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Abstract. We present a formalisation of separation logic which, by
avoiding the use of existential quantifiers, allows proofs that only use
standard equational rewriting methods as found in off-the-shelf theo-
rem provers. This proof automation is sufficiently strong to free the user
from dealing with low-level details in proofs of functional correctness.
The work presented here has been implemented in HOL4 and ACL2. It
is illustrated on a standard example (reversal of a linked-list).

1 Introduction

Separation logic [7] has emerged as an effective technique for proving the correct-
ness of pointer manipulating programs. As a result, there have been a number
of theorem prover formalisations of separation logic [1, 4, 9, 11] and tactics for
dealing with separation logic-style reasoning in theorem provers [2, 5, 10].

In this paper we present a novel formalisation which, by avoiding the use of
existential quantifiers, allows basic rewriting to suffice as a useful proof tactic. We
believe that the simplicity of our setup makes it independent of any particular
theorem prover: the work presented here has been implemented in HOL4 [8] (by
the current author) and subsequently in ACL2 [3] (by Matt Kaufmann).

Gast [2] also modifies separation logic to fit better with current theorem
provers. Compared with Gast [2], our approach follows the idea of separation
logic more closely (we state memory content and memory layout together) and
achieves a higher degree of automation by simple rewriting (Sections 3 and 4).

2 Separation logic without quantifiers

At the heart of separation logic lies the separating conjunction ∗. The separating
conjunction is defined such that p ∗ q holds for state s whenever state s can be
split into two disjoint parts (according to some definition of disjoint union ])
such that p holds for one part and q for the other part.

(p ∗ q) s = ∃s1 s2. (s = s1 ] s2) ∧ p s1 ∧ q s2

The value of the separating conjunction becomes apparent in the context
of (avoiding unwanted) pointer aliasing: if list a xs asserts that a linked list is
in memory then list a xs ∗ list b ys states that there are two list in memory
and these occupy disjoint addresses in memory. Thus asserting that there is no



pointer aliasing between the lists. This list assertion is conventionally defined as
follows. Here the notation a 7→ x means that memory location a holds value x.

list a [] = (a = 0)
list a (x::xs) = ∃a′. (a 7→ a′) ∗ (a+1 7→ x) ∗ list a′ xs ∗ (a 6= 0)

In this paper, we will show that the common case of linked-lists and other
assertions of the form (a 7→ x)∗ (b 7→ y)∗ . . .∗ (c 7→ z) can be formalised without
quantifiers in such a way that simple rewriting is a sufficiently powerful proof
tool for proofs of functional correctness.

Instead of defining a separating conjunction directly, we define a function
separate which mimics (a 7→ x)∗(b 7→ y)∗. . .∗(c 7→ z) when supplied with a list of
the form [(a, x), (b, y), . . . , (c, z)] and here the separation is due to all distinct xs,
which states that there are no duplicate elements in its argument list xs. Below
t is a list of addresses that must be distinct from those mentioned in l.

separate [] t state = all distinct t
separate ((a, x)::l) t state = (state(a) = x) ∧ separate l (a::t) state

A suitable adaption of list is then defined as a function listx which produces a
list of (address,value) pairs which can be substituted for the variable l above. To
avoid the existential quantifier used in the definition of list, we make the internal
addresses external and explicit. Here addr xs returns a pointer to the head of
the list xs.

addr [] = 0
addr ((a, x)::xs) = a

listx [] = []
listx ((a, x)::xs) = (a, addr xs)::(a+1, x)::listx xs

Separation logic states the correctness of programs as Hoare triple judgments
{pre} code {post}. We define a similar judgement as follows based on an opera-
tional semantics exec (defined in [6]) for a toy machine language where the code
resides in memory. This judgement spec is defined to assert that, if the initial
state s satisfies pre1 and contains the code code separately from addresses pre2,
then n steps of execution will reach a state which satisfies post1 and contains
code separately from addresses post2. We write list append as ++.

spec s n (pre1, pre2) code (post1, post2) =
separate (code ++ pre1) pre2 s =⇒
separate (code ++ post1) post2 (exec n s)

3 Automatic rewriting tactic

The above definitions allow rewriting alone to suffice for proving specifications.
Our rewriting tactic essentially just expands all the definitions and rewrites
where applicable with lemmas that describe append (++) i.e. the expansion of
separate (xs ++ ys) t s and all distinct (xs ++ ys).



This simple rewriting tactic is capable of proving specifications for single
passes though code. For example, it can automatically prove the following spec-
ification for a sequence of four instructions which swap the next-pointers in two
linked lists, thus swapping the tails of the lists (xs is swapped for ys). The pro-
gram counter which is incremented by 12 is stored at address 0. This specification
states that addresses 3 and 4 are used as temporaries during execution. Their
initial and final values are not recorded. Let llist p xs = (p, addr xs)::listx xs.

spec s 4
([(0, p)] ++ llist 1 (x::xs) ++ llist 2 (y::ys) ++ frame, [3, 4] ++ rest)
(pointer swap code p)
([(0, p+12)] ++ llist 1 (x::ys) ++ llist 2 (y::xs) ++ frame, [3, 4] ++ rest)

The reason for why rewriting alone can prove this is very simple: the ex-
pansion of preconditions produces a number of inequalities, e.g. p 6= q, on the
left-hand-side of the implication in spec. These inequalities resolve if-statements,

if p = q then x else state(p)

that arise in the expansion of postconditions, i.e. the right hand-side of the
implication in the definition of spec.

4 Verification example

Finally, we will demonstrate the use of our rewriting tactic as part of a standard
example: verification of in-place list reversal.

The code we will verify expects on entry, that location 1 holds a pointer to
the linked-list which is to be reversed. On each iteration of the loop (around
location 18), one element of the list is popped from the list pointed to from
location 1 and prepended to a list whose pointer is kept in location 2. On exit,
location 2 holds a pointer to the reversed list. Our toy machine language has no
registers, thus locations 1, 2 and 3 are used here as if they were registers.

0 : mem[2] := 0

3 : jump to 18

6 : mem[3] := mem[mem[1]]

9 : mem[mem[1]] := mem[2]

12 : mem[2] := mem[1]

15 : mem[1] := mem[3]

18 : jump to 6, if mem[1] 6= 0

We first prove a lemma about the behaviour of the body of the loop. The
loop body transfers an element from one of the linked lists to the other, looping
around program location 18 in the code rev code, which is positioned relative to
address p. This goal is automatically discharged by our rewriting tactic.

spec s 5
([(0, p+18)] ++ llist 1 (x::xs) ++ llist 2 ys ++ frame, [3] ++ rest)
(rev code p)
([(0, p+18)] ++ llist 1 xs ++ llist 2 (x::ys) ++ frame, [3] ++ rest)



The proof of the main loop is a simple induction on the length of the list
pointed to from location 1, i.e. xs. The base case is solved by our rewrite tactic;
the step case is a simple 4-line proof which composes the above lemma for the
body of the loop with the inductive hypothesis.

spec s (1 + length xs× 5)
([(0, p+18)] ++ llist 1 xs ++ llist 2 ys ++ frame, [3] ++ rest)
(rev code p)
([(0, p+21)] ++ llist 2 (reverse xs ++ ys) ++ frame, [1, 3] ++ rest)

By joining the above specification with a similar lemma for the initialisation
code, we arrive at the final specification which states that list xs is reversed:

spec s (3 + length xs× 5)
([(0, p)] ++ llist 1 xs ++ frame, [2, 3] ++ rest)
(rev code p)
([(0, p+21)] ++ llist 2 (reverse xs) ++ frame, [1, 3] ++ rest)
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