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Target: verified machine code

High-level specification
(e.g. operational semantics from Lec 2-3)

memory management (GC)
parsing/printing

type inference
Interpretation

compilation (dynamic)

connected by
formal proof

Concrete machine-code implementation
(e.g. x86,ARM, MIPS, Power)

Operational semantics of machine code
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Floyd—Hoare logic

A programming logic
* aformal system for reasoning about program text
* Hoare:“An axiomatic basis for computer programming”, 1969
* very influential still today (active research area)

Hoare triple (the judgement of Floyd-Hoare logic):
(PrOQ}

/\
(preconditionj( code ) [postconditio )

Example: {X 1S even} X :=%x+1 {X 1S Odd}
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Hoare logic formally

A little language:

prog = Assign string (state - num)

| Seq prog prog
| If (state » bool) prog prog

| While (state - bool) prog

where state = (string » num)

Big-step semantics:
(s,p1) s1 (s1,p2) | s2

(s,Assign v f) I s[v— f(s)] (s,5eq p1 p2) | s2
gquard(s) (s,p1) U s1 —guard(s) (s,p2) | s2
(s, If guard p1 p2) | s1 (s, If guard py p2) | s2
—guard(s) guard(s) (s,Seq body (While guard body)) | t

(s, While guard body) | s (s, While guard body) |} t
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Hoare triple

Partial correctness:

Hoare P C' ) = Vst. PsA(s,C) |t = Qt

informally:“if P true and C terminates, then Q”

Total correctness:

Total PC QQ = Vs. Ps = dt. (s,C) | tNQt

informally:“if P true, then C terminates and Q”

Both Hoare and Total usually written { P } C'{ Q }
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Hoare logic proof rules

Assignment ‘axiom’:

{QE/z|}r:=E{Q}

In our formalisation this ‘axiom’ is a theorem in HOL
VQ x E. Hoare (As. Q (s|lx — E(s)])) (Assign x F) @

proved based on the definition of Hoare.
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Hoare logic proof rules (cont.)

Some other proof rules:

{PICi{R} {R}C{Q}
{P}Seq C1 C2{Q}

{GAP}C1{Q} {"GAP};C{Q}
{GAP}IEG CL C2{Q} ( P is called the invariant )

{G/\P}C{l\é}
{P}While G C{PA-G)

( only for partial-correctness

PP—= P (P;CiQ} Q=
P CLQ )




Example proof: factorial

Code:
while (n # 0) (r :=r X n; n :=n - 1)

Invariant:
Inv = (fac N =facn xr A0 < n)

By Assignment and Seq rule:
{Invp—1/n)fcxn/r]} r :=r x n; n :=n - 1 {Inw)}
By Consequence rule:
{InuvAn#0} r :=r X n; n :=n -1 {Inv}
By While rule:
{Inv} while (@ # 0) (r :=r X n; n :=n - 1) {InvAn=0}
By Consequence rule:
{N=nAr=1} while (n # 0) (r :=r X n; n :=n - 1) {r=fac N}



Machine code

Moving on to something more realistic.

For real machine code:

* state is more complex (consists of registers,
memory, status bits, modes etc.)

* code lives in memory
 program counter (PC) points to next instruction
* no obvious termination (small-step semantics)

Next few slides formalise a simple machine language...



Semantics of machine code

Let state be a partial finite map from mc_name to mc_val

reg = 4-bit word
word = 32-bit word
address = word
mc_name = Reg reg

Mem address
Flag

Pc

mc_val = Word word
| Bool bool

Real machine languages (x86,ARM, Power etc.) have roughly
these components, but more registers, flags, modes etc.



Semantics (cont.)

Type of instructions:

mc_inst = Add reg reg reg

| AddImm reg reg word
| Jump offset

| JumpIfEqual offset
|
I

Compare reg word

offset = word

Assume we have a (partial) decode function that maps
word INtO mc_inst.



Semantics (cont.)

Small-step semantics (=2=5) defined using rules. Example:

s Pc = Word pc

s (Mem pc) = Word w
decode w = SubImm a b i1mm
s (Reg b) = Word x

s =2y s[Pc > Word (pc + 4)][Reg a —> Word (x - imm)]
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Naive machine-code Hoare logic

For the While-language, we defined a total-correctness Hoare-triple:

Total PC Q = Vs. Ps = dt. (s,C){tANQt

informally:“if P true, then C terminates and Q”

Similar total-correctness machine-code Hoare judgement:

mclTotal P() = Vs. Ps — dt. s ="t ANQ t

informally:“if P true, then execution reachAs Q”

(makes sense only if =2 js deterministic)
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Problems

mcTotal can be used:

® supports nice composition and sequence rules

* no need for special loop rule (composition suffices)
* ..however, assignment rules are dreadful

Example:
* an mcHoare triple for SubImm

mcTotal
(As. apc a b w x 1mm.
Q (s[Pc+— Word (pc + 4)][Reg at+— Word (x - 1tmm)]) A
s Pc = Word pc A
s (Mem pc) = Word w A
decode w = SubImm a b i1mm A
s (Reg b) = Word x)

too many preconditions )

affected by memory store instructions



Solution: separation logic

Separation logic
* a Hoare logic for ‘local reasoning’

* developed recently by Reynolds, O'Hearn, Ishtiag
and Yang (based on some early ideas by Burstall)

* can express certain local concepts very succinctly,
e.g."and nothing else changed”
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Separating conjunction

States are separated by the separating conjunction (*):

(p * q) state = 3s1 s2. p s1 A g s2 A
state = s1 v s2 A
domain sl n domain s2 = {}

Let (name » val) = As. (domain s = {name} A s(nhame) = val)

Why local reasoning? Answer: * consumes state.

((a»x) * (bw~y)* frame) state — a# b A

state(a) = x A

state(b) =y A ...

false if frame mentions a or b )
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Machine-code Hoare triple

We define an improved machine-code Hoare triple:

{P}C{Q} = vframe. mcTotal (P * C * frame)
(Q * C * frame)

Intention:
* can write pre- and postconditions using *-separated assertions

e assertion C holds code assertions (that stays invariant)
e the frame expresses “and nothing else changes”

e explanation on next few slides



Example: Sub instruction

A machine-code Hoare triple for a SubImm instruction:
{PCpc *R1y *R2x}

INST(pc, SubImm 1 2 50)
{ PC (pc+4) * R 1 (x-50) * R 2 x }

where:
PC pc = Pc » (Word pc)
R ax = (Reg a) » (Word x)
Max= (Mema) - (Word x)
INST(pc,inst) = aw. M pc w * pure (decode w = inst)

pure b = As. domain s = {} A b



Why local reasoning?

Frame rule:

{P}C{Q} — vframe. { P * frame } C { Q * frame }



Why local reasoning?

Frame rule:

{P}C{Q} — vframe. { P * frame } C { Q * frame }

Means e.g. that we can infer that reg. 3 was unaffected:

{PCpc * R1y*R2x*R3 2z}
INST(pc, SubImm 1 2 50)
{ PC (pc+4) * R1 (x-50) * R2 x * R 3 z }



Composition

We also have frame rule for code segment:

{P}C{Q} — vframe. { P } (C * frame) { Q }
Needed before composition:
{PIC{R}IAN{R}IC{Q} — {P}C{Q}

Example of composition next slides...



Composition (cont.)

Want to derive behaviour of the SubImm-then-Jump:

{PCpc *R1y *R2x}
INST(pc, SubImm 1 2 50)
{ PC (pc +4) *R1 (x-50) *R 2 x}
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INST(pc, Jump 200)
{ PC (pc + 200) }



Composition (cont.)

Want to derive behaviour of the SubImm-then-Jump:

{PCpc *R1y *R2x}
INST(pc, SubImm 1 2 50)
{ PC (pc +4) *R1 (x-50) *R 2 x}

{ PCpc}
INST(pc, Jump 200)
{ PC (pc + 200) }

Instantiation and application of frame rules:

{PCpc *R1ly *R2x?}?
INST(pc, SubImm 1 2 50) * INST(pc + 4, Jump 200)
{ PC (pc +4) *R1 (x-50) *R 2 x}

{ PC (pc +4) *R 1 (x-50) *R 2 x}
INST(pc, SubImm 1 2 50) * INST(pc + 4, Jump 200)
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Composition (cont.)

Want to derive behaviour of the SubImm-then-Jump:

{PCpc *R1y *R2x}
INST(pc, SubImm 1 2 50)
{ PC (pc +4) *R1 (x-50) *R 2 x}

{ PCpc}
INST(pc, Jump 200)
{ PC (pc + 200) }

Il read: this code is sufficient to get execution to the postcondition )

PCpc * R1ly *R2x}
INST(pc, SubImm 1 2 50) * INST(pc + 4, Jump 200)
{ PC (pc +4) *R1 (x-50) *R 2 x}
{ PC (pc +4) *R 1 (x-50) *R 2 x}
INST(pc, SubImm 1 2 50) * INST(pc + 4, Jump 200)
E 3

{ PC (pc + 204) * R 1 (x-50) * R 2 x }



Composition (cont.)

Result of composition:

{ PCpc *R1y *R2Xx
INST(pc, SubImm 1 2 50)
{ PC (pc + 204) * R 1 (

¥
* INST(pc + 4, Jump 200)
x-50) * R 2 x }



Example: Store instruction

Separating conjunction keeps memory separate from code:

{ PCpc *R1addr * R 2 val * M addr x }
INST(pc, Store 1 2)
{ PC (pc+4) * R 1 addr * R 2 val * M addr val }
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Example: Store instruction

Separating conjunction keeps memory separate from code:

{ PCpc *R1addr * R 2 val * M addr x }
INST(pc, Store 1 2)
{ PC (pc+4) * R 1 addr * R 2 val * M addr val }

Built-in assumption that pc and addr are separate. See definitions. )

Support for self-modifying code:

1P *{Q < {P*Q3yA{Q*C}

Code can be moved into the pre and post and ‘become data’. )




Reasoning still cumbersome...

Statements made succinct using separation logic.

However, reasoning (e.g. composition) is still very low-level...
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cmp ro,0 compare r@ with zero
jeq EXIT jump to EXIT, if r@ was zero
mul rl,rl,ro0 perform: rl := rl x ro
sub ro,ro,1 perform: r@ := r@ - 1
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Decompilation into logic

Decompilation automates low-level reasoning (from my PhD).

Example: given some machine code (assembly syntax & comments):

FAC:
cmp ro,0 compare r@ with zero
jeq EXIT jump to EXIT, if r@ was zero
mul rl,rl,ro0 perform: rl := rl x ro
sub ro,ro,1 perform: r@ := r@ - 1
jmp FAC jump to FAC
EXIT:

Decompiler extracts function describing the machine code:

fac (r@,rl) =
1f r@ = 0 then (ro,rl) else
let rl = rl x r@ in
let r@ = r@o - 1 1n
fac (ro,rl)



Why believe it?

Decompilation proves a certificate theorem:
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fac_pre (ro,rl) —

{PCpc * RO Pre *R1rl *F_}
“ FAC: cmp r0,0
jeq EXIT
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jmp FAC
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{ let (r@,rl) = fac (r0,rl) 1in
PC (pc + 20) * RO r0 *R1rl *F _}



Why believe it?

Decompilation proves a certificate theorem:

fac_pre (ro,rl) —

{PCpc * RO Pre *R1rl *F_}
“ FAC: cmp r0,0
jeq EXIT
mul rl,rl,roQ
sub ro,ro,1
jmp FAC
EXIT: ?
{ let (r@,rl) = fac (r0,rl) 1in
PC (pc + 20) * RO r®d *R1rl *F _}

where fac_pre collects termination and side-conditions.

fac_pre (ro,rl) =
1f ro = 0 then true else
let rl = rl x r@ 1in
let r@ = r@ - 1 1n
fac_pre (ro,rl)



Why believe it?

Decompilation proves a certificate theorem:

fac_pre (ro,rl) —

{PCpc *ROr0*R1rl*F_} Benefit:
“ FAC: cmp r0,0 Anything proved about
jeq EXIT fac and f is also
mul rl,rl,roQ ac ac_pre .
sub ro,ro,1 true of the machine code
jmp FAC via this theorem.
EXIT: ”

{ let (r@,rl) = fac (r0,rl) 1in
PC (pc + 20) * RO r®d *R1rl *F _}

where fac_pre collects termination and side-conditions.

fac_pre (ro,rl) =
1f ro = 0 then true else
let rl = rl x r@ 1in
let r@ = r@ - 1 1n
fac_pre (ro,rl)
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fac (n,1) = (O,n!)
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Verification using decomp.

Suffices to prove properties of fac and fac_pre.

fac (n,1) = (O,n!)
fac_pre (n,1) = true

Then:

{PCpc * ROn*R11*F_}
“ FAC: cmp r0,0
jeq EXIT
mul rl,rl,roQ
sub ro,ro,1
jmp FAC
EXIT: ?
{ PC(pc+20) *ROO*R1C(!) *F_}



Verification using decomp.

Suffices to prove properties of fac and fac_pre.

fac (n,1) = (O,n!)
fac_pre (n,1) = true

Then:
{PCpc * ROn*R11*F_}
“ FAC: cmp r0,0
jeq EXIT
mul rl,rl,roQ
sub ro,ro,1
jmp FAC
EXIT: ?
{ PC(pc+20) *ROO*R1C(!) *F_}

A\
( Flag component modified, but uninteresting value hidden )
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Implementation:
|. compose Hoare triples along each path through code
2. apply loop rule, if applicable
3. read off function and precondition



How decompilation works

Implementation:
|. compose Hoare triples along each path through code
2. apply loop rule, if applicable
3. read off function and precondition

Example: composition of triples gives:

{PCpc * RO ro*R1rl *F_}
“FAC: cmp r0,0 ... ”
{ 1f r@ = 0 then
PC (pc + 20) * RO r®0 * R 1 rl * F _
else
let rl = rl x r@ 1in
let rO = r@ - 1 1in
PCpc * RO r0 * R1vrl *F_}



Loop rule

Loop rule introduces tail rec. function:

(vx. px ={Px} code { if g x then P (f x) else Q (d x) }) =
(vx. stde g f px = {Px } code { Q (tailrec g f d x) })

where tailrec is a function template:

tailrec g f d x = 1f g x then tailrec g f d (f x) else d x
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Loop rule

Loop rule introduces tail rec. function:

(vx. px ={Px} code { if g x then P (f x) else Q (d x) }) =
(vx. stde g f px = {Px } code { Q (tailrec g f d x) })

where tailrec is a function template:
tailrec g f d x = 1f g x then tailrec g f d (f x) else d x

and side is ensures that tailrec terminates, definition:
side g fpx=_Ck. (vmi m<k=g({™"x) =p (f*x)) A
(an. -g (f" x))

derived equation:

side g fpx=((xA(gx=sidegfp (fx)))



Instantiation for fac example

State assertions:

o
Il

A(r@,r1). PCpc * R @ r@ * R 1 rl * F _
Q = AN(ro,r1). PC (pc + 20) * RO r®o * R 1 rl * F _
Function components:

f =d=Aro,rl). 1f r@ = 0 then (ro,rl) else
let rl = rl x r@ 1in
let r@ = r@ - 1 1in
(ro,rl)

g = ANro,rl). if r@ = 0 then false else true

p = AN(ro,rl). true



Proof sketch for loop rule

Assume:

(vx. px = {Px} code { if g x then P (f x) else Q (d x) })
Want to show:

(vx. sitde g f px = { P x } code { Q (tailrec g f d x) })
Goal simplifies to:

(vx. ... An@n. =g (f"x)) == { P x } code { Q (tailrec g f d x) })
which simplifies to:

(vn x. ... A-g (f"x) = { P x } code { Q (tailrec g f d x) })
which we can prove by induction on n:

casen=0;: (vwx. ... A-gx = { P x} code { Q (tailrec g f d x) })

which is the same as:

(vx. ... A-gx = {Px 3} code {Q{dx)}
which follows from the assumption.



Proof sketch (cont.)

case n = k+1:

can assume.
(vx. ... A=g (f¥ x) = { P x } code { Q (tailrec g f d x) })

need to show:
(vx. ... A g (f“*l? x) = { P x } code { Q (tailrec g f d x) })

for any x, if .g x then same as base case, otherwise:
. A =g (FC (F X)) = { Px 3} code { Q (tailrec g f d (f x)) P

which is true by composition of the following two facts
fact I: px = {Px} code {P (fx)}
which is an instantiation of the assump. from last slide
fact2: ... A =g (F* (F x)) = { P (f x) } code { Q (tailrec g f d (f x)) })

which is an instantiation of the assump. from this slide
(the inductive hypothesis)



Summary

Hoare logic

* from Hoare’s seminal paper “An axiomatic basis for
computer programming’’, 1969

* alogic with judgements about program text

Hoare logic for machine code
* based on separation logic (due Reynolds et al.)
* supports the frame rule
* and self-modifying code

Decompilation into logic
e automation that aids in machine code verification
e extracts function from code
* automatically proves certificate theorem



