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Compilation:
* compiler translates source to native machine code

* evaluation is compile-then-execute-generated-code

e performance can be good

* compilation is dynamic or just-in-time (JIT) if it happens
at runtime
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Little source language

Ve ..
val = SExp —= = first-order Lisp, i.e. no closure values )

exp ::= Var string

| Const SExp

| Add exp exp

| Car exp

| Cdr exp

| Cons exp exp

| Let string exp exp
|

|

If exp exp exp

Semantics: big-step operational semantics similar to Lecture 2,
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Bytecode

bc_inst ::= LOAD num
| PUSH SExp
| ADD

| CAR

| CDR

| CONS

| POP

| POP1

| JUMP num
|
|

JUMP_IF num

bytecode_program = bc_inst list

Semantics: small-step op. semantics sketched on next slide.
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Semantics of bytecode

Operational semantics: ( assumes memory abstraction )

® sma
® simi
® stac

* state tuple: (stack;pc, code)

l-step \
ar to machine code semantics, but more abstract

K based // instead of regs, memory, flags etc. )

Examples: % POP instruction to be executed )

fetch

pc code = POP

(x::stack, pc, code) =22y (stack, pc + ilength [POP], code)

fetch

pc code = PUSH x

(stack, pc, code) —991% (x::stack, pc + 1length [PUSH x], code)
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More examples

fetch pc code = POPL / removed element below top )

(y::x::stack, pc, code) % (y::stack, pc + ilength [POP1], code)

fetch pc code = CONS / introduced Dot pair )

(y::x::stack, pc, code) % (Dot x y::stack, pc + i1length [CONS], code)

fetch pc code = JUMP_IF n 1sTrue x/ ]umped b)’ offset n )

(x::stack, pc, code) ﬂ (stack, pc + n, code)

fetch pc code = JUMP_IF n ~(1sTrue x) dldntjump )

(x::stack, pc, code) % (stack, pc + ilength [JUMP_IF n], code)

fetch pc code = LOAD (length xs) copied x and pushed to top )

(xs ++ x::stack, pc, code) -9@i> (x::xs ++ x::stack, pc + 1length
[LOAD (length xs) n], code)
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Bytecode — machine code

Define a function (to_mc) from bc_inst to machine code:
to_mc (POP::rest) = “ load r@,[r0+4] ” ++ to_mc rest

We prove the correctness of this machine code implementation

W.r.t. state assertion BYTECODE:
/ if bytecode executes step ... )

(stack, pc, code) 3E£§-(stack’, pc’, code’) —

{ PC (base + pc) * BYTECODE (stack,err) }
base: to_mc code
{ PC (base/\+ pc’) * BYTECODE (stack’,err) 1

A

... then m.c. performs the same ... OF jumps to err
w.r.t. the BYTECODE assertion (due to lack of heap space)
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BYTECODE assertion

Proper definition: uses a real stack in memory (array). T hat’s fast.
But to keep it simple, let’s just use HEAP from previous lecture:

= stack can be packaged up in an s-expression:

to_sexp [] = Sym “NIL”
to_sexp (x::xs) = Dot x (to_sexp xs)

= we can how define:

BYTECODE (stack,err) = HEAP (to_sexp stack,_,_,_,err)

Exercise: prove POP case correct for to_mc function (prev. slide).
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Source — Bytecode

Initial example:

(cons ’1 ’2) 1.e. Cons (Const (Val 1)) (Const (Val 2))
is to compile to

[PUSH (Val 1), PUSH (Val 2), CONS]

Execution of this pushes
Dot (Val 1) (Val 2)

onto the stack, leaves rest of stack untouched.

Draft implementation:

to_bc (Const x) = [PUSH x]
to_bc (Cons el e2) = to_bc el ++ to_bc e2 ++ [CONS]
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(exp, env) || result A to_bc exp = code

—
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Correctness of compilation

( If big-step sem. terminates with result )

vexp env resu\/t code stack pc.

(exp, env) || result A to_bc exp = code

—
(stack, @, code) % (result :: stack, ilength code, code)

A
/\ [ ... then execution of generated j
[ needs to be generalised ] bytecode pushes result onto stack.

for proof by induction

Proof: by induction on |

What about compilation of Var?
... need to modify compiler and theorem.
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else index_of v st + 1



Compilation of Var and Let

Implementation: keeps track of where variables are)

to_bc st (Const x) = [PUSH x]

to_bc st (Cons el e2) = to_bc st el ++
to_bc (NONE::st) e2 ++ [CONS]

to_bc st (Var v) = [LOAD (index_of v st)]

to_bc st (Let v el e2) = to_bc st el ++
to_bc (SOME v::st) e2 ++ [POP1]

index_of v (x::st) = 1if x = SOME v then 0
else index_of v st + 1



Compilation of Var and Let

Implementation: keeps track of where variables are)

to_bc st (Const x) [PUSH x] shape of stack )

to_bc st (Cons el e2) = to_bc st el ++
to_bc (NONE::st) e2 ++ [CONS]

to_bc st (Var v) = [LOAD (index_of v st)]

to_bc st (Let v el e2) = to_bc st el ++
to_bc (SOME v::st) e2 ++ [POP1]

index_of v (x::st) = 1if x = SOME v then 0
else index_of v st + 1



Compilation of Var and Let

Implementation: keeps track of where variables are)

to_bc st (Const x) [PUSH x] shape of stack )

to_bc st (Cons el e2) = to_bc st el ++
to_bc (NONE::st) e2 ++ [CONS]

to_bc st (Var v) = [LOAD (index_of v st)]

to_bc st (Let v el e2) = $H_bc st el ++
to_bc (SOME v::st) e2 ++ [POP1]

( Var compiles to LOAD

index_of v (x::st) = 1if x = SOME v then 0
else index_of v st + 1



Compilation of Var and Let

Implementation: keeps track of where variables are)

to_bc st (Const x) = [PUSH x] shape of stack )

to_bc st (Cons el e2) = to_bc st el ++
to_bc (NONE::st) e2 ++ [CONS]

to_bc st (Var v) = [LOAD (index_of v st)]
to_bc st (Let v el e2)

_bc st el ++

to_bc (SOME v::st) e2 ++ [POP1]
g /AN
( Var compiles to LOAD ( Let expression can refer to bound var)

index_of v (x::st) = 1if x = SOME v then 0
else index_of v st + 1
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Correctness (revisited)

vexp env result code stack pc st.

(exp, env) | result A to_bc st exp = code A stack_inv stack st env

—
(stack, 0@, code) fﬂ&l} (result :: stack, ilength code, code)

where stack_inv ensures that stack holds values of env according to st.

stack_inv xs [] env = true
stack_1nv (x::xs) (NONE::st) env = stack_inv xs st env
stack_inv (x::xs) (SOME v::st) env = stack_inv xs (del v st) env A env(v) = X

del v [] = []
del v (NONE::st) = NONE :: del v st

del v (SOME w::st) = 1f v = w then NONE :: del v st else SOME w :: del v st
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Function calls

C function definitions (first-order Lisp) )

C mapping from func. names to compiler info )

o

vexp env result code stack pc st fns ctxt.

(exp, fns, env) | result A stack_inv stack st env A
to_bc (st, ctxt, 1length cl) exp = cZ2 A
“ to_bc-compiled code for all function in ctxt exists in cl++c2 ”

= |
(stack, ilefpgth cl, cl++c2) =%2ly (result :: s’cack,(i length (cl++c2), cl++c2)

c2 included to allow recur

( we assume all functions in ctxt have been compiled using to_bc )
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Tail calls

Efficient loops in FP are written as tail-recursion (using tail calls).

Two versions of fac: C not a tail call, leaves ‘n x’ to be done after call )

v

fac n = 1f n = @ then 1 else n x fac (n-1)

fac n = f (n,1)
where f (n,k) = 1f n = 0 then k else f (n-1,k x n)
A

C tail call leaves no work in this function left to be done )

FP implementations must ensure that tail calls do not waste space.

* in our example: to_bc must rewind stack before tail-call
* otherwise, the subroutine cannot immediately return to caller
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Closures

What if we source sem. has closure values!?
Short answer: brings new complexity

Example: correctness theorem requires relation R

vexp env result .. .

(exp, env) || result A

—
ax. (stack, .) =Ly (x :: stack, .) A R x result

A

4 .. . )
non-trivial relation between

semantics values (e.g. closures) and
\bytecode values (e.g. code pointers) y
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Summary

Compilation
e faster than interpreter-based implementation

* best staged, e.g. via ‘bytecode’ language that operates
on top of memory abstraction (from previous lecture)

* easy to compile to stack-based language
e tail-calls must be efficient

Correctness
* correctness statement non-trivial for non-trivial language
* proof by induction on big-step op. sem.
* closure values introduce complexity (topic of next lecture)

( guest lectures by Ramana Kumar)




