Verified compilation of a
first-order Lisp language

Lecture 7

MPhil ACS & Part lll course, Functional Programming:
Implementation, Specification and Verification

Magnus Myreen
Michaelmas term, 2013

Interpreter vs compiler

FP interpreter:
 program that implements the small-step semantics

* operates over syntax of the source FP program
* naive implementation wastes time (slow)
* time spent figuring out what operation to perform

Interpreter vs compiler

FP interpreter:
 program that implements the small-step semantics
* operates over syntax of the source FP program
* naive implementation wastes time (slow)
* time spent figuring out what operation to perform

Compilation:
* compiler translates source to native machine code

* evaluation is compile-then-execute-generated-code

e performance can be good

* compilation is dynamic or just-in-time (JIT) if it happens
at runtime

Compilation in this lecture

Source: simple first-order FP language

v
“bytecode”: stack-based little language

v
machine code: as described in previous lectures

Compilation in this lecture

(Ramana’s guest lectures will compile higher-order FP)

V

Source: simple first-order FP language

v
“bytecode”: stack-based little language

v
machine code: as described in previous lectures

Little source language

val = SExp
exp ::= Var string

| Const SExp

| Add exp exp

| Car exp

| Cdr exp

| Cons exp exp

| Let string exp exp
| If exp exp exp

|

Little source language

_
val = SExp —= = first-order Lisp, i.e. no closure values)

exp ::= Var string

| Const SExp

| Add exp exp

| Car exp

| Cdr exp

| Cons exp exp

| Let string exp exp
|

|

If exp exp exp

Little source language

Ve ..
val = SExp —= = first-order Lisp, i.e. no closure values)

exp ::= Var string

| Const SExp

| Add exp exp

| Car exp

| Cdr exp

| Cons exp exp

| Let string exp exp
|

|

If exp exp exp

Semantics: big-step operational semantics similar to Lecture 2,

Bytecode

bc_inst ::= LOAD num
| PUSH SExp
| ADD

| CAR

| CDR

| CONS

| POP

| POP1

| JUMP num
|
|

JUMP_IF num

bytecode_program = bc_inst list

Bytecode

bc_inst ::= LOAD num
| PUSH SExp
| ADD

| CAR

| CDR

| CONS

| POP

| POP1

| JUMP num
|
|

JUMP_IF num

bytecode_program = bc_inst list

Semantics: small-step op. semantics sketched on next slide.

Semantics of bytecode

Operational semantics:
e small-step
¢ similar to machine code semantics, but more abstract

* stack based
* state tuple: (stack, pc, code)

Semantics of bytecode

Operational semantics: (assumes memory abstraction)
e small-step \

¢ similar to machine code semantics, but more abstract

e stack based
* state tuple: (stack, pc, code)

Semantics of bytecode

Operational semantics: (assumes memory abstraction)
e small-step \

¢ similar to machine code semantics, but more abstract

* stack based / instead of regs, memory, flags etc.)

* state tuple: (stack;pc, code)

Semantics of bytecode

Operational semantics: (assumes memory abstraction)
e small-step \

¢ similar to machine code semantics, but more abstract

* stack based / instead of regs, memory, flags etc.)

* state tuple: (stack;pc, code)

Examples:

fetch pc code = POP

(x::stack, pc, code) =22y (stack, pc + ilength [POP], code)

Semantics of bytecode

Operational semantics: (assumes memory abstraction)

® sma
® simi
® stac

* state tuple: (stack;pc, code)

l-step \
ar to machine code semantics, but more abstract

K based // instead of regs, memory, flags etc.)

Examples: % POP instruction to be executed)

fetch

pc code = POP

(x::stack, pc, code) =22y (stack, pc + ilength [POP], code)

Semantics of bytecode

Operational semantics: (assumes memory abstraction)

® sma
® simi
® stac

* state tuple: (stack;pc, code)

l-step \
ar to machine code semantics, but more abstract

K based // instead of regs, memory, flags etc.)

Examples: % POP instruction to be executed)

fetch

pc code = POP

(x::stack, pc, code) =22y (stack, pc + ilength [POP], code)

(ﬁ\ement at top of stack ...)

Semantics of bytecode

Operational semantics: (assumes memory abstraction)

® sma
® simi
® stac

* state tuple: (stack;pc, code)

l-step \
ar to machine code semantics, but more abstract

K based // instead of regs, memory, flags etc.)

Examples: % POP instruction to be executed)

fetch

pc code = POP

(x::stack, pc, code) =22y (stack, pc + ilength [POP], code)

(ﬁ\ement at top of stack ...) E is removed by POP)

Semantics of bytecode

Operational semantics: (assumes memory abstraction)

® sma
® simi
® stac

* state tuple: (stack;pc, code)

l-step \
ar to machine code semantics, but more abstract

K based // instead of regs, memory, flags etc.)

Examples: % POP instruction to be executed)

fetch

pc code = POP

(x::stack, pc, code) =22y (stack, pc + ilength [POP], code)

fetch

pc code = PUSH x

(stack, pc, code) —991% (x::stack, pc + 1length [PUSH x], code)

More examples

fetch pc code = POP1

(y::x::stack, pc, code) fﬂEi} (y::stack, pc + ilength [POP1], code)

More examples

fetch pc code = POPL / removed element below top)

(y::x::stack, pc, code) % (y::stack, pc + ilength [POP1], code)

More examples

fetch pc code = POPL / removed element below top)

(y::x::stack, pc, code) % (y::stack, pc + ilength [POP1], code)

fetch pc code = CONS / introduced Dot pair)

(y::x::stack, pc, code) % (Dot x y::stack, pc + i1length [CONS], code)

More examples

fetch pc code = POPL / removed element below top)

(y::x::stack, pc, code) % (y::stack, pc + ilength [POP1], code)

fetch pc code = CONS / introduced Dot pair)

(y::x::stack, pc, code) % (Dot x y::stack, pc + i1length [CONS], code)

fetch pc code = JUMP_IF n 1sTrue x/]umped b)’ offset n)

(x::stack, pc, code) ﬂ (stack, pc + n, code)

More examples

fetch pc code = POPL / removed element below top)

(y::x::stack, pc, code) % (y::stack, pc + ilength [POP1], code)

fetch pc code = CONS / introduced Dot pair)

(y::x::stack, pc, code) % (Dot x y::stack, pc + i1length [CONS], code)

fetch pc code = JUMP_IF n 1sTrue x/]umped b)’ offset n)

(x::stack, pc, code) ﬂ (stack, pc + n, code)

fetch pc code = JUMP_IF n ~(1sTrue x) dldntjump)

(x::stack, pc, code) % (stack, pc + ilength [JUMP_IF n], code)

More examples

fetch pc code = POPL / removed element below top)

(y::x::stack, pc, code) % (y::stack, pc + ilength [POP1], code)

fetch pc code = CONS / introduced Dot pair)

(y::x::stack, pc, code) % (Dot x y::stack, pc + i1length [CONS], code)

fetch pc code = JUMP_IF n 1sTrue x/]umped b)’ offset n)

(x::stack, pc, code) ﬂ (stack, pc + n, code)

fetch pc code = JUMP_IF n ~(1sTrue x) dldntjump)

(x::stack, pc, code) % (stack, pc + ilength [JUMP_IF n], code)

fetch pc code = LOAD (length xs) copied x and pushed to top)

(xs ++ x::stack, pc, code) -9@i> (x::xs ++ x::stack, pc + 1length
[LOAD (length xs) n], code)

More examples

fetch pc code = POPL / removed element below top)

(y::x::stack, pc, code) % (y::stack, pc + ilength [POP1], code)

fetch pc code = CONS / introduced Dot pair)

(y::x::stack, pc, code) % (Dot x y::stack, pc + i1length [CONS], code)

fetch pc code = JUMP_IF n 1sTrue x/]umped b)’ offset n)

(x::stack, pc, code) ﬂ (stack, pc + n, code)

fetch pc code = JUMP_IF n ~(1sTrue x) dldntjump)

(x::stack, pc, code) % (stack, pc + ilength [JUMP_IF n], code)

fetch pc code = LOAD (length xs) copied x and pushed to top)

(xs ++ x::stack, pc, code) -9@i> (x::xs ++ x::stack, pc + 1length
[LOAD (length xs) n], code)

Bytecode — machine code

Define a function (to_mc) from bc_inst to machine code:

to_mc (POP::rest) = “ load r@,[r0+4] ” ++ to_mc rest

Bytecode — machine code

Define a function (to_mc) from bc_inst to machine code:
to_mc (POP::rest) = “ load r@,[r0+4] ” ++ to_mc rest

We prove the correctness of this machine code implementation
W.r.t. state assertion BYTECODE:

(stack, pc, code) ffﬁ%—(stack’, pc’, code’) —

{ PC (base + pc) * BYTECODE (stack,err) }
base: to_mc code
{ PC (base + pc’) * BYTECODE (stack’,err) }

Bytecode — machine code

Define a function (to_mc) from bc_inst to machine code:
to_mc (POP::rest) = “ load r@,[r0+4] ” ++ to_mc rest

We prove the correctness of this machine code implementation

W.r.t. state assertion BYTECODE:
/ if bytecode executes step ...

(stack, pc, code) ffﬁ%—(stack’, pc’, code’) —

{ PC (base + pc) * BYTECODE (stack,err) }
base: to_mc code
{ PC (base + pc’) * BYTECODE (stack’,err) }

Bytecode — machine code

Define a function (to_mc) from bc_inst to machine code:
to_mc (POP::rest) = “ load r@,[r0+4] ” ++ to_mc rest

We prove the correctness of this machine code implementation

W.r.t. state assertion BYTECODE:
/ if bytecode executes step ...

(stack, pc, code) 3E£§-(stack’, pc’, code’) —

{ PC (base + pc) * BYTECODE (stack,err) }
base: to_mc code
{ PC (base/\+ pc’) * BYTECODE (stack’,err) 1

... then m.c. performs the same
w.r.t. the BYTECODE assertion

Bytecode — machine code

Define a function (to_mc) from bc_inst to machine code:
to_mc (POP::rest) = “ load r@,[r0+4] ” ++ to_mc rest

We prove the correctness of this machine code implementation

W.r.t. state assertion BYTECODE:
/ if bytecode executes step ...)

(stack, pc, code) 3E£§-(stack’, pc’, code’) —

{ PC (base + pc) * BYTECODE (stack,err) }
base: to_mc code
{ PC (base/\+ pc’) * BYTECODE (stack’,err) 1

A

... then m.c. performs the same ... OF jumps to err
w.r.t. the BYTECODE assertion (due to lack of heap space)

BYTECODE assertion

Proper definition: uses a real stack in memory (array). T hat’s fast.

BYTECODE assertion

Proper definition: uses a real stack in memory (array). T hat’s fast.

But to keep it simple, let’s just use HEAP from previous lecture:

BYTECODE assertion

Proper definition: uses a real stack in memory (array). T hat’s fast.
But to keep it simple, let’s just use HEAP from previous lecture:

= stack can be packaged up in an s-expression:

to_sexp [] = Sym “NIL”
to_sexp (x::xs) = Dot x (to_sexp xs)

BYTECODE assertion

Proper definition: uses a real stack in memory (array). T hat’s fast.
But to keep it simple, let’s just use HEAP from previous lecture:

= stack can be packaged up in an s-expression:

to_sexp [] = Sym “NIL”
to_sexp (x::xs) = Dot x (to_sexp xs)

= we can how define:

BYTECODE (stack,err) = HEAP (to_sexp stack,_,_,_,err)

BYTECODE assertion

Proper definition: uses a real stack in memory (array). T hat’s fast.
But to keep it simple, let’s just use HEAP from previous lecture:

= stack can be packaged up in an s-expression:

to_sexp [] = Sym “NIL”
to_sexp (x::xs) = Dot x (to_sexp xs)

= we can how define:

BYTECODE (stack,err) = HEAP (to_sexp stack,_,_,_,err)

Exercise: prove POP case correct for to_mc function (prev. slide).

Source — Bytecode

Initial example:

(cons ’1 ’2) 1.e. Cons (Const (Val 1)) (Const (Val 2))

Source — Bytecode

Initial example:

(cons ’1 ’2) 1.e. Cons (Const (Val 1)) (Const (Val 2))
is to compile to

[PUSH (Val 1), PUSH (Val 2), CONS]

Source — Bytecode

Initial example:

(cons ’1 ’2) 1.e. Cons (Const (Val 1)) (Const (Val 2))

is to compile to

[PUSH (Val 1), PUSH (Val 2), CONS]

Execution of this pushes

Dot (Val 1) (Val 2)

onto the stack, leaves rest of stack untouched.

Source — Bytecode

Initial example:

(cons ’1 ’2) 1.e. Cons (Const (Val 1)) (Const (Val 2))
is to compile to

[PUSH (Val 1), PUSH (Val 2), CONS]

Execution of this pushes
Dot (Val 1) (Val 2)

onto the stack, leaves rest of stack untouched.

Draft implementation:

to_bc (Const x) = [PUSH x]
to_bc (Cons el e2) = to_bc el ++ to_bc e2 ++ [CONS]

Correctness of compilation

vexp env result code stack pc.

(exp, env) || result A to_bc exp = code

—
(stack, @, code) fﬂéi} (result :: stack, ilength code, code)

Correctness of compilation

(If big-step sem. terminates with result)

vexp env resu\/t code stack pc.

(exp, env) || result A to_bc exp = code

—
(stack, @, code) ﬂ (result :: stack, ilength code, code)

Correctness of compilation

(If big-step sem. terminates with result)

vexp env resu\/t code stack pc.

(exp, env) || result A to_bc exp = code

—
(stack, @, code) ﬂ (result :: stack, ilength code, code)

A

... then execution of generated
bytecode pushes result onto stack.

Correctness of compilation

(If big-step sem. terminates with result)

vexp env resu\/t code stack pc.

(exp, env) || result A to_bc exp = code

—
(stack, @, code) ﬂ (result :: stack, ilength code, code)

A
[... then execution of generated j

bytecode pushes result onto stack.

Proof: by induction on |

Correctness of compilation

(If big-step sem. terminates with result)

vexp env resu\/t code stack pc.

(exp, env) || result A to_bc exp = code

—
(stack, @, code) ﬂ (result :: stack, ilength code, code)

A
/\ [... then execution of generated j
[needs to be generalised] bytecode pushes result onto stack.

for proof by induction

Proof: by induction on |

Correctness of compilation

(If big-step sem. terminates with result)

vexp env resu\/t code stack pc.

(exp, env) || result A to_bc exp = code

—
(stack, @, code) ﬂ (result :: stack, ilength code, code)

A
/\ [... then execution of generated j
[needs to be generalised] bytecode pushes result onto stack.

for proof by induction

Proof: by induction on |

What about compilation of Var?

Correctness of compilation

(If big-step sem. terminates with result)

vexp env resu\/t code stack pc.

(exp, env) || result A to_bc exp = code

—
(stack, @, code) % (result :: stack, ilength code, code)

A
/\ [... then execution of generated j
[needs to be generalised] bytecode pushes result onto stack.

for proof by induction

Proof: by induction on |

What about compilation of Var?
... need to modify compiler and theorem.

Compilation of Var and Let

Implementation:

to_bc st (Const x) = [PUSH x]

to_bc st (Cons el e2) = to_bc st el ++
to_bc (NONE::st) e2 ++ [CONS]

to_bc st (Var v) = [LOAD (index_of v st)]

to_bc st (Let v el e2) = to_bc st el ++
to_bc (SOME v::st) e2 ++ [POP1]

index_of v (x::st) = 1if x = SOME v then 0
else index_of v st + 1

Compilation of Var and Let

Implementation: keeps track of where variables are)

to_bc st (Const x) = [PUSH x]

to_bc st (Cons el e2) = to_bc st el ++
to_bc (NONE::st) e2 ++ [CONS]

to_bc st (Var v) = [LOAD (index_of v st)]

to_bc st (Let v el e2) = to_bc st el ++
to_bc (SOME v::st) e2 ++ [POP1]

index_of v (x::st) = 1if x = SOME v then 0
else index_of v st + 1

Compilation of Var and Let

Implementation: keeps track of where variables are)

to_bc st (Const x) [PUSH x] shape of stack)

to_bc st (Cons el e2) = to_bc st el ++
to_bc (NONE::st) e2 ++ [CONS]

to_bc st (Var v) = [LOAD (index_of v st)]

to_bc st (Let v el e2) = to_bc st el ++
to_bc (SOME v::st) e2 ++ [POP1]

index_of v (x::st) = 1if x = SOME v then 0
else index_of v st + 1

Compilation of Var and Let

Implementation: keeps track of where variables are)

to_bc st (Const x) [PUSH x] shape of stack)

to_bc st (Cons el e2) = to_bc st el ++
to_bc (NONE::st) e2 ++ [CONS]

to_bc st (Var v) = [LOAD (index_of v st)]

to_bc st (Let v el e2) = $H_bc st el ++
to_bc (SOME v::st) e2 ++ [POP1]

(Var compiles to LOAD

index_of v (x::st) = 1if x = SOME v then 0
else index_of v st + 1

Compilation of Var and Let

Implementation: keeps track of where variables are)

to_bc st (Const x) = [PUSH x] shape of stack)

to_bc st (Cons el e2) = to_bc st el ++
to_bc (NONE::st) e2 ++ [CONS]

to_bc st (Var v) = [LOAD (index_of v st)]
to_bc st (Let v el e2)

_bc st el ++

to_bc (SOME v::st) e2 ++ [POP1]
g /AN
(Var compiles to LOAD (Let expression can refer to bound var)

index_of v (x::st) = 1if x = SOME v then 0
else index_of v st + 1

Correctness (revisited)

vexp env result code stack pc st.

(exp, env) || result A to_bc st exp = code A stack_inv stack st env

—
(stack, @, code) fﬂ&l} (result :: stack, ilength code, code)

Correctness (revisited)

vexp env result code stack pc st.

(exp, env) | result A to_bc st exp = code A stack_inv stack st env

—
(stack, 0@, code) fﬂ&l} (result :: stack, ilength code, code)

where stack_inv ensures that stack holds values of env according to st.

stack_inv xs [] env = true
stack_1nv (x::xs) (NONE::st) env = stack_inv xs st env
stack_inv (x::xs) (SOME v::st) env = stack_inv xs (del v st) env A env(v) = X

del v [] = []
del v (NONE::st) = NONE :: del v st

del v (SOME w::st) = 1f v = w then NONE :: del v st else SOME w :: del v st

Function calls

vexp env result code stack pc st fns ctxt.

(exp, fns, env) | result A stack_inv stack st env A
to_bc (st, ctxt, 1length cl) exp = cZ2 A
“ to_bc-compiled code for all function in ctxt exists in cl++c2 ”

—
(stack, ilength cl, cl++c2) =%y (result :: stack, ilength (cl++c2), cl++c2)

Function calls

C function definitions (first-order Lisp))

|

vexp env result code stack pc st fns ctxt.

(exp, fns, env) | result A stack_inv stack st env A
to_bc (st, ctxt, 1length cl) exp = cZ2 A
“ to_bc-compiled code for all function in ctxt exists in cl++c2 ”

—
(stack, ilength cl, cl++c2) =%y (result :: stack, ilength (cl++c2), cl++c2)

Function calls

C function definitions (first-order Lisp))

C mapping from func. names to compiler info)

o

vexp env result code stack pc st fns ctxt.

(exp, fns, env) | result A stack_inv stack st env A
to_bc (st, ctxt, 1length cl) exp = cZ2 A
“ to_bc-compiled code for all function in ctxt exists in cl++c2 ”

—
(stack, ilength cl, cl++c2) =%y (result :: stack, ilength (cl++c2), cl++c2)

Function calls

C function definitions (first-order Lisp))

C mapping from func. names to compiler info)

o

vexp env result code stack pc st fns ctxt.

(exp, fns, env) | result A stack_inv stack st env A
to_bc (st, ctxt, 1length cl) exp = cZ2 A
“ to_bc-compiled code for all function in ctxt exists in cl++c2 ”

= |
(stack, ilefpgth cl, cl++c2) =%2ly (result :: stack, ilength (cl++c2), cl++c2)

(we assume all functions in ctxt have been compiled using to_bc)

Function calls

C function definitions (first-order Lisp))

C mapping from func. names to compiler info)

o

vexp env result code stack pc st fns ctxt.

(exp, fns, env) | result A stack_inv stack st env A
to_bc (st, ctxt, 1length cl) exp = cZ2 A
“ to_bc-compiled code for all function in ctxt exists in cl++c2 ”

= |
(stack, ilefpgth cl, cl++c2) =%2ly (result :: s’cack,(i length (cl++c2), cl++c2)

c2 included to allow recur

(we assume all functions in ctxt have been compiled using to_bc)

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Two versions of fac:
fac n = 1f n = @ then 1 else n x fac (n-1)

fac n = f (n,1)

where f (n,k) = 1f n = 0 then k else f (n-1,k x n)

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

: . not a tail call, leaves ‘n x’ to be done after call
Two versions of fac:

v

fac n = 1f n = @ then 1 else n x fac (n-1)

fac n = f (n,1)

where f (n,k) = 1f n = 0 then k else f (n-1,k x n)

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Two versions of fac: (not a tail call, leaves ‘n x’ to be done after call)

v

fac n = 1f n = @ then 1 else n x fac (n-1)

fac n = f (n,1)
where f (n,k) = 1f n = 0 then k else f (n-1,k x n)
A

C tail call leaves no work in this function left to be done)

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Two versions of fac: C not a tail call, leaves ‘n x’ to be done after call)

v

fac n = 1f n = @ then 1 else n x fac (n-1)

fac n = f (n,1)
where f (n,k) = 1f n = 0 then k else f (n-1,k x n)
A

C tail call leaves no work in this function left to be done)

FP implementations must ensure that tail calls do not waste space.

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Two versions of fac: C not a tail call, leaves ‘n x’ to be done after call)

v

fac n = 1f n = @ then 1 else n x fac (n-1)

fac n = f (n,1)
where f (n,k) = 1f n = 0 then k else f (n-1,k x n)
A

C tail call leaves no work in this function left to be done)

FP implementations must ensure that tail calls do not waste space.

* in our example: to_bc must rewind stack before tail-call
* otherwise, the subroutine cannot immediately return to caller

Closures

What if we source sem. has closure values!?

Closures

What if we source sem. has closure values!?

Short answer: brings new complexity

Closures

What if we source sem. has closure values!?
Short answer: brings new complexity

Example: correctness theorem requires relation R

vexp env result .. .

(exp, env) || result A

—
ax. (stack, .) =Ly (x :: stack, .) A R x result

Closures

What if we source sem. has closure values!?
Short answer: brings new complexity

Example: correctness theorem requires relation R

vexp env result .. .

(exp, env) || result A

—
ax. (stack, .) =Ly (x :: stack, .) A R x result

A

4 .. .)
non-trivial relation between

semantics values (e.g. closures) and
\bytecode values (e.g. code pointers) y

Summary

Compilation
e faster than interpreter-based implementation

* best staged, e.g. via ‘bytecode’ language that operates
on top of memory abstraction (from previous lecture)

* easy to compile to stack-based language
e tail-calls must be efficient

Summary

Compilation
e faster than interpreter-based implementation

* best staged, e.g. via ‘bytecode’ language that operates
on top of memory abstraction (from previous lecture)

* easy to compile to stack-based language
e tail-calls must be efficient

Correctness
* correctness statement non-trivial for non-trivial language
* proof by induction on big-step op. sem.
* closure values introduce complexity (topic of next lecture)

Summary

Compilation
e faster than interpreter-based implementation

* best staged, e.g. via ‘bytecode’ language that operates
on top of memory abstraction (from previous lecture)

* easy to compile to stack-based language
e tail-calls must be efficient

Correctness
* correctness statement non-trivial for non-trivial language
* proof by induction on big-step op. sem.
* closure values introduce complexity (topic of next lecture)

(guest lectures by Ramana Kumar)

