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Machine code:

* |oad, store instructions access memory
* memory is large flat array

23 12 3 6 0 0 0 33 12

In machine-code Hoare triples:
e assertion about a single cell of memory (from prev. lecture):

Max= (Mema) - (Word x)

* assertion about a region of memory:

MEM m = As. domain s = { Mem a | a € domain m} A
va € domain m. s (Mem a) = Word (m a)
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single-word memcopy

Using MEM we can decompile

“ load ro@,[r]
store r0@,[rl] ”

The extracted function:
memcopy_pre (rl,r2,m) =

memcopy (rl,r2,m) = let condl = r2 € domain m in
let r@ = m r2 in let @ = m r2 in
let m = m[rl » r@] 1in let cond2 = rl € domain m in
(ro,rl,r2,m) let m = m[rl » r@] in

) condl A cond?2
The certificate theorem:

memcopy_pre (rl,rz2,m) —

{PCpc * RO r0*R1rl *R2r2*MEMm}
“ load ro,[rZ]
store r@,[rl] ”
{ let (r0,rl,r2,m) = memcopy (rl,rZ2,m) in
PC (pc+8) *ROrd *R1rl*R2r2*MEMm }
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FP requires memory abstraction

In Lisp, all data is s-expressions, e.g.

1 nil (1 .2) (abcd

Representation in memory:

“Ca b c d)” pointer
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Garbage collection

Evaluation of Lisp expression:

> (car (cons 1 (cons 2 nil)))

1
allocates new )

allocates new

( makes some cons-data unreachable, i.e. garbage )

Eventually, the entire memory is full of unusable old data...

Garbage collection (GC) finds and deletes unused data.

GC is invisible to user (part of memory abstraction).



Garbage collection (cont.)

Jargon:

moving or non-moving!?
copying or mark-and-sweep or mark-and-don't-sweep!?

generational or not!
stop-the-world or incremental or concurrent?
precise or conservative!?



Garbage collection (cont.)

Jargon:

moving or non-moving?

copying or mark-and-sweep or mark-and-don't-sweep!?
generational or not!

stop-the-world or incremental or concurrent?

precise or conservative!?

This lecture: verification of a simple copying GC.
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Organising a verification proof

Taslk: construction of verified code for GC routine

Plan: stepwise refinement from high-level specification

Step |:specify what GC is to achieve

Step 2: write abstract implementation
(small-step relation), prove correct w.r.t spec

Step 3:introduce a more concrete notion of memory,
prove connection with small-step relation

Step 4: write assembly, use decompilation to produce
functions with concrete types

Step 5: prove connection between impl. of Step 3 and 4.
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Specification of copying GC

How to model the ‘heap’ (i.e. memory) abstractly?

In the abstract, the heap is a graph. / data stored in nodes )

"\

We model the graph as a finite partial map from num to heap_node.

e
heap_addr ::= LHS num | RHS ’ptr:u*cm,\\ misaligned ptrs are data)

heap_node ::= (heap_addr 1list, ’data) ] ,
at this level, type variable

State = heap graph + root pointers (active pointers in program).
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A full GC ought to only keep reachable nodes:

filter (h,roots) = (hl|(reach (h,roots)),roots)



Reachability

GC must not delete reachable nodes. Reachable;

a € set roots

a € reach (h,roots)

a € setas A h(b) = (as,data) N b € reach (h,roots)

a € reach (h,roots)

A full GC ought to only keep reachable nodes:

filter (h,roots) = (hl|(reach (h,roots)),roots)

A

( restricts domain of h function to reach set)
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Moving

A moving GC is allowed to rename addresses:

We are allowed to apply a renaming function.

domain (rename f h) = image f (domain h)
(rename f h)(f(x)) = (map f as,d) whenever h(x) = (as, d)

Define:
fof=id

(h, roots) translate (rename f h, map f roots)

The specification of a full moving GC:

v &,y = (filter x) translate o,



Example

Initial heap graph (with roots marked red):

After GC;

SN
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a€z AN bdgdomainh A f(a)=a A f(b)=b A h(a) = (as,d)
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a needs to be moved content at a)

b is unused location ) , ,
ZI-colour moving | fC algorithm
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b is unused location ) _
/I-colour moving

a€z AN b¢gdomainh A f(a)=a A f(b)=b A h(a) = (as,
(h,2,y,2, f) ZB (kb (as, d)]|{a}®, z,y U{b}, 2 Uset as, fla — b][b — a])

acz A fla)#a { already processed )
(hamvyazvf) Stﬂ (h,$,y,2— {CL},f)
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b is unused location ) _
/I-colour moving

(h,z,y,2, f) =R (h[b— (as,d)]|{a}", z,y U{b}, z Uset as fa%b][bl—>a])

( a€z N fla { already processed )
h,z, j

finalise heap cell

bey A h(b /: (as,d) N setasNz={}
(hoa,y, 2, f) SR (h[b = (map f as,d)],z U {b},y — {b}, 2, )

State consists of components:

— the heap, a finite partial mapping,

— address set: completely processed heap elements,

address set: moved elements with pointers to not-yet-moved elements,
— address set: elements that are still to be moved,

— a function which records where elements have been moved: N — N

e 8 =
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Correctness

Correctness theorem:

Vh ho roots x f.
(h, {}.{} set roots,id) Z%8* (ho,z,{},{}, f) A ok-heap (h,roots) =

(h,roots) &5, (ho|x, map f roots)

where ok_heap (h,roots) = pointers h U set roots C domain h
pointersh = { z | Ja as d. x € set as A h(a) = (as,d) }

Proof: we prove that an invariant is maintained

Ve st. inves A sSSPt — invat

and sufficient. Invariant on next slide...
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Correctness

( starts off with roots to-be moved j

COTT ITT. 4 . .
Ltermlnates when nothing left to-do
Vh ho roots x f. V

(R, {}, {},set roots,id) 2R~ (ha,x,{},{}, f) A ok-heap (h,roots) =

(h,roots) &5, (ho|x, map f roots)

where ok_hed) (h,roots) = pointers h U set roots C domain h
pointd |h = { z | Ja as d. x € set as A h(a) = (as,d) }

( any such terminating execution is a valid GC execution )

Proof: we prove that an invariant is maintained

Ve st. inves A sSSPt — invat

and sufficient. Invariant on next slide...



Invariant

The lengthy invariant:

inv (ho,roots) (h,x,y,z, f) =
let old = (domain hU{ a | f(a) #a })— (xUy) in
Ny =1)A(fof=id) A
pointers (h|lz) Cx Uy A
pointers (h|z®) C old A
pointers (h|y) U set roots C image f (z Uy) Uz C reach (ho, roots) A
(Va. a € z = if f(a) = a then a € old else f(a) € xUy) A
(Va. f(a) #a = —~(a€xUy <= f(a) cxUy)) A
(Va.a e x Uy <= f(a) # a Aa € domain h) A
domain h = image f (domain hg) A
(Va as d. f(a) € domain h A h(f(a)) = (as,d) =
ho(a) = if f(a) € x then (map f as,d) else (as,d))

© 00 O Ot i Wi+~ O

Most effort is spent finding the invariant.
First-order prover can automate much of the proof.



Implementation with memory

Next refinement introduces an abstract memory.

Memory consists of

Block (as,l,d) — block of data, e.g.a cons-cell
Ref a — record of where data has moved
Emp — empty or ‘don’t care’

Relation to small-step relation’s state:

m(a) = Block (h(a)) if a € domain h
m(a) = Ref (f(a)) if a € domain h and f(a) #
m(a) = Emp if a € domain h and f(a) =

a
a



Implementation with memory

move (RHS n, j,m) = (RHS n, j,m)
move (LHS a, j,m) = case m(a) of
Ref i — (LHS 4, j,m)
| Block (as,l,d) —
let m = m|a — Ref j] in
let m = m|j — Block (as,[,d)] in
(LHS j,5 + 1 4+ 1,m)

move.list ([], 5, m) = ([}, 4,m)

move.list (r::7s, j,m) = | readBlock (Block z) = 2

let (r, 7, m) = move (r, j,m) in . _ . :
let (rs, j,m) = move list (s, ,m) in cut (i,7) m = Ak. if i <k Ak <jthen mk else Emp

(r:rs,j,m) loop (1, 7, m)

if ¢ = 7 then (i,m) else
let (as,l,d) = readBlock (m i) in
let (as, j,m) = move._list (as, j,m) in
let m = m[i — Block (as,[,d)] in
loop (i +1+ 1,5, m)

collector (roots, b, i,e,ba, e, m) =
let (bz, ea, b, 6) = (b, e, ba, 62) in
let (roots, j, m) = move_list (roots, b, m) in
let (i, m) = loop (b, j, m) in
let m = cut (b,7) m in
(roots, b, i, e, ba, ez, m)



Correctness

Correctness theorem:

Vh roots rootss x y.
ok_mem_heap (h,roots) x A collector (roots,z) = (rootss,y) —>
dhs. ok_-mem_heap (hg,r00tss) y A (h,roots) 5, (ho,rootss)
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Yh roots

COTTETT| fSS UTEOTEN ) — ]
v L for any execution of implementation...

00tSo X 1. V

ok_mem_heap (h,roots) x A collector (roots,x) = (rootss,y) —
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Proof: again uses a lengthy invariant
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Correctness

( if abstract state is correctly represented, then ... )

Yh roots

COTTETT| fSS UTEOTEN ) — ]
v L for any execution of implementation...

00tSo X 1. V

ok_mem_heap (h,roots) x A collector (roots,x) = (rootss,y) —
dhs. ok_-mem_heap (hg,r00tss) y A (h,roots) 5, (ho,rootss)

/\

( some new abstract heap exists such that ... )Y specification is met )

Proof: again uses a lengthy invariant

mem_inv (ho, rootso, h, f) (b,i,7,e,b2,ea,m, 2) =

a
el

\_

most is trivial book-keeping
(where/how state is repr.)

\

J

(ho, {}, {}, set rootsp,id) =P x (h,domain h N (b...7),domain h N (i...5), 2, f)

Y reason for correctness inherited )




Some assembly code

ARM

tst r2, #3
bne LO
1ldr r4, [r2]
tst r4, #3
streq r4, [ri]
beq LO
str r3, [ri]
str r4, [r3]
str r3, [r2], #4
mov r4, r4, LSR #10
add r3, r3, #4
Ll: cmp r4, #0
beq LO
ldr r5, [r2]
sub r4, r4, #1
add r2, r2, #4
str r5, [r3]
add r3, r3, #4
b L1
LO:
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beq LO
str r3, [ri]
str r4, [r3]
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beq LO
ldr r5, [r2]
sub r4, r4, #1
add r2, r2, #4
str r5, [r3]
add r3, r3, #4
b L1

LO:

Decompilation produces functions, e.g.

mc_move_loop (r2,73,74,9) =
if 74 = 0 then (r2,73,74,9) else
let r5 = g(r2) in
let r4y =714 — 1 In
let 7o =12+ 4 in
let g = g|rs — 75] in
let r3 =7r3 +4 In
mc_move_loop (7r2,73,74, g)
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Some assembly code

Carefully written code for other
architectures (x86, PowerPC etc.)

decompiles to the same function

Decompilation produces functions, e.g.

mc_move_loop (r2,73,74,9) =

if 74 = 0 then (r2,73,74,9) else
let r5 = g(r2) in
let r4y =714 — 1 In
let ro =12 + 4 in
let g = g|rs — 75] in
let r3 =7r3 +4 In

ARM
tst r2, #3
bne LO
1dr r4, [r2]
tst r4, #3
streq r4, [ri] in logic.
beq LO
str r3, [ri1]
str r4, [r3]
str r3, [r2], #4
mov r4, r4, LSR #10
add r3, r3, #4

Ll: cmp r4, #0
beq LO
1ldr r5, [r2]
sub r4, r4, #1
add r2, r2, #4
str r5, [r3]
add r3, r3, #4
b L1

LO:

mc_move_loop (7“2, r3, T4, g)




Some assembly code

Carefully written code for other
architectures (x86, PowerPC etc.)

decompiles to the same function
in logic. Proof reuse!

Decompilation produces functions, e.g.

mc_move_loop (r2,73,74,9) =

ARM
tst r2, #3
bne LO
1ldr r4, [r2]
tst r4, #3
streq r4, [ri]
beq LO
str r3, [ri]
str r4, [r3]
str r3, [r2], #4
mov r4, r4, LSR #10
add r3, r3, #4
Ll: cmp r4, #0
beq LO
ldr r5, [r2]
sub r4, r4, #1
add r2, r2, #4
str r5, [r3]
add r3, r3, #4
b L1

LO:

if 74 = 0 then (r2,73,74,9) else
let r5 = g(r2) in
let r4y =714 — 1 In
let 7o =12+ 4 in
let g = g|rs — 75] in
let r3 =7r3 +4 In
mc_move_loop (7r2,73,74, g)




Some assembly code

ARM
tst r2, #3
bne LO
1ldr r4, [r2]
tst r4, #3
streq r4, [ri]
beq LO
str r3, [ri]
str r4, [r3]
str r3, [r2], #4
mov r4, r4, LSR #10
add r3, r3, #4

Ll: cmp r4, #0
beq LO
ldr r5, [r2]
sub r4, r4, #1
add r2, r2, #4
str r5, [r3]
add r3, r3, #4
b L1

LO:

x86

L2:

L1:

LO:

test ecx, 3

jne
mov

LO
ebx, [ecx]

test ebx, 3

jne
mov
jmp
mov
mov
mov
shr
add
add
cmp

L2

[eax], ebx
LO

[eax], edx
[edx], ebx
[ecx], edx
ebx, 10
edx, 4
ecx, 4
ebx, O

je LO

mov
dec
add
mov
add

jmp

edi, [ecx]
ebx

ecx, 4
[edx], edi
edx, 4

L1

PowerPC

L2:

L1:

LO:

andi. 0, 2, 3
bne LO

lwz 4, 0(2)
andi. 0, 4, 3
bne L2

stw 4, 0(1)

b LO

stw 3, 0(1)
stw 4, 0(3)
stw 3, 0(2)
srawi 4, 4, 10
addi 3, 3, 4
addi 2, 2, 4
cmplwi 4,0
beq LO

lwz 5, 0(2)
addi 4, 4, -1
addi 2, 2, 4
stw 5, 0(3)
addi 3, 3, 4
b L1
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Correctness theorem:
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Proving final connection

C abstract memory impl. )

Correctness theorem: C decompiler extracted functions )

! V

Vo y z. ok_mc_heap z y 2 = ok_mc_heap x (collector y) (mc_collector z)

[ relation between abstract j% relation maintained )

memory and concrete memory

The ok_mc_heap relation:
* specifies the exact layout in machine memory
* separation logic notation used for brevity
* |engthy definition omitted



Result: memory abstraction

A high-level theorem about the machine code for GC:

{ HEAP abs_state * PC pc }
“ entire GC implementation with entry point pc ”
{ HEAP abs_state * PC (pc + length_of_gc_impl) }

where HEAP abs_state = am regs. MEM m * ... *

pure Chigh_low_rel abs_state m regs)

GC implementation:
* always terminates
* maintains the memory abstraction
* s transparent: no visible change in high-level view of state
* even though all addresses renamed
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* reclaims unused memory
®* automatic memory management
* part of memory abstraction
* copying collection moves data
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Summary

Garbage collection

* reclaims unused memory - ~

* automatic memory management | Common pitfall:

* part of memory abstraction Attempt to verify complex

* copying collection moves data implementation at low level
of abstraction.

Non-trivial verification /\ Y,

* best split into separate layers of abstraction
* proof by (data-)refinement separates
* high-level algorithm proof from

* |ow-level implementation proof

Tip: powerful proof automation can be used
if problem is phrased suitably



