
MPhil ACS & Part III course, Functional Programming: 	


Implementation, Specification and Verification

Magnus Myreen	


Michaelmas term, 2013

Lecture 7

Verified compilation of a 
first-order Lisp language



Interpreter vs compiler

FP interpreter:	


• program that implements the small-step semantics	


• operates over syntax of the source FP program	


• naive implementation wastes time (slow)	


• time spent figuring out what operation to perform



Interpreter vs compiler

FP interpreter:	


• program that implements the small-step semantics	


• operates over syntax of the source FP program	


• naive implementation wastes time (slow)	


• time spent figuring out what operation to perform

Compilation:	


• compiler translates source to native machine code	


• evaluation is compile-then-execute-generated-code	


• performance can be good	


• compilation is dynamic or just-in-time (JIT) if it happens 

at runtime
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  val = SExp	
!
  exp ::= Var string	
        | Const SExp	
        | Add exp exp	
        | Car exp	
        | Cdr exp	
        | Cons exp exp	
        | Let string exp exp	
        | If exp exp exp	
        | ...

first-order Lisp, i.e. no closure values

Semantics: big-step operational semantics similar to Lecture 2.
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Bytecode

  bc_inst ::= LOAD num	
            | PUSH SExp	
            | ADD	
            | CAR	
            | CDR	
            | CONS	
            | POP	
            | POP1	
            | JUMP num	
            | JUMP_IF num	
            | ...	
!
  bytecode_program = bc_inst list

Semantics: small-step op. semantics sketched on next slide.
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Operational semantics:	


• small-step	


• similar to machine code semantics, but more abstract	


• stack based	


• state tuple: (stack, pc, code)

assumes memory abstraction

instead of regs, memory, flags etc.

  fetch pc code = POP	
!
  (x::stack, pc, code)       (stack, pc + ilength [POP], code)  �!eval

Examples: POP instruction to be executed 
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Bytecode → machine code
Define a function (to_mc) from bc_inst to machine code:

  to_mc (POP::rest) = “ load r0,[r0+4] ” ++ to_mc rest

We prove the correctness of this machine code implementation 	


w.r.t. state assertion BYTECODE:

  (stack, pc, code)      (stack’, pc’, code’)	
  { PC (base + pc) * BYTECODE (stack,err) } 	
    base: to_mc code	
  { PC (base + pc’) * BYTECODE (stack’,err) ∨ PC err * true }	

=)�!eval

if bytecode executes step …

… then m.c. performs the same	


w.r.t. the BYTECODE assertion

… or jumps to err 	


(due to lack of heap space)
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BYTECODE assertion
Proper definition: uses a real stack in memory (array). That’s fast.

But to keep it simple, let’s just use HEAP from previous lecture:

➡  stack can be packaged up in an s-expression:

       to_sexp [] = Sym “NIL”	
  to_sexp (x::xs) = Dot x (to_sexp xs)

➡  we can now define:

BYTECODE (stack,err) = HEAP (to_sexp stack,_,_,_,err)

Exercise: prove POP case correct for to_mc function (prev. slide).
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Source → Bytecode
Initial example: 

  (cons ’1 ’2)   i.e.  Cons (Const (Val 1)) (Const (Val 2)) 

is to compile to

  [PUSH (Val 1), PUSH (Val 2), CONS]

Execution of this pushes  

  Dot (Val 1) (Val 2)

onto the stack, leaves rest of stack untouched.

Draft implementation: 

to_bc (Const x) = [PUSH x]	
to_bc (Cons e1 e2) = to_bc e1 ++ to_bc e2 ++ [CONS]
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Correctness of compilation

(exp, env)   result  ∧  to_bc exp = code	
!
!
(stack, 0, code)       (result :: stack, ilength code, code)

+

�!eval
=)

∀exp env result code stack pc.

If big-step sem. terminates with result

… then execution of generated 	


bytecode pushes result onto stack.

What about compilation of Var?
… need to modify compiler and theorem.

needs to be generalised 	


for proof by induction

Proof: by induction on +
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Compilation of Var and Let

Implementation: 

to_bc st (Const x)     = [PUSH x]	
to_bc st (Cons e1 e2)  = to_bc st e1 ++ 	
                         to_bc (NONE::st) e2 ++ [CONS]	
to_bc st (Var v)       = [LOAD (index_of v st)]	
to_bc st (Let v e1 e2) = to_bc st e1 ++	
                         to_bc (SOME v::st) e2 ++ [POP1]

keeps track of where variables are

index_of v (x::st) = if x = SOME v then 0 	
                     else index_of v st + 1	

shape of stack

Var compiles to LOAD Let expression can refer to bound var
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Correctness (revisited)

(exp, env)   result  ∧  to_bc st exp = code  ∧  stack_inv stack st env	
!
!
(stack, 0, code)       (result :: stack, ilength code, code)

+

�!eval
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where stack_inv ensures that stack holds values of env according to st. 

               stack_inv xs [] env = true	
  stack_inv (x::xs) (NONE::st) env = stack_inv xs st env	
stack_inv (x::xs) (SOME v::st) env = stack_inv xs (del v st) env ∧ env(v) = x 

          del v [] = []	
  del v (NONE::st) = NONE :: del v st	
del v (SOME w::st) = if v = w then NONE :: del v st else SOME w :: del v st 
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Function calls

(exp, fns, env)   result  ∧  stack_inv stack st env  ∧	
to_bc (st, ctxt, ilength c1) exp = c2  ∧	
“ to_bc-compiled code for all function in ctxt exists in c1++c2 ”	
!
!
(stack, ilength c1, c1++c2)       (result :: stack, ilength (c1++c2), c1++c2)

+

�!eval
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∀exp env result code stack pc st fns ctxt.

function definitions (first-order Lisp)

mapping from func. names to compiler info

we assume all functions in ctxt have been compiled using to_bc

c2 included to allow recursion
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Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls). 

Two versions of fac:

fac n = if n = 0 then 1 else n × fac (n-1)

fac n = f (n,1)   	
        where f (n,k) = if n = 0 then k else f (n-1,k × n)

not a tail call, leaves ‘n ×’ to be done after call

tail call leaves no work in this function left to be done

FP implementations must ensure that tail calls do not waste space. !
• in our example: to_bc must rewind stack before tail-call	



• otherwise, the subroutine cannot immediately return to caller
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Closures
What if we source sem. has closure values?

Short answer: brings new complexity

(exp, env)   result  ∧  …	
!
∃x. (stack, …)       (x :: stack, …)  ∧  R x result

+
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non-trivial relation between 	


semantics values (e.g. closures) and	


bytecode values (e.g. code pointers)
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