E3140003 05814000 0A00000C E5813000

E5834000 E5823000 E1A04524 E2833004 E2822004 E3540000 15925000

12444001 12822004 15835000 12833004 1AFFFFF8

{ let (r1, r3, g) = mc move (r1, r2, r3, g) in

r1 r1 ∗ r2 ∗ r3 r3 ∗ r4 ∗ r5 ∗memory g ∗ s ∗ pc (p+76) }

We have used our proof-producing compiler to compile the top-level L4 func-
tion mc collector into ARM, x86 and PowerPC code. Each of the resulting certifi-
cate theorems are conditioned on a precondition mc collector pre. This precondi-
tion simply asserts that each memory access was done properly, no load/store to
unaligned addresses. We have proved that these preconditions are always met:

∀x y z. ok mc heap x y z =⇒ mc collector pre z

4 Using the verified garbage collectors

In this section we will briefly explain how the verified garbage collectors have
been used as components in the construction of verified interpreters for Lisp [13].

For our Lisp case study, we define allocation of a cons cell as follows at ab-
straction level L3. Note that it is tempting to define allocate cons as recursive
function to avoid writing has space twice, but that would result in an unsatis-
factory infinite loop when allocation runs out of memory (and allow for a trick
if only partial correctness is to be proved).

has space (roots, b, i, e, b2, e2,m) = 3 ≤ e− i
alloc fail (r1::r2::roots, b, i, e, b2, e2,m) = (nil::r2::roots, b, i, e, b2, e2,m)
alloc ok (r1::r2::roots, b, i, e, b2, e2,m) =

(LHS i::r2::roots, b, i+3, e, b2, e2,m[i 7→ Block ([r1, r2], 2, (T, 0, []))])

allocate cons state =
if has space state then alloc ok state else

let state = collector state in
if has space state then alloc ok state else alloc fail state

We write a similar L4 implementation and from these generate L5 implemen-
tations. The correctness theorems used in the Lisp case study for cons allocation
are stated as follows. The following theorems use a heap assertion lisp which
states that Lisp s-expressions v1 . . . v6 are stored in a heap with a capacity for l
cons cells. Allocation of a new cons cell is guaranteed to be successful if the size
of the six root s-expressions is strictly less than the heap limit l:

size v1 + size v2 + size v3 + size v4 + size v5 + size v6 < l ⇒
{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E50A3018 E50A4014 E50A5010 E50A600C ... E51A8004 E51A7008

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ∗ pc (p+ 324) }

We also have a different theorem describing all executions: all executions of the
allocator will terminate either in a successful state, or jump to a special program
point (lisp out of memory) which generates an error message.

{ lisp (v1, v2, v3, v4, v5, v6, l) ∗ pc p }
p : E50A3018 E50A4014 E50A5010 E50A600C ... E51A8004 E51A7008

{ lisp (cons v1 v2, v2, v3, v4, v5, v6, l) ∗ pc (p+ 324) ∨ lisp out of memory }

5 Conclusions and future work

We aimed for a clear, understandable and reusable verification. By structuring
the verification as a sequence of refinements, our work separates reasoning about
the algorithm from implementation level details and as a result made each part
of the proof (refinement step) clearly focused on separate aspects of the verifi-
cation. The fact that only the lowest level of abstraction (L5) is tied to specific
programming logics and program semantics ought to aid proof reuse.

Why did we not verify a generational garbage collector? The short answer is
that we did not need one. However, we believe a generational collector is only a
refinement step away (from implementation L3): the idea is to treat all pointers
to previous generations as if they were pure data stored in null pointers.

Acknowledgements. I would like to thank Mike Gordon and the anonymous
reviewers for helpful suggestions regarding presentation. This work was partially
supported by EPSRC Research Grant EP/G007411/1.

References

1. Nick Benton. Abstracting allocation: The new new thing. In Computer Science
Logic (CSL). Springer-Verlag, 2006.

2. Nick Benton. Machine obstructed proof (abstract). ACM SIGPLAN Workshop on
Mechanizing Metatheory, 2006.

3. L. Birkedal, N. Torp-Smith, and J. Reynolds. Local reasoning about a copying
garbage collector. In Principles of programming languages (POPL). ACM, 2004.

4. Sascha Böhme and Tjark Weber. Fast LCF-style proof reconstruction for Z3. In
Theorem Proving in Higher Order Logics (TPHOLs). Springer, 2010. To Appear.

5. Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and E. F. M.
Steffens. On-the-fly garbage collection: an exercise in cooperation. Commun. ACM,
21(11):966–975, 1978.

6. Georges Gonthier. Verifying the safety of a practical concurrent garbage collector.
In CAV, LNCS, pages 462–465. Springer, 1996.

7. David Gries. An exercise in proving parallel programs correct. Commun. ACM,
20(12):921–930, 1977.

8. Joshua Guttman, John Ramsdell, and Mitchell Wand. VLISP: A verified imple-
mentation of Scheme. Lisp and Symbolic Computation, 8(1/2):5–32, 1995.

9. Chris Hawblitzel and Erez Petrank. Automated verification of practical garbage
collectors. In Principles of Programming Languages (POPL). ACM, 2009.

10. Joe Hurd. First-order proof tactics in higher-order logic theorem provers. In
Design and Application of Strategies/Tactics in Higher Order Logics (STRATA
2003), NASA/CP-2003-212448 in NASA Technical Reports, pages 56–68, 2003.

11. Paul B. Jackson. Verifying a garbage collection algorithm. In Theorem Proving in
Higher Order Logics (TPHOLs), LNCS, pages 225–244. Springer, 1998.

12. Andrew McCreight, Zhong Shao, Chunxiao Lin, and Long Li. A general framework
for certifying garbage collectors and their mutators. In Programming Language
Design and Implementation (PLDI), pages 468–479. ACM, 2007.

13. Magnus O. Myreen and Michael J. C. Gordon. Verified LISP implementations on
ARM, x86 and PowerPC. In Theorem Proving in Higher Order Logics (TPHOLs),
LNCS, pages 359–374. Springer, 2009.

14. Magnus O. Myreen, Konrad Slind, and Michael J. C. Gordon. Machine-code veri-
fication for multiple architectures – An application of decompilation into logic. In
Formal Methods in Computer Aided Design (FMCAD). IEEE, 2008.

15. John Reynolds. Separation logic: A logic for shared mutable data structures. In
Logic in Computer Science (LICS). IEEE Computer Society, 2002.

16. David M. Russinoff. A mechanically verified incremental garbage collector. Formal
Asp. Comput., 6(4):359–390, 1994.

