
MPhil ACS & Part III course, Functional Programming: 	

Implementation, Specification and Verification

Magnus Myreen	

Michaelmas term, 2013

Lecture 7

Verified compilation of a
first-order Lisp language

Interpreter vs compiler

FP interpreter:	

• program that implements the small-step semantics	

• operates over syntax of the source FP program	

• naive implementation wastes time (slow)	

• time spent figuring out what operation to perform

Interpreter vs compiler

FP interpreter:	

• program that implements the small-step semantics	

• operates over syntax of the source FP program	

• naive implementation wastes time (slow)	

• time spent figuring out what operation to perform

Compilation:	

• compiler translates source to native machine code	

• evaluation is compile-then-execute-generated-code	

• performance can be good	

• compilation is dynamic or just-in-time (JIT) if it happens

at runtime

Compilation in this lecture

Source: simple first-order FP language

“bytecode”: stack-based little language

machine code: as described in previous lectures

Compilation in this lecture

Source: simple first-order FP language

“bytecode”: stack-based little language

machine code: as described in previous lectures

Ramana’s guest lectures will compile higher-order FP

Little source language

 val = SExp	
!
 exp ::= Var string	
 | Const SExp	
 | Add exp exp	
 | Car exp	
 | Cdr exp	
 | Cons exp exp	
 | Let string exp exp	
 | If exp exp exp	
 | ...

Little source language

 val = SExp	
!
 exp ::= Var string	
 | Const SExp	
 | Add exp exp	
 | Car exp	
 | Cdr exp	
 | Cons exp exp	
 | Let string exp exp	
 | If exp exp exp	
 | ...

first-order Lisp, i.e. no closure values

Little source language

 val = SExp	
!
 exp ::= Var string	
 | Const SExp	
 | Add exp exp	
 | Car exp	
 | Cdr exp	
 | Cons exp exp	
 | Let string exp exp	
 | If exp exp exp	
 | ...

first-order Lisp, i.e. no closure values

Semantics: big-step operational semantics similar to Lecture 2.

Bytecode

 bc_inst ::= LOAD num	
 | PUSH SExp	
 | ADD	
 | CAR	
 | CDR	
 | CONS	
 | POP	
 | POP1	
 | JUMP num	
 | JUMP_IF num	
 | ...	
!
 bytecode_program = bc_inst list

Bytecode

 bc_inst ::= LOAD num	
 | PUSH SExp	
 | ADD	
 | CAR	
 | CDR	
 | CONS	
 | POP	
 | POP1	
 | JUMP num	
 | JUMP_IF num	
 | ...	
!
 bytecode_program = bc_inst list

Semantics: small-step op. semantics sketched on next slide.

Semantics of bytecode

Operational semantics:	

• small-step	

• similar to machine code semantics, but more abstract	

• stack based	

• state tuple: (stack, pc, code)

Semantics of bytecode

Operational semantics:	

• small-step	

• similar to machine code semantics, but more abstract	

• stack based	

• state tuple: (stack, pc, code)

assumes memory abstraction

Semantics of bytecode

Operational semantics:	

• small-step	

• similar to machine code semantics, but more abstract	

• stack based	

• state tuple: (stack, pc, code)

assumes memory abstraction

instead of regs, memory, flags etc.

Semantics of bytecode

Operational semantics:	

• small-step	

• similar to machine code semantics, but more abstract	

• stack based	

• state tuple: (stack, pc, code)

assumes memory abstraction

instead of regs, memory, flags etc.

 fetch pc code = POP	
!
 (x::stack, pc, code) (stack, pc + ilength [POP], code) �!eval

Examples:

Semantics of bytecode

Operational semantics:	

• small-step	

• similar to machine code semantics, but more abstract	

• stack based	

• state tuple: (stack, pc, code)

assumes memory abstraction

instead of regs, memory, flags etc.

 fetch pc code = POP	
!
 (x::stack, pc, code) (stack, pc + ilength [POP], code) �!eval

Examples: POP instruction to be executed

Semantics of bytecode

Operational semantics:	

• small-step	

• similar to machine code semantics, but more abstract	

• stack based	

• state tuple: (stack, pc, code)

assumes memory abstraction

instead of regs, memory, flags etc.

 fetch pc code = POP	
!
 (x::stack, pc, code) (stack, pc + ilength [POP], code) �!eval

Examples: POP instruction to be executed

element at top of stack …

Semantics of bytecode

Operational semantics:	

• small-step	

• similar to machine code semantics, but more abstract	

• stack based	

• state tuple: (stack, pc, code)

assumes memory abstraction

instead of regs, memory, flags etc.

 fetch pc code = POP	
!
 (x::stack, pc, code) (stack, pc + ilength [POP], code) �!eval

Examples: POP instruction to be executed

element at top of stack … … is removed by POP

Semantics of bytecode

Operational semantics:	

• small-step	

• similar to machine code semantics, but more abstract	

• stack based	

• state tuple: (stack, pc, code)

assumes memory abstraction

instead of regs, memory, flags etc.

 fetch pc code = POP	
!
 (x::stack, pc, code) (stack, pc + ilength [POP], code) �!eval

Examples: POP instruction to be executed

 fetch pc code = PUSH x	
!
 (stack, pc, code) (x::stack, pc + ilength [PUSH x], code) �!eval

More examples
 fetch pc code = POP1	
!
 (y::x::stack, pc, code) (y::stack, pc + ilength [POP1], code) �!eval

More examples
 fetch pc code = POP1	
!
 (y::x::stack, pc, code) (y::stack, pc + ilength [POP1], code) �!eval

removed element below top

More examples
 fetch pc code = POP1	
!
 (y::x::stack, pc, code) (y::stack, pc + ilength [POP1], code) �!eval

 fetch pc code = CONS	
!
 (y::x::stack, pc, code) (Dot x y::stack, pc + ilength [CONS], code) �!eval

removed element below top

introduced Dot pair

More examples
 fetch pc code = POP1	
!
 (y::x::stack, pc, code) (y::stack, pc + ilength [POP1], code) �!eval

 fetch pc code = CONS	
!
 (y::x::stack, pc, code) (Dot x y::stack, pc + ilength [CONS], code) �!eval

 fetch pc code = JUMP_IF n isTrue x	
 	
 (x::stack, pc, code) (stack, pc + n, code) �!eval

removed element below top

introduced Dot pair

jumped by offset n

More examples
 fetch pc code = POP1	
!
 (y::x::stack, pc, code) (y::stack, pc + ilength [POP1], code) �!eval

 fetch pc code = CONS	
!
 (y::x::stack, pc, code) (Dot x y::stack, pc + ilength [CONS], code) �!eval

 fetch pc code = JUMP_IF n isTrue x	
 	
 (x::stack, pc, code) (stack, pc + n, code) �!eval

 fetch pc code = JUMP_IF n ¬(isTrue x)	
 	
 (x::stack, pc, code) (stack, pc + ilength [JUMP_IF n], code) �!eval

removed element below top

introduced Dot pair

jumped by offset n

didn’t jump

More examples
 fetch pc code = POP1	
!
 (y::x::stack, pc, code) (y::stack, pc + ilength [POP1], code) �!eval

 fetch pc code = CONS	
!
 (y::x::stack, pc, code) (Dot x y::stack, pc + ilength [CONS], code) �!eval

 fetch pc code = JUMP_IF n isTrue x	
 	
 (x::stack, pc, code) (stack, pc + n, code) �!eval

 fetch pc code = JUMP_IF n ¬(isTrue x)	
 	
 (x::stack, pc, code) (stack, pc + ilength [JUMP_IF n], code) �!eval

 fetch pc code = LOAD (length xs) 	
 	
 (xs ++ x::stack, pc, code) (x::xs ++ x::stack, pc + ilength 	
 [LOAD (length xs) n], code)

�!eval

removed element below top

introduced Dot pair

jumped by offset n

didn’t jump

copied x and pushed to top

More examples
 fetch pc code = POP1	
!
 (y::x::stack, pc, code) (y::stack, pc + ilength [POP1], code) �!eval

 fetch pc code = CONS	
!
 (y::x::stack, pc, code) (Dot x y::stack, pc + ilength [CONS], code) �!eval

 fetch pc code = JUMP_IF n isTrue x	
 	
 (x::stack, pc, code) (stack, pc + n, code) �!eval

 fetch pc code = JUMP_IF n ¬(isTrue x)	
 	
 (x::stack, pc, code) (stack, pc + ilength [JUMP_IF n], code) �!eval

 fetch pc code = LOAD (length xs) 	
 	
 (xs ++ x::stack, pc, code) (x::xs ++ x::stack, pc + ilength 	
 [LOAD (length xs) n], code)

�!eval

removed element below top

introduced Dot pair

jumped by offset n

didn’t jump

copied x and pushed to top

Bytecode → machine code
Define a function (to_mc) from bc_inst to machine code:

 to_mc (POP::rest) = “ load r0,[r0+4] ” ++ to_mc rest

Bytecode → machine code
Define a function (to_mc) from bc_inst to machine code:

 to_mc (POP::rest) = “ load r0,[r0+4] ” ++ to_mc rest

We prove the correctness of this machine code implementation 	

w.r.t. state assertion BYTECODE:

 (stack, pc, code) (stack’, pc’, code’)	
 { PC (base + pc) * BYTECODE (stack,err) } 	
 base: to_mc code	
 { PC (base + pc’) * BYTECODE (stack’,err) ∨ PC err * true }	

=)�!eval

Bytecode → machine code
Define a function (to_mc) from bc_inst to machine code:

 to_mc (POP::rest) = “ load r0,[r0+4] ” ++ to_mc rest

We prove the correctness of this machine code implementation 	

w.r.t. state assertion BYTECODE:

 (stack, pc, code) (stack’, pc’, code’)	
 { PC (base + pc) * BYTECODE (stack,err) } 	
 base: to_mc code	
 { PC (base + pc’) * BYTECODE (stack’,err) ∨ PC err * true }	

=)�!eval

if bytecode executes step …

Bytecode → machine code
Define a function (to_mc) from bc_inst to machine code:

 to_mc (POP::rest) = “ load r0,[r0+4] ” ++ to_mc rest

We prove the correctness of this machine code implementation 	

w.r.t. state assertion BYTECODE:

 (stack, pc, code) (stack’, pc’, code’)	
 { PC (base + pc) * BYTECODE (stack,err) } 	
 base: to_mc code	
 { PC (base + pc’) * BYTECODE (stack’,err) ∨ PC err * true }	

=)�!eval

if bytecode executes step …

… then m.c. performs the same	

w.r.t. the BYTECODE assertion

Bytecode → machine code
Define a function (to_mc) from bc_inst to machine code:

 to_mc (POP::rest) = “ load r0,[r0+4] ” ++ to_mc rest

We prove the correctness of this machine code implementation 	

w.r.t. state assertion BYTECODE:

 (stack, pc, code) (stack’, pc’, code’)	
 { PC (base + pc) * BYTECODE (stack,err) } 	
 base: to_mc code	
 { PC (base + pc’) * BYTECODE (stack’,err) ∨ PC err * true }	

=)�!eval

if bytecode executes step …

… then m.c. performs the same	

w.r.t. the BYTECODE assertion

… or jumps to err 	

(due to lack of heap space)

BYTECODE assertion
Proper definition: uses a real stack in memory (array). That’s fast.

BYTECODE assertion
Proper definition: uses a real stack in memory (array). That’s fast.

But to keep it simple, let’s just use HEAP from previous lecture:

BYTECODE assertion
Proper definition: uses a real stack in memory (array). That’s fast.

But to keep it simple, let’s just use HEAP from previous lecture:

➡ stack can be packaged up in an s-expression:

 to_sexp [] = Sym “NIL”	
 to_sexp (x::xs) = Dot x (to_sexp xs)

BYTECODE assertion
Proper definition: uses a real stack in memory (array). That’s fast.

But to keep it simple, let’s just use HEAP from previous lecture:

➡ stack can be packaged up in an s-expression:

 to_sexp [] = Sym “NIL”	
 to_sexp (x::xs) = Dot x (to_sexp xs)

➡ we can now define:

BYTECODE (stack,err) = HEAP (to_sexp stack,_,_,_,err)

BYTECODE assertion
Proper definition: uses a real stack in memory (array). That’s fast.

But to keep it simple, let’s just use HEAP from previous lecture:

➡ stack can be packaged up in an s-expression:

 to_sexp [] = Sym “NIL”	
 to_sexp (x::xs) = Dot x (to_sexp xs)

➡ we can now define:

BYTECODE (stack,err) = HEAP (to_sexp stack,_,_,_,err)

Exercise: prove POP case correct for to_mc function (prev. slide).

Source → Bytecode
Initial example:

 (cons ’1 ’2) i.e. Cons (Const (Val 1)) (Const (Val 2))

Source → Bytecode
Initial example:

 (cons ’1 ’2) i.e. Cons (Const (Val 1)) (Const (Val 2))

is to compile to

 [PUSH (Val 1), PUSH (Val 2), CONS]

Source → Bytecode
Initial example:

 (cons ’1 ’2) i.e. Cons (Const (Val 1)) (Const (Val 2))

is to compile to

 [PUSH (Val 1), PUSH (Val 2), CONS]

Execution of this pushes

 Dot (Val 1) (Val 2)

onto the stack, leaves rest of stack untouched.

Source → Bytecode
Initial example:

 (cons ’1 ’2) i.e. Cons (Const (Val 1)) (Const (Val 2))

is to compile to

 [PUSH (Val 1), PUSH (Val 2), CONS]

Execution of this pushes

 Dot (Val 1) (Val 2)

onto the stack, leaves rest of stack untouched.

Draft implementation:

to_bc (Const x) = [PUSH x]	
to_bc (Cons e1 e2) = to_bc e1 ++ to_bc e2 ++ [CONS]

Correctness of compilation

(exp, env) result ∧ to_bc exp = code	
!
!
(stack, 0, code) (result :: stack, ilength code, code)

+

�!eval
=)

∀exp env result code stack pc.

Correctness of compilation

(exp, env) result ∧ to_bc exp = code	
!
!
(stack, 0, code) (result :: stack, ilength code, code)

+

�!eval
=)

∀exp env result code stack pc.

If big-step sem. terminates with result

Correctness of compilation

(exp, env) result ∧ to_bc exp = code	
!
!
(stack, 0, code) (result :: stack, ilength code, code)

+

�!eval
=)

∀exp env result code stack pc.

If big-step sem. terminates with result

… then execution of generated 	

bytecode pushes result onto stack.

Correctness of compilation

(exp, env) result ∧ to_bc exp = code	
!
!
(stack, 0, code) (result :: stack, ilength code, code)

+

�!eval
=)

∀exp env result code stack pc.

If big-step sem. terminates with result

… then execution of generated 	

bytecode pushes result onto stack.

Proof: by induction on +

Correctness of compilation

(exp, env) result ∧ to_bc exp = code	
!
!
(stack, 0, code) (result :: stack, ilength code, code)

+

�!eval
=)

∀exp env result code stack pc.

If big-step sem. terminates with result

… then execution of generated 	

bytecode pushes result onto stack.needs to be generalised 	

for proof by induction

Proof: by induction on +

Correctness of compilation

(exp, env) result ∧ to_bc exp = code	
!
!
(stack, 0, code) (result :: stack, ilength code, code)

+

�!eval
=)

∀exp env result code stack pc.

If big-step sem. terminates with result

… then execution of generated 	

bytecode pushes result onto stack.

What about compilation of Var?

needs to be generalised 	

for proof by induction

Proof: by induction on +

Correctness of compilation

(exp, env) result ∧ to_bc exp = code	
!
!
(stack, 0, code) (result :: stack, ilength code, code)

+

�!eval
=)

∀exp env result code stack pc.

If big-step sem. terminates with result

… then execution of generated 	

bytecode pushes result onto stack.

What about compilation of Var?
… need to modify compiler and theorem.

needs to be generalised 	

for proof by induction

Proof: by induction on +

Compilation of Var and Let

Implementation:

to_bc st (Const x) = [PUSH x]	
to_bc st (Cons e1 e2) = to_bc st e1 ++ 	
 to_bc (NONE::st) e2 ++ [CONS]	
to_bc st (Var v) = [LOAD (index_of v st)]	
to_bc st (Let v e1 e2) = to_bc st e1 ++	
 to_bc (SOME v::st) e2 ++ [POP1]

index_of v (x::st) = if x = SOME v then 0 	
 else index_of v st + 1	

Compilation of Var and Let

Implementation:

to_bc st (Const x) = [PUSH x]	
to_bc st (Cons e1 e2) = to_bc st e1 ++ 	
 to_bc (NONE::st) e2 ++ [CONS]	
to_bc st (Var v) = [LOAD (index_of v st)]	
to_bc st (Let v e1 e2) = to_bc st e1 ++	
 to_bc (SOME v::st) e2 ++ [POP1]

keeps track of where variables are

index_of v (x::st) = if x = SOME v then 0 	
 else index_of v st + 1	

Compilation of Var and Let

Implementation:

to_bc st (Const x) = [PUSH x]	
to_bc st (Cons e1 e2) = to_bc st e1 ++ 	
 to_bc (NONE::st) e2 ++ [CONS]	
to_bc st (Var v) = [LOAD (index_of v st)]	
to_bc st (Let v e1 e2) = to_bc st e1 ++	
 to_bc (SOME v::st) e2 ++ [POP1]

keeps track of where variables are

index_of v (x::st) = if x = SOME v then 0 	
 else index_of v st + 1	

shape of stack

Compilation of Var and Let

Implementation:

to_bc st (Const x) = [PUSH x]	
to_bc st (Cons e1 e2) = to_bc st e1 ++ 	
 to_bc (NONE::st) e2 ++ [CONS]	
to_bc st (Var v) = [LOAD (index_of v st)]	
to_bc st (Let v e1 e2) = to_bc st e1 ++	
 to_bc (SOME v::st) e2 ++ [POP1]

keeps track of where variables are

index_of v (x::st) = if x = SOME v then 0 	
 else index_of v st + 1	

shape of stack

Var compiles to LOAD

Compilation of Var and Let

Implementation:

to_bc st (Const x) = [PUSH x]	
to_bc st (Cons e1 e2) = to_bc st e1 ++ 	
 to_bc (NONE::st) e2 ++ [CONS]	
to_bc st (Var v) = [LOAD (index_of v st)]	
to_bc st (Let v e1 e2) = to_bc st e1 ++	
 to_bc (SOME v::st) e2 ++ [POP1]

keeps track of where variables are

index_of v (x::st) = if x = SOME v then 0 	
 else index_of v st + 1	

shape of stack

Var compiles to LOAD Let expression can refer to bound var

Correctness (revisited)

(exp, env) result ∧ to_bc st exp = code ∧ stack_inv stack st env	
!
!
(stack, 0, code) (result :: stack, ilength code, code)

+

�!eval
=)

∀exp env result code stack pc st.

Correctness (revisited)

(exp, env) result ∧ to_bc st exp = code ∧ stack_inv stack st env	
!
!
(stack, 0, code) (result :: stack, ilength code, code)

+

�!eval
=)

∀exp env result code stack pc st.

where stack_inv ensures that stack holds values of env according to st.

 stack_inv xs [] env = true	
 stack_inv (x::xs) (NONE::st) env = stack_inv xs st env	
stack_inv (x::xs) (SOME v::st) env = stack_inv xs (del v st) env ∧ env(v) = x

 del v [] = []	
 del v (NONE::st) = NONE :: del v st	
del v (SOME w::st) = if v = w then NONE :: del v st else SOME w :: del v st

Function calls

(exp, fns, env) result ∧ stack_inv stack st env ∧	
to_bc (st, ctxt, ilength c1) exp = c2 ∧	
“ to_bc-compiled code for all function in ctxt exists in c1++c2 ”	
!
!
(stack, ilength c1, c1++c2) (result :: stack, ilength (c1++c2), c1++c2)

+

�!eval
=)

∀exp env result code stack pc st fns ctxt.

Function calls

(exp, fns, env) result ∧ stack_inv stack st env ∧	
to_bc (st, ctxt, ilength c1) exp = c2 ∧	
“ to_bc-compiled code for all function in ctxt exists in c1++c2 ”	
!
!
(stack, ilength c1, c1++c2) (result :: stack, ilength (c1++c2), c1++c2)

+

�!eval
=)

∀exp env result code stack pc st fns ctxt.

function definitions (first-order Lisp)

Function calls

(exp, fns, env) result ∧ stack_inv stack st env ∧	
to_bc (st, ctxt, ilength c1) exp = c2 ∧	
“ to_bc-compiled code for all function in ctxt exists in c1++c2 ”	
!
!
(stack, ilength c1, c1++c2) (result :: stack, ilength (c1++c2), c1++c2)

+

�!eval
=)

∀exp env result code stack pc st fns ctxt.

function definitions (first-order Lisp)

mapping from func. names to compiler info

Function calls

(exp, fns, env) result ∧ stack_inv stack st env ∧	
to_bc (st, ctxt, ilength c1) exp = c2 ∧	
“ to_bc-compiled code for all function in ctxt exists in c1++c2 ”	
!
!
(stack, ilength c1, c1++c2) (result :: stack, ilength (c1++c2), c1++c2)

+

�!eval
=)

∀exp env result code stack pc st fns ctxt.

function definitions (first-order Lisp)

mapping from func. names to compiler info

we assume all functions in ctxt have been compiled using to_bc

Function calls

(exp, fns, env) result ∧ stack_inv stack st env ∧	
to_bc (st, ctxt, ilength c1) exp = c2 ∧	
“ to_bc-compiled code for all function in ctxt exists in c1++c2 ”	
!
!
(stack, ilength c1, c1++c2) (result :: stack, ilength (c1++c2), c1++c2)

+

�!eval
=)

∀exp env result code stack pc st fns ctxt.

function definitions (first-order Lisp)

mapping from func. names to compiler info

we assume all functions in ctxt have been compiled using to_bc

c2 included to allow recursion

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Two versions of fac:

fac n = if n = 0 then 1 else n × fac (n-1)

fac n = f (n,1) 	
 where f (n,k) = if n = 0 then k else f (n-1,k × n)

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Two versions of fac:

fac n = if n = 0 then 1 else n × fac (n-1)

fac n = f (n,1) 	
 where f (n,k) = if n = 0 then k else f (n-1,k × n)

not a tail call, leaves ‘n ×’ to be done after call

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Two versions of fac:

fac n = if n = 0 then 1 else n × fac (n-1)

fac n = f (n,1) 	
 where f (n,k) = if n = 0 then k else f (n-1,k × n)

not a tail call, leaves ‘n ×’ to be done after call

tail call leaves no work in this function left to be done

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Two versions of fac:

fac n = if n = 0 then 1 else n × fac (n-1)

fac n = f (n,1) 	
 where f (n,k) = if n = 0 then k else f (n-1,k × n)

not a tail call, leaves ‘n ×’ to be done after call

tail call leaves no work in this function left to be done

FP implementations must ensure that tail calls do not waste space.

Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Two versions of fac:

fac n = if n = 0 then 1 else n × fac (n-1)

fac n = f (n,1) 	
 where f (n,k) = if n = 0 then k else f (n-1,k × n)

not a tail call, leaves ‘n ×’ to be done after call

tail call leaves no work in this function left to be done

FP implementations must ensure that tail calls do not waste space. !
• in our example: to_bc must rewind stack before tail-call	

• otherwise, the subroutine cannot immediately return to caller

Closures
What if we source sem. has closure values?

Closures
What if we source sem. has closure values?

Short answer: brings new complexity

Closures
What if we source sem. has closure values?

Short answer: brings new complexity

(exp, env) result ∧ …	
!
∃x. (stack, …) (x :: stack, …) ∧ R x result

+

�!eval
=)

∀exp env result … .

Example: correctness theorem requires relation R

Closures
What if we source sem. has closure values?

Short answer: brings new complexity

(exp, env) result ∧ …	
!
∃x. (stack, …) (x :: stack, …) ∧ R x result

+

�!eval
=)

∀exp env result … .

Example: correctness theorem requires relation R

non-trivial relation between 	

semantics values (e.g. closures) and	

bytecode values (e.g. code pointers)

Summary

Compilation	

• faster than interpreter-based implementation	

• best staged, e.g. via ‘bytecode’ language that operates

on top of memory abstraction (from previous lecture)	

• easy to compile to stack-based language	

• tail-calls must be efficient

Summary

Compilation	

• faster than interpreter-based implementation	

• best staged, e.g. via ‘bytecode’ language that operates

on top of memory abstraction (from previous lecture)	

• easy to compile to stack-based language	

• tail-calls must be efficient

Correctness	

• correctness statement non-trivial for non-trivial language	

• proof by induction on big-step op. sem.	

• closure values introduce complexity (topic of next lecture)	

Summary

Compilation	

• faster than interpreter-based implementation	

• best staged, e.g. via ‘bytecode’ language that operates

on top of memory abstraction (from previous lecture)	

• easy to compile to stack-based language	

• tail-calls must be efficient

Correctness	

• correctness statement non-trivial for non-trivial language	

• proof by induction on big-step op. sem.	

• closure values introduce complexity (topic of next lecture)	

guest lectures by Ramana Kumar

