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• memory is large flat array

23 12 3 6 0 0 0 33 12...

In machine-code Hoare triples:	


• assertion about a single cell of memory (from prev. lecture):

  M a x = (Mem a) ↦ (Word x)	

• assertion about a region of memory:

  MEM m = λs. domain s = { Mem a | a ∈ domain m} ∧	
              ∀a ∈ domain m. s (Mem a) = Word (m a)	
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Using MEM we can decompile
 	
    “ load r0,[r2]	
      store r0,[r1] ”	

The extracted function:

  memcopy (r1,r2,m) =	
    let r0 = m r2 in	
    let m = m[r1 ↦ r0] in	
      (r0,r1,r2,m)

  memcopy_pre (r1,r2,m) =	
    let cond1 = r2 ∈ domain m in 	
    let r0 = m r2 in	
    let cond2 = r1 ∈ domain m in 	
    let m = m[r1 ↦ r0] in	
      cond1 ∧ cond2

The certificate theorem:
  memcopy_pre (r1,r2,m)	
  { PC pc * R 0 r0 * R 1 r1 * R 2 r2 * MEM m } 	
    “ load r0,[r2]	
      store r0,[r1] ”	
  { let (r0,r1,r2,m) = memcopy (r1,r2,m) in	
      PC (pc + 8) * R 0 r0 * R 1 r1 * R 2 r2 * MEM m }

=)
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FP’s memory abstraction

FP requires memory abstraction	


!
In Lisp, all data is s-expressions, e.g.
!
   1  nil  (1 . 2)  (a b c d)

Representation in memory:

23 12 1 2 0 0 0 33 12...

“(1 . 2)” pointer 

a c b d nil 9...

“(a b c d)” pointer 
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Garbage collection

Evaluation of Lisp expression:

> (car (cons 1 (cons 2 nil)))	
1

allocates new 

makes some cons-data unreachable, i.e. garbage

Eventually, the entire memory is full of unusable old data...	


!
Garbage collection (GC) finds and deletes unused data.

GC is invisible to user (part of memory abstraction).
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Jargon:

This lecture: verification of a simple copying GC.

moving or non-moving?	


copying or mark-and-sweep or mark-and-don't-sweep?	


generational or not?	


stop-the-world or incremental or concurrent?	


precise or conservative?
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Organising a verification proof

Task: construction of verified code for GC routine  

Plan: stepwise refinement from high-level specification 

Step 1: specify what GC is to achieve

Step 2: write abstract implementation 	


           (small-step relation), prove correct w.r.t spec

Step 3: introduce a more concrete notion of memory,	


           prove connection with small-step relation

Step 4: write assembly, use decompilation to produce 	


           functions with concrete types

Step 5: prove connection between impl. of Step 3 and 4.
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Specification of copying GC

How to model the ‘heap’ (i.e. memory) abstractly?

In the abstract, the heap is a graph. data stored in nodes

We model the graph as a finite partial map from num to heap_node.

  heap_addr ::= LHS num | RHS ’ptr_data	
  heap_node ::= (heap_addr list, ’data)	

misaligned ptrs are data

State = heap graph + root pointers (active pointers in program).

at this level, type variable



Reachability

GC must not delete reachable nodes. Reachable:

L3. At the third level of abstraction, we refine the non-deterministic implemen-
tation from L2 into a deterministic function which operates over a more
concrete notion of memory: heap elements now have sizes and temporary
reference cells are stored in memory alongside heap elements.

L4. At the next level, we introduce actual implementation types, e.g. addresses
become real machine addresses (aligned 32-bit words). We also subdivide
memory accesses into individual 32-bit memory reads and writes.

L5. At the lowest level of abstraction, we have the concrete ARM, x86 and
PowerPC machine code. These implementations are automatically synthe-
sised from the L4 implementation using a previously developed compiler
which produces a proof of correspondence for each compilation.

Each refinement is proved correct with respect to the layers above it. The sizes
of the manual proofs are approximately 300, 800 and 700 lines for L1/L2, L2/L3
and L3/L4, respectively. In total these proofs are less than half of the length of
the proofs described in McCreight et al. [12].

3.1 Specification – L1

We start by formalising what we mean by garbage collection in terms of a heap
represented as a finite partial (*) mapping h where addresses are natural num-
bers. The domain of h is a finite subset of N and the codomain of h consists of
pairs (as, d) where as is a list of addresses and d is some data. The type of heap
h is defined as the following using two type variables null and data. We let null
pointers be of arbitrary type so that later refinements can store data inside null
pointers, which is often done in practice.

N * (N + null) list⇥ data

We define the set of reachable addresses as the smallest inductively defined
set such that a is reachable whenever a is a root or a is pointed to by some
reachable element b. Let set as be the set of non-null addresses in the list as.

a 2 set roots

a 2 reach (h, roots)

a 2 set as ^ h(b) = (as, data) ^ b 2 reach (h, roots)

a 2 reach (h, roots)

The most abstract notion of garbage collection can now simply be defined
as a function filter which restricts (⌫) the domain of a heap mapping h to only
elements reachable from the root nodes.

filter (h, roots) = (h⌫(reach (h, roots)), roots)

In this paper we consider the verification of a copying garbage collector, i.e.
one which must also have the right to rearrange heap elements. For this we
define a function rename which updates all addresses in h by a given function
f : N ! N. Let map f update all non-null addresses of a list by application of f .

domain (rename f h) = image f (domain h)
(rename f h)(f(x)) = (map f as, d) whenever h(x) = (as, d)
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A full GC ought to only keep reachable nodes:

restricts domain of h function to reach set
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A moving GC is allowed to rename addresses:

Moving

We are allowed to apply a renaming function.

L3. At the third level of abstraction, we refine the non-deterministic implemen-
tation from L2 into a deterministic function which operates over a more
concrete notion of memory: heap elements now have sizes and temporary
reference cells are stored in memory alongside heap elements.

L4. At the next level, we introduce actual implementation types, e.g. addresses
become real machine addresses (aligned 32-bit words). We also subdivide
memory accesses into individual 32-bit memory reads and writes.
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3.1 Specification – L1

We start by formalising what we mean by garbage collection in terms of a heap
represented as a finite partial (*) mapping h where addresses are natural num-
bers. The domain of h is a finite subset of N and the codomain of h consists of
pairs (as, d) where as is a list of addresses and d is some data. The type of heap
h is defined as the following using two type variables null and data. We let null
pointers be of arbitrary type so that later refinements can store data inside null
pointers, which is often done in practice.

N * (N + null) list⇥ data

We define the set of reachable addresses as the smallest inductively defined
set such that a is reachable whenever a is a root or a is pointed to by some
reachable element b. Let set as be the set of non-null addresses in the list as.

a 2 set roots

a 2 reach (h, roots)

a 2 set as ^ h(b) = (as, data) ^ b 2 reach (h, roots)

a 2 reach (h, roots)

The most abstract notion of garbage collection can now simply be defined
as a function filter which restricts (⌫) the domain of a heap mapping h to only
elements reachable from the root nodes.

filter (h, roots) = (h⌫(reach (h, roots)), roots)

In this paper we consider the verification of a copying garbage collector, i.e.
one which must also have the right to rearrange heap elements. For this we
define a function rename which updates all addresses in h by a given function
f : N ! N. Let map f update all non-null addresses of a list by application of f .

domain (rename f h) = image f (domain h)
(rename f h)(f(x)) = (map f as, d) whenever h(x) = (as, d)Using rename, we define a valid rearrangement as a relation translate�! which relates

two heaps whenever one heap can be converted into the other by applying a
global swap function f , i.e. a function such that f � f = id.

f � f = id

(h, roots) translate�! (rename f h,map f roots)

We can now define that a garbage collection is a relation gc�! which filters
out unreachable heap elements and renames the addresses.

x

gc�! y = (filter x) translate�! y

3.2 Abstract implementation – L2

Our first refinement is to split the single-step implementation of garbage collec-
tion from L1 into a sequence of small step updates, and prove that the transitive
closure of this step update implements L1. The step relation step�! is defined,
below, using three rules that operate over a state which consists of:

h — the heap, a finite partial mapping, mentioned above for L1,
x — address set: completely processed heap elements,
y — address set: moved elements with pointers to not-yet-moved elements,
z — address set: elements that are still to be moved,
f — a function which records where elements have been moved: N ! N

The main operation performed by the collector is to move an element a 2 z

to a new unused location b 62 domain h. The source and target location must not
have been part of earlier move operations, i.e. we must have f(a) = a^f(b) = b.
The new address b is inserted into the set of moved but not complete elements
y, the addresses as stored at h(a) are inserted into the set of addresses to be
moved z and the swap of addresses a $ b is recorded in function f .

a 2 z ^ b 62 domain h ^ f(a) = a ^ f(b) = b ^ h(a) = (as, d)
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Addresses a that have been moved, i.e. for which f(a) 6= a, but which are still
in the set of addresses that are to be moved z can be deleted from set z.
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Once all of the addresses as, stored at some heap location a 2 y, have been
removed from set z, i.e. set as \ z = {}, then we can finalise this heap element
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Example

Initial heap graph (with roots marked red):

After GC:
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global swap function f , i.e. a function such that f � f = id.
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We can now define that a garbage collection is a relation gc�! which filters
out unreachable heap elements and renames the addresses.
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3.2 Abstract implementation – L2

Our first refinement is to split the single-step implementation of garbage collec-
tion from L1 into a sequence of small step updates, and prove that the transitive
closure of this step update implements L1. The step relation step�! is defined,
below, using three rules that operate over a state which consists of:

h — the heap, a finite partial mapping, mentioned above for L1,
x — address set: completely processed heap elements,
y — address set: moved elements with pointers to not-yet-moved elements,
z — address set: elements that are still to be moved,
f — a function which records where elements have been moved: N ! N

The main operation performed by the collector is to move an element a 2 z

to a new unused location b 62 domain h. The source and target location must not
have been part of earlier move operations, i.e. we must have f(a) = a^f(b) = b.
The new address b is inserted into the set of moved but not complete elements
y, the addresses as stored at h(a) are inserted into the set of addresses to be
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(h, x, y, z, f) step�! (h[b 7! (as, d)]� {a}, x, y [ {b}, z [ set as, f [a 7! b][b 7! a])
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CorrectnessCorrectness. The formal connection between L1 and L2 is summed up in the
following theorem, which states that any execution of the transitive closure of
the step relation step�!⇤, which starts with x = y = {} and z initialised to the
root addresses and ends in a state y = z = {}, is in fact a correct execution of
the garbage collector gc�! defined for L1. The domain of the resulting heap h2 is
restricted to the set of moved addresses x, i.e. h2⌫x.

8h h2 roots x f.

(h, {}, {}, set roots, id) step�!⇤ (h2, x, {}, {}, f) ^ ok heap (h, roots) =)
(h, roots) gc�! (h2⌫x,map f roots)

where ok heap (h, roots) = pointers h [ set roots ✓ domain h

pointers h = { x | 9a as d. x 2 set as ^ h(a) = (as, d) }

Invariant. Instead of delving into the details of our proof, we present the in-
variant inv which allows us to prove the above theorem.

8x s t. inv x s ^ s

step�! t =) inv x t

The full definition of our invariant is shown in Figure 1. It took approximately
one week to get this invariant completely right. We believe that this invariant is
su�ciently independent of the lower-level implementations L3, L4, L5 to be of
use also in verification proofs of significantly di↵erent versions of L3, L4 and L5.
A complete understanding of the invariant is not necessary to follow the rest of
this paper. However, for those who are interested: line 0 defines an abbreviation
old to denote the set of addresses that were originally the domain of h; line 1
states that x and y are disjoint and that f must be its own inverse; line 2 states
that all pointers from within h restricted to addresses x must point to heap
elements in x or y; line 3 ensures that all pointers outside of h restricted to x,
i.e. inside h restricted to the complement of x, are in the set of old addresses;

inv (h0, roots) (h, x, y, z, f) =
0 let old = (domain h [ { a | f(a) 6= a })� (x [ y) in
1 (x \ y = {}) ^ (f � f = id) ^
2 pointers (h⌫x) ✓ x [ y ^
3 pointers (h⌫xc) ✓ old ^
4 pointers (h⌫y) [ set roots ✓ image f (x [ y) [ z ✓ reach (h0, roots) ^
5 (8a. a 2 z =) if f(a) = a then a 2 old else f(a) 2 x [ y) ^
6 (8a. f(a) 6= a =) ¬(a 2 x [ y () f(a) 2 x [ y)) ^
7 (8a. a 2 x [ y () f(a) 6= a ^ a 2 domain h) ^
8 domain h = image f (domain h0) ^
9 (8a as d. f(a) 2 domain h ^ h(f(a)) = (as, d) =)

h0(a) = if f(a) 2 x then (map f as, d) else (as, d))

Fig. 1. The invariant used for proving a connection between L1 and L2.

Correctness theorem:

Proof: we prove that an invariant is maintained

 and sufficient. Invariant on next slide...
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The lengthy invariant:

Most effort is spent finding the invariant.	


First-order prover can automate much of the proof.



Implementation with memory

Next refinement introduces an abstract memory.

line 4 guarantees that elements from x, y and z are reachable; lines 5-6 state
when f is allowed to point into x [ y; line 7 states that x [ y is the set of new
addresses; lines 8-9 ensure that f relates h to h0.

Our proofs using this invariant are relatively small, the proof connecting L1
and L2 is approximately 300 lines long. We achieve this brevity by stating the
invariant in terms of sets and set operations, which leads to subgoals that are
easily discharged using a standard first-order prover [10].

3.3 Implementation with memory – L3

The next refinement introduces a memory which makes the memory layout con-
crete. At this level of abstraction intermediate reference cells, called Ref elements,
keep a record of renaming function f in memory alongside data stored in Block
elements. The memory, we call it m, is a mapping from N to a data-type with
type constructors:

Block (as, l, d) — a block of length l which contains addresses as and data d

Ref a — a reference cell containing the address a

Emp — an empty location or ‘don’t care’

Memory m is a correct representation of h and f whenever, for any a:

m(a) = Block (h(a)) if a 2 domain h

m(a) = Ref (f(a)) if a 62 domain h and f(a) 6= a

m(a) = Emp if a 62 domain h and f(a) = a

Here the type variable data in the type of h has been instantiated to N⇥data to
make h(a) a triple of type: (N + null) list⇥N⇥ data. We will refer to the above
relation between m, h and f as ref mem (h, f,m).

As mentioned above, each m(a) = Block (as, l, data) stores a length l. Based
on this we have a well-formedness criteria which states that the next l memory
locations m(a+1), m(a+2), . . . ,m(a+l) must be Emp.

empty (a, l) m = 8i 2 N. i < l =) m(a + i + 1) = Emp

We formalise this criterion as an inductively defined relation part heap (a, b) m k

which states that the memory locations in the range a...b (we write a...b to mean
{ n 2 N | a  n ^ n < b }) form a well-formed heap containing blocks of data
that have a combined length of k.

part heap (a, a) m 0

m(a) = Block (as, l, data) ^ empty (a, l) m ^ part heap (a + l + 1, b) m k

part heap (a, b) m (l + 1 + k)

(m(a) = Ref i _ m(a) = Emp) ^ part heap (a + 1, b) m k

part heap (a, b) m k

Memory consists of
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Implementation with memory
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Fig. 2. Implementation at level L3.

Finally, the memory is split into two disjoint spaces, the so called to-space

and from-space. During execution heap blocks are moved from the from-space
into the to-space. The to-space consists of locations b...e and the from-space are
at locations b2...e2.

Our implementation of copying collection is listed in Figure 2. The top-level
function is called collector. We give a brief overview of how it works here. Line
1 flips the meaning of the to-space and the from-space, i.e. what used to be
the to-space is now the from-space. All elements are assumed to lie within the
from-space at this stage. Line 2 then moves all heap elements pointed to by root
addresses into the to-space. Line 3 starts a loop which moves all other reachable
elements from the from-space into the to-space. Finally line 4 overwrites the
entire from-space with ‘don’t care’ elements Emp.
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Correctness theorem:

Correctness

Correctness. We have proved that our implementation at level L3, listed in
Figure 2, is correct with respect to our definition at level L1, via L2. In order
to state this formally, we define ok mem heap to assert what su�ces as a valid
initial/final state of memory as follows. Line 1: the heap must be split into two
disjoint semi-heaps, b . . . e and b2 . . . e2, of equal size, with an index i into heap
b . . . e. Line 2: the memory inside of b...i must form a well-formed heap and all
other parts of the heap are empty. And line 3: the memory m must be related
to some well-formed heap h according to ref mem and ok heap.

ok mem heap (h, roots) (b, i, e, b2, e2, m) =
1 b  i  e ^ b2  e2 ^ e2 � b2 = e� b ^ (e < b2 _ e2 < b) ^
2 (9k. part heap (b, i) m k) ^ (8a. a 62 b...i =) m(a) = Emp) ^
3 ref mem (h, id) m ^ ok heap (h, roots)

The guarantee for the final state is slightly stronger: the final state satisfies
part heap (b, i) m (i� b). Let precise (b, i, . . . , m) = part heap (b, i) m (i� b).

The correctness of our L3 implementation is now stated as the following theo-
rem: for any valid initial state x, which is related to high-level state (h, roots), an
execution of collector produces a state y, for which there exists a corresponding
abstract heap h2 such that our top-level definition of garbage collection ( gc�!)
relates the initial heap h to the new heap h2.

8h roots roots2 x y.

ok mem heap (h, roots) x ^ collector (roots, x) = (roots2, y) =)
9h2. ok mem heap (h2, roots2) y ^ (h, roots) gc�! (h2, roots2) ^ precise y

The presence of precise y is important for proving allocation correct, Section 4.

Invariant. We will again not go into details of the correctness proof, but instead
only explain the invariant which was used for the proof. Our invariant, called
mem inv, was used for proving the following property of the main loop:

mem inv (h0, roots0, h, f) (b, i, j, e, b2, e2, m, pointers (h⌫(i...j))) ^
loop (i, j,m) = (i2, m2) =)
9h2 f2. mem inv (h0, roots0, h2, f2) (b, i2, i2, e, b2, e2, m2, {}) ^

j  i2 ^ 8a. f(a) 6= a =) f2(a) = f(a)

The definition of our invariant mem inv is listed in Figure 3. The main idea
behind this invariant should be clear from lines 5 and 6. They state that memory
m is a refinement of (h, f) and that (h, f) is related, through the reflexive-
transitive closure of step�!, to an initial state (h0,roots0) which satisfies ok heap.
Lines 2–4 are less interesting; they ensure that the memory is correctly organised.
Line 1 states that the heap is split into two semi-heaps, and that i and j are
indexes in the to-heap.

3.4 Implementation with concrete types – L4

The previous refinements layer, called L3, produced an implementation with
memory and concrete memory layout of the heap. However, L3 made no com-
mitment to how memory elements, Block and Ref, are to be represented in actual
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Proof: again uses a lengthy invariant

mem inv (h0, roots0, h, f) (b, i, j, e, b2, e2, m, z) =
1 b  i  j  e ^ (e < b2 _ e2 < b) ^
2 (8a. a 62 b2...e2 [ b...j =) m(a) = Emp) ^
3 part heap (b, i) m (i� b) ^ part heap (i, j) m (j � i) ^
4 (9k. part heap (b2, e2) m k ^ k  e� j) ^
5 ref mem (h, f) m ^ ok heap (h0, roots0) ^
6 (h0, {}, {}, set roots0, id) step�!⇤ (h, domain h \ (b...i), domain h \ (i...j), z, f)

Fig. 3. The invariant which relates implementations L3 with L2.

memory. In this layer, called L4, we make all types concrete: addresses and data
are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mx move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.

8x y z. ok mc heap x y z =) ok mc heap x (collector y) (mc collector z)



Correctness theorem:

Correctness

Correctness. We have proved that our implementation at level L3, listed in
Figure 2, is correct with respect to our definition at level L1, via L2. In order
to state this formally, we define ok mem heap to assert what su�ces as a valid
initial/final state of memory as follows. Line 1: the heap must be split into two
disjoint semi-heaps, b . . . e and b2 . . . e2, of equal size, with an index i into heap
b . . . e. Line 2: the memory inside of b...i must form a well-formed heap and all
other parts of the heap are empty. And line 3: the memory m must be related
to some well-formed heap h according to ref mem and ok heap.

ok mem heap (h, roots) (b, i, e, b2, e2, m) =
1 b  i  e ^ b2  e2 ^ e2 � b2 = e� b ^ (e < b2 _ e2 < b) ^
2 (9k. part heap (b, i) m k) ^ (8a. a 62 b...i =) m(a) = Emp) ^
3 ref mem (h, id) m ^ ok heap (h, roots)

The guarantee for the final state is slightly stronger: the final state satisfies
part heap (b, i) m (i� b). Let precise (b, i, . . . , m) = part heap (b, i) m (i� b).

The correctness of our L3 implementation is now stated as the following theo-
rem: for any valid initial state x, which is related to high-level state (h, roots), an
execution of collector produces a state y, for which there exists a corresponding
abstract heap h2 such that our top-level definition of garbage collection ( gc�!)
relates the initial heap h to the new heap h2.

8h roots roots2 x y.

ok mem heap (h, roots) x ^ collector (roots, x) = (roots2, y) =)
9h2. ok mem heap (h2, roots2) y ^ (h, roots) gc�! (h2, roots2) ^ precise y

The presence of precise y is important for proving allocation correct, Section 4.

Invariant. We will again not go into details of the correctness proof, but instead
only explain the invariant which was used for the proof. Our invariant, called
mem inv, was used for proving the following property of the main loop:

mem inv (h0, roots0, h, f) (b, i, j, e, b2, e2, m, pointers (h⌫(i...j))) ^
loop (i, j,m) = (i2, m2) =)
9h2 f2. mem inv (h0, roots0, h2, f2) (b, i2, i2, e, b2, e2, m2, {}) ^

j  i2 ^ 8a. f(a) 6= a =) f2(a) = f(a)

The definition of our invariant mem inv is listed in Figure 3. The main idea
behind this invariant should be clear from lines 5 and 6. They state that memory
m is a refinement of (h, f) and that (h, f) is related, through the reflexive-
transitive closure of step�!, to an initial state (h0,roots0) which satisfies ok heap.
Lines 2–4 are less interesting; they ensure that the memory is correctly organised.
Line 1 states that the heap is split into two semi-heaps, and that i and j are
indexes in the to-heap.

3.4 Implementation with concrete types – L4

The previous refinements layer, called L3, produced an implementation with
memory and concrete memory layout of the heap. However, L3 made no com-
mitment to how memory elements, Block and Ref, are to be represented in actual

for any execution of implementation...

specification is met

if abstract state is correctly represented, then ...

some new abstract heap exists such that ...

Proof: again uses a lengthy invariant

mem inv (h0, roots0, h, f) (b, i, j, e, b2, e2, m, z) =
1 b  i  j  e ^ (e < b2 _ e2 < b) ^
2 (8a. a 62 b2...e2 [ b...j =) m(a) = Emp) ^
3 part heap (b, i) m (i� b) ^ part heap (i, j) m (j � i) ^
4 (9k. part heap (b2, e2) m k ^ k  e� j) ^
5 ref mem (h, f) m ^ ok heap (h0, roots0) ^
6 (h0, {}, {}, set roots0, id) step�!⇤ (h, domain h \ (b...i), domain h \ (i...j), z, f)

Fig. 3. The invariant which relates implementations L3 with L2.

memory. In this layer, called L4, we make all types concrete: addresses and data
are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mx move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.

8x y z. ok mc heap x y z =) ok mc heap x (collector y) (mc collector z)

most is trivial book-keeping	
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behind this invariant should be clear from lines 5 and 6. They state that memory
m is a refinement of (h, f) and that (h, f) is related, through the reflexive-
transitive closure of step�!, to an initial state (h0,roots0) which satisfies ok heap.
Lines 2–4 are less interesting; they ensure that the memory is correctly organised.
Line 1 states that the heap is split into two semi-heaps, and that i and j are
indexes in the to-heap.

3.4 Implementation with concrete types – L4

The previous refinements layer, called L3, produced an implementation with
memory and concrete memory layout of the heap. However, L3 made no com-
mitment to how memory elements, Block and Ref, are to be represented in actual
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Proof: again uses a lengthy invariant
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memory. In this layer, called L4, we make all types concrete: addresses and data
are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mx move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.

8x y z. ok mc heap x y z =) ok mc heap x (collector y) (mc collector z)

most is trivial book-keeping	


(where/how state is repr.)

reason for correctness inherited



Some assembly code

tst r2, #3 test ecx, 3 andi. 0, 2, 3
bne L0 jne L0 bne L0
ldr r4, [r2] mov ebx, [ecx] lwz 4, 0(2)
tst r4, #3 test ebx, 3 andi. 0, 4, 3
streq r4, [r1] jne L2 bne L2
beq L0 mov [eax], ebx stw 4, 0(1)
str r3, [r1] jmp L0 b L0
str r4, [r3] L2: mov [eax], edx L2: stw 3, 0(1)
str r3, [r2], #4 mov [edx], ebx stw 4, 0(3)
mov r4, r4, LSR #10 mov [ecx], edx stw 3, 0(2)
add r3, r3, #4 shr ebx, 10 srawi 4, 4, 10

L1: cmp r4, #0 add edx, 4 addi 3, 3, 4
beq L0 add ecx, 4 addi 2, 2, 4
ldr r5, [r2] L1: cmp ebx, 0 L1: cmplwi 4,0
sub r4, r4, #1 je L0 beq L0
add r2, r2, #4 mov edi, [ecx] lwz 5, 0(2)
str r5, [r3] dec ebx addi 4, 4, -1
add r3, r3, #4 add ecx, 4 addi 2, 2, 4
b L1 mov [edx], edi stw 5, 0(3)

L0: add edx, 4 addi 3, 3, 4
jmp L1 b L1

L0: L0:

Fig. 6. Verified ARM, x86 and PowerPC code, respectively, for mc move from Figure 4.

mc move (r1, r2, r3, g) accurately describes the value of registers 1, 3 and mem-
ory. This is stated in terms of a machine-code Hoare triple [14], and conditioned
on an automatically generated precondition mc move pre.

8r1 r2 r3 g p.

mc move pre (r1, r2, r3, g) =)
{ r1 r1 ⇤ r2 r2 ⇤ r3 r3 ⇤ r4 ⇤ r5 ⇤memory g ⇤ s ⇤ pc p }
p : E3120003 1A000010 E5924000 E3140003 05814000 0A00000C E5813000

E5834000 E5823000 E1A04524 E2833004 E2822004 E3540000 15925000

12444001 12822004 15835000 12833004 1AFFFFF8

{ let (r1, r3, g) = mc move (r1, r2, r3, g) in

r1 r1 ⇤ r2 ⇤ r3 r3 ⇤ r4 ⇤ r5 ⇤memory g ⇤ s ⇤ pc (p+76) }

We have used our proof-producing compiler to compile the top-level L4 func-
tion mc collector into ARM, x86 and PowerPC code. Each of the resulting certifi-
cate theorems are conditioned on a precondition mc collector pre. This precondi-
tion simply asserts that each memory access was done properly, no load/store to
unaligned addresses. We have proved that these preconditions are always met:

8x y z. ok mc heap x y z =) mc collector pre z

ARM x86 PowerPC
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{ let (r1, r3, g) = mc move (r1, r2, r3, g) in

r1 r1 ⇤ r2 ⇤ r3 r3 ⇤ r4 ⇤ r5 ⇤memory g ⇤ s ⇤ pc (p+76) }

We have used our proof-producing compiler to compile the top-level L4 func-
tion mc collector into ARM, x86 and PowerPC code. Each of the resulting certifi-
cate theorems are conditioned on a precondition mc collector pre. This precondi-
tion simply asserts that each memory access was done properly, no load/store to
unaligned addresses. We have proved that these preconditions are always met:
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mc move loop (r2, r3, r4, g) =
if r4 = 0 then (r2, r3, r4, g) else

let r5 = g(r2) in
let r4 = r4 � 1 in
let r2 = r2 + 4 in
let g = g[r3 7! r5] in
let r3 = r3 + 4 in

mc move loop (r2, r3, r4, g)

mc move (r1, r2, r3, g) =
if (r2 & 3 6= 0) then (r1, r3, g) else

let r4 = g(r2) in
if r4 & 3 = 0 then

let g = g[r1 7! r4] in
(r1, r3, g)

else
let g = g[r1 7! r3] in
let g = g[r3 7! r4] in
let g = g[r2 7! r3] in
let r4 = r4 � 10 in
let r3 = r3 + 4 in
let r2 = r2 + 4 in
let (r2, r3, r4, g) = mc move loop (r2, r3, r4, g) in

(r1, r3, g)

Fig. 4. Part of the implementation at level L4.

Invariant. In order to keep our statements and proofs clean and concise even at
this low-level of abstraction, we will use some light-weight separation logic [15]
for memory assertions. We need the separating conjunction ⇤, which we define
over sets: p ⇤ q is true for set s if s can be partitioned into two sets t and u such
that p holds for t and q holds for u.

(p ⇤ q) s = 9t u. p t ^ q u ^ t [ u = s ^ t \ u = {}

Now let fun2set map a partial function to a set of pairs, let one (x, y) assert the
value of a pair in such a set, and let emp assert that the set is empty:

fun2set g = { (a, g(a)) | a 2 domain g }
one (x, y) = �s. (s = {(x, y)})

emp = �s. (s = {})
hbi = �s. (s = {}) ^ b

With these we can define ref, in Figure 5, which allows us to state that
segments of L3 memory m are present in L4 memory g, e.g. the following line
states that memory locations b...e and b2...e2 from memory m are represented
correctly in L4 memory g, i.e. both halves of the heap are correctly represented.

(ref (b, e) m ⇤ ref (b2, e2) m ⇤ p) (fun2set g)

Decompilation produces functions, e.g.
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With these we can define ref, in Figure 5, which allows us to state that
segments of L3 memory m are present in L4 memory g, e.g. the following line
states that memory locations b...e and b2...e2 from memory m are represented
correctly in L4 memory g, i.e. both halves of the heap are correctly represented.

(ref (b, e) m ⇤ ref (b2, e2) m ⇤ p) (fun2set g)

Decompilation produces functions, e.g.
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bne L0 jne L0 bne L0
ldr r4, [r2] mov ebx, [ecx] lwz 4, 0(2)
tst r4, #3 test ebx, 3 andi. 0, 4, 3
streq r4, [r1] jne L2 bne L2
beq L0 mov [eax], ebx stw 4, 0(1)
str r3, [r1] jmp L0 b L0
str r4, [r3] L2: mov [eax], edx L2: stw 3, 0(1)
str r3, [r2], #4 mov [edx], ebx stw 4, 0(3)
mov r4, r4, LSR #10 mov [ecx], edx stw 3, 0(2)
add r3, r3, #4 shr ebx, 10 srawi 4, 4, 10

L1: cmp r4, #0 add edx, 4 addi 3, 3, 4
beq L0 add ecx, 4 addi 2, 2, 4
ldr r5, [r2] L1: cmp ebx, 0 L1: cmplwi 4,0
sub r4, r4, #1 je L0 beq L0
add r2, r2, #4 mov edi, [ecx] lwz 5, 0(2)
str r5, [r3] dec ebx addi 4, 4, -1
add r3, r3, #4 add ecx, 4 addi 2, 2, 4
b L1 mov [edx], edi stw 5, 0(3)

L0: add edx, 4 addi 3, 3, 4
jmp L1 b L1

L0: L0:

Fig. 6. Verified ARM, x86 and PowerPC code, respectively, for mc move from Figure 4.

mc move (r1, r2, r3, g) accurately describes the value of registers 1, 3 and mem-
ory. This is stated in terms of a machine-code Hoare triple [14], and conditioned
on an automatically generated precondition mc move pre.

8r1 r2 r3 g p.

mc move pre (r1, r2, r3, g) =)
{ r1 r1 ⇤ r2 r2 ⇤ r3 r3 ⇤ r4 ⇤ r5 ⇤memory g ⇤ s ⇤ pc p }
p : E3120003 1A000010 E5924000 E3140003 05814000 0A00000C E5813000

E5834000 E5823000 E1A04524 E2833004 E2822004 E3540000 15925000

12444001 12822004 15835000 12833004 1AFFFFF8

{ let (r1, r3, g) = mc move (r1, r2, r3, g) in

r1 r1 ⇤ r2 ⇤ r3 r3 ⇤ r4 ⇤ r5 ⇤memory g ⇤ s ⇤ pc (p+76) }

We have used our proof-producing compiler to compile the top-level L4 func-
tion mc collector into ARM, x86 and PowerPC code. Each of the resulting certifi-
cate theorems are conditioned on a precondition mc collector pre. This precondi-
tion simply asserts that each memory access was done properly, no load/store to
unaligned addresses. We have proved that these preconditions are always met:

8x y z. ok mc heap x y z =) mc collector pre z

ARM x86 PowerPC

mc move loop (r2, r3, r4, g) =
if r4 = 0 then (r2, r3, r4, g) else

let r5 = g(r2) in
let r4 = r4 � 1 in
let r2 = r2 + 4 in
let g = g[r3 7! r5] in
let r3 = r3 + 4 in

mc move loop (r2, r3, r4, g)

mc move (r1, r2, r3, g) =
if (r2 & 3 6= 0) then (r1, r3, g) else

let r4 = g(r2) in
if r4 & 3 = 0 then

let g = g[r1 7! r4] in
(r1, r3, g)

else
let g = g[r1 7! r3] in
let g = g[r3 7! r4] in
let g = g[r2 7! r3] in
let r4 = r4 � 10 in
let r3 = r3 + 4 in
let r2 = r2 + 4 in
let (r2, r3, r4, g) = mc move loop (r2, r3, r4, g) in

(r1, r3, g)

Fig. 4. Part of the implementation at level L4.

Invariant. In order to keep our statements and proofs clean and concise even at
this low-level of abstraction, we will use some light-weight separation logic [15]
for memory assertions. We need the separating conjunction ⇤, which we define
over sets: p ⇤ q is true for set s if s can be partitioned into two sets t and u such
that p holds for t and q holds for u.

(p ⇤ q) s = 9t u. p t ^ q u ^ t [ u = s ^ t \ u = {}

Now let fun2set map a partial function to a set of pairs, let one (x, y) assert the
value of a pair in such a set, and let emp assert that the set is empty:

fun2set g = { (a, g(a)) | a 2 domain g }
one (x, y) = �s. (s = {(x, y)})

emp = �s. (s = {})
hbi = �s. (s = {}) ^ b

With these we can define ref, in Figure 5, which allows us to state that
segments of L3 memory m are present in L4 memory g, e.g. the following line
states that memory locations b...e and b2...e2 from memory m are represented
correctly in L4 memory g, i.e. both halves of the heap are correctly represented.

(ref (b, e) m ⇤ ref (b2, e2) m ⇤ p) (fun2set g)

Decompilation produces functions, e.g.

Carefully written code for other 
architectures (x86, PowerPC etc.)	


decompiles to the same function 	


in logic.



Some assembly code

tst r2, #3 test ecx, 3 andi. 0, 2, 3
bne L0 jne L0 bne L0
ldr r4, [r2] mov ebx, [ecx] lwz 4, 0(2)
tst r4, #3 test ebx, 3 andi. 0, 4, 3
streq r4, [r1] jne L2 bne L2
beq L0 mov [eax], ebx stw 4, 0(1)
str r3, [r1] jmp L0 b L0
str r4, [r3] L2: mov [eax], edx L2: stw 3, 0(1)
str r3, [r2], #4 mov [edx], ebx stw 4, 0(3)
mov r4, r4, LSR #10 mov [ecx], edx stw 3, 0(2)
add r3, r3, #4 shr ebx, 10 srawi 4, 4, 10

L1: cmp r4, #0 add edx, 4 addi 3, 3, 4
beq L0 add ecx, 4 addi 2, 2, 4
ldr r5, [r2] L1: cmp ebx, 0 L1: cmplwi 4,0
sub r4, r4, #1 je L0 beq L0
add r2, r2, #4 mov edi, [ecx] lwz 5, 0(2)
str r5, [r3] dec ebx addi 4, 4, -1
add r3, r3, #4 add ecx, 4 addi 2, 2, 4
b L1 mov [edx], edi stw 5, 0(3)

L0: add edx, 4 addi 3, 3, 4
jmp L1 b L1

L0: L0:

Fig. 6. Verified ARM, x86 and PowerPC code, respectively, for mc move from Figure 4.

mc move (r1, r2, r3, g) accurately describes the value of registers 1, 3 and mem-
ory. This is stated in terms of a machine-code Hoare triple [14], and conditioned
on an automatically generated precondition mc move pre.
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mc move pre (r1, r2, r3, g) =)
{ r1 r1 ⇤ r2 r2 ⇤ r3 r3 ⇤ r4 ⇤ r5 ⇤memory g ⇤ s ⇤ pc p }
p : E3120003 1A000010 E5924000 E3140003 05814000 0A00000C E5813000

E5834000 E5823000 E1A04524 E2833004 E2822004 E3540000 15925000
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{ let (r1, r3, g) = mc move (r1, r2, r3, g) in

r1 r1 ⇤ r2 ⇤ r3 r3 ⇤ r4 ⇤ r5 ⇤memory g ⇤ s ⇤ pc (p+76) }

We have used our proof-producing compiler to compile the top-level L4 func-
tion mc collector into ARM, x86 and PowerPC code. Each of the resulting certifi-
cate theorems are conditioned on a precondition mc collector pre. This precondi-
tion simply asserts that each memory access was done properly, no load/store to
unaligned addresses. We have proved that these preconditions are always met:

8x y z. ok mc heap x y z =) mc collector pre z

ARM x86 PowerPC

mc move loop (r2, r3, r4, g) =
if r4 = 0 then (r2, r3, r4, g) else

let r5 = g(r2) in
let r4 = r4 � 1 in
let r2 = r2 + 4 in
let g = g[r3 7! r5] in
let r3 = r3 + 4 in
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if (r2 & 3 6= 0) then (r1, r3, g) else

let r4 = g(r2) in
if r4 & 3 = 0 then

let g = g[r1 7! r4] in
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else
let g = g[r1 7! r3] in
let g = g[r3 7! r4] in
let g = g[r2 7! r3] in
let r4 = r4 � 10 in
let r3 = r3 + 4 in
let r2 = r2 + 4 in
let (r2, r3, r4, g) = mc move loop (r2, r3, r4, g) in

(r1, r3, g)

Fig. 4. Part of the implementation at level L4.

Invariant. In order to keep our statements and proofs clean and concise even at
this low-level of abstraction, we will use some light-weight separation logic [15]
for memory assertions. We need the separating conjunction ⇤, which we define
over sets: p ⇤ q is true for set s if s can be partitioned into two sets t and u such
that p holds for t and q holds for u.

(p ⇤ q) s = 9t u. p t ^ q u ^ t [ u = s ^ t \ u = {}

Now let fun2set map a partial function to a set of pairs, let one (x, y) assert the
value of a pair in such a set, and let emp assert that the set is empty:

fun2set g = { (a, g(a)) | a 2 domain g }
one (x, y) = �s. (s = {(x, y)})

emp = �s. (s = {})
hbi = �s. (s = {}) ^ b

With these we can define ref, in Figure 5, which allows us to state that
segments of L3 memory m are present in L4 memory g, e.g. the following line
states that memory locations b...e and b2...e2 from memory m are represented
correctly in L4 memory g, i.e. both halves of the heap are correctly represented.

(ref (b, e) m ⇤ ref (b2, e2) m ⇤ p) (fun2set g)

Decompilation produces functions, e.g.

Carefully written code for other 
architectures (x86, PowerPC etc.)	


decompiles to the same function 	


in logic. Proof reuse!



Some assembly code

tst r2, #3 test ecx, 3 andi. 0, 2, 3
bne L0 jne L0 bne L0
ldr r4, [r2] mov ebx, [ecx] lwz 4, 0(2)
tst r4, #3 test ebx, 3 andi. 0, 4, 3
streq r4, [r1] jne L2 bne L2
beq L0 mov [eax], ebx stw 4, 0(1)
str r3, [r1] jmp L0 b L0
str r4, [r3] L2: mov [eax], edx L2: stw 3, 0(1)
str r3, [r2], #4 mov [edx], ebx stw 4, 0(3)
mov r4, r4, LSR #10 mov [ecx], edx stw 3, 0(2)
add r3, r3, #4 shr ebx, 10 srawi 4, 4, 10

L1: cmp r4, #0 add edx, 4 addi 3, 3, 4
beq L0 add ecx, 4 addi 2, 2, 4
ldr r5, [r2] L1: cmp ebx, 0 L1: cmplwi 4,0
sub r4, r4, #1 je L0 beq L0
add r2, r2, #4 mov edi, [ecx] lwz 5, 0(2)
str r5, [r3] dec ebx addi 4, 4, -1
add r3, r3, #4 add ecx, 4 addi 2, 2, 4
b L1 mov [edx], edi stw 5, 0(3)

L0: add edx, 4 addi 3, 3, 4
jmp L1 b L1

L0: L0:

Fig. 6. Verified ARM, x86 and PowerPC code, respectively, for mc move from Figure 4.

mc move (r1, r2, r3, g) accurately describes the value of registers 1, 3 and mem-
ory. This is stated in terms of a machine-code Hoare triple [14], and conditioned
on an automatically generated precondition mc move pre.

8r1 r2 r3 g p.

mc move pre (r1, r2, r3, g) =)
{ r1 r1 ⇤ r2 r2 ⇤ r3 r3 ⇤ r4 ⇤ r5 ⇤memory g ⇤ s ⇤ pc p }
p : E3120003 1A000010 E5924000 E3140003 05814000 0A00000C E5813000

E5834000 E5823000 E1A04524 E2833004 E2822004 E3540000 15925000

12444001 12822004 15835000 12833004 1AFFFFF8

{ let (r1, r3, g) = mc move (r1, r2, r3, g) in

r1 r1 ⇤ r2 ⇤ r3 r3 ⇤ r4 ⇤ r5 ⇤memory g ⇤ s ⇤ pc (p+76) }

We have used our proof-producing compiler to compile the top-level L4 func-
tion mc collector into ARM, x86 and PowerPC code. Each of the resulting certifi-
cate theorems are conditioned on a precondition mc collector pre. This precondi-
tion simply asserts that each memory access was done properly, no load/store to
unaligned addresses. We have proved that these preconditions are always met:

8x y z. ok mc heap x y z =) mc collector pre z

ARM x86 PowerPC



Proving final connection

mem inv (h0, roots0, h, f) (b, i, j, e, b2, e2, m, z) =
1 b  i  j  e ^ (e < b2 _ e2 < b) ^
2 (8a. a 62 b2...e2 [ b...j =) m(a) = Emp) ^
3 part heap (b, i) m (i� b) ^ part heap (i, j) m (j � i) ^
4 (9k. part heap (b2, e2) m k ^ k  e� j) ^
5 ref mem (h, f) m ^ ok heap (h0, roots0) ^
6 (h0, {}, {}, set roots0, id) step�!⇤ (h, domain h \ (b...i), domain h \ (i...j), z, f)

Fig. 3. The invariant which relates implementations L3 with L2.

memory. In this layer, called L4, we make all types concrete: addresses and data
are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mx move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.

8x y z. ok mc heap x y z =) ok mc heap x (collector y) (mc collector z)

Correctness theorem:
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Fig. 3. The invariant which relates implementations L3 with L2.

memory. In this layer, called L4, we make all types concrete: addresses and data
are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mx move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.
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memory. In this layer, called L4, we make all types concrete: addresses and data
are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mx move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.
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memory. In this layer, called L4, we make all types concrete: addresses and data
are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mx move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.

8x y z. ok mc heap x y z =) ok mc heap x (collector y) (mc collector z)
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memory. In this layer, called L4, we make all types concrete: addresses and data
are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mx move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.
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32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
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list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.
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We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.
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function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.
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memory. In this layer, called L4, we make all types concrete: addresses and data
are bit strings and memory is a partial function from machine addresses (aligned
32-bit words) to 32-bit words.

We choose to represent each Block as a sequence of 32-bit words. The header
word contains a 22-bit number n which contains the length of the payload (a
list of 32-bit words: w1, w2, . . . , wn), an 8-bit field for data called the tag, and a
1-bit field b which indicates whether the payload consists of data, in case b = 0,
or addresses, in case b = 1. The header is followed by the payload.

[n.tag.1.b], [w1], [w2], [w3], . . . , [wn]

We also allow data to be stored into ‘null-addresses’. A 32-bit word appearing
in the place of an address but which is not word-aligned (i.e. not a multiple of
four) is considered to be data. The reason for why this works with the abstraction
layers above is that we left the type of null addresses as a type variable null, as
mentioned at the start.

Our garbage collector is implemented at level L4 as a functional program
which uses only concrete machine types. An extract of the lengthy implementa-
tion is listed in Figure 4, which shows the L4 implementation mx move of the
function move from level L3 (i.e. the code which copies a Block element from
the from-heap to the to-heap). The first test, r2 & 3 6= 0, tests whether the ad-
dress is a real address (not a null-address). The second test, r4 & 3 = 0, checks
whether the word that was read from memory is a header of a Block element or
a references cell Ref. If the first word is the header of a Block element then we
copy over the payload using the tail-recursive function mc move loop.

Correctness. The correctness of the L4 implementation is stated concisely in
the following theorem: if level L3 state y is related to level L4 state z then an
execution of the L3 function collector on y is related to L4 function mc collector
applied to z. The definition of ok mc heap will be presented below.

8x y z. ok mc heap x y z =) ok mc heap x (collector y) (mc collector z)!
• specifies the exact layout in machine memory	


• separation logic notation used for brevity	


• lengthy definition omitted	





Result: memory abstraction

A high-level theorem about the machine code for GC:
 	
  { HEAP abs_state * PC pc } 	
    “ entire GC implementation with entry point pc ”	
  { HEAP abs_state * PC (pc + length_of_gc_impl) }

where HEAP abs_state = ∃m regs. MEM m * ... * 	

                          pure (high_low_rel abs_state m regs)  

GC implementation:	


• always terminates	


• maintains the memory abstraction	


• is transparent: no visible change in high-level view of state	


• even though all addresses renamed
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