
MPhil ACS & Part III course, Functional Programming: 	

Implementation, Specification and Verification

Magnus Myreen	

Michaelmas term, 2013

Lecture 4

Machine code, formal
verification and
decompilation

Target: verified machine code

High-level specification 	

(e.g. operational semantics from Lec 2-3)�

Target: verified machine code

High-level specification 	

(e.g. operational semantics from Lec 2-3)�

Concrete machine-code implementation	

(e.g. x86, ARM, MIPS, Power)

Target: verified machine code

Operational semantics of machine code

High-level specification 	

(e.g. operational semantics from Lec 2-3)�

Concrete machine-code implementation	

(e.g. x86, ARM, MIPS, Power)

Target: verified machine code

Operational semantics of machine code

}connected by 	

formal proof

High-level specification 	

(e.g. operational semantics from Lec 2-3)�

Concrete machine-code implementation	

(e.g. x86, ARM, MIPS, Power)

Target: verified machine code

Operational semantics of machine code

}connected by 	

formal proof

High-level specification 	

(e.g. operational semantics from Lec 2-3)�

Concrete machine-code implementation	

(e.g. x86, ARM, MIPS, Power)

memory management (GC)	

parsing/printing	

type inference	

interpretation	

compilation (dynamic)

Floyd–Hoare logic

A programming logic	

• a formal system for reasoning about program text	

• Hoare: “An axiomatic basis for computer programming”, 1969	

• very influential still today (active research area)

Floyd–Hoare logic

A programming logic	

• a formal system for reasoning about program text	

• Hoare: “An axiomatic basis for computer programming”, 1969	

• very influential still today (active research area)

Hoare triple (the judgement of Floyd-Hoare logic):

{P }C {Q }

Floyd–Hoare logic

A programming logic	

• a formal system for reasoning about program text	

• Hoare: “An axiomatic basis for computer programming”, 1969	

• very influential still today (active research area)

Hoare triple (the judgement of Floyd-Hoare logic):

{P }C {Q }

precondition

Floyd–Hoare logic

A programming logic	

• a formal system for reasoning about program text	

• Hoare: “An axiomatic basis for computer programming”, 1969	

• very influential still today (active research area)

Hoare triple (the judgement of Floyd-Hoare logic):

{P }C {Q }

precondition code

Floyd–Hoare logic

A programming logic	

• a formal system for reasoning about program text	

• Hoare: “An axiomatic basis for computer programming”, 1969	

• very influential still today (active research area)

Hoare triple (the judgement of Floyd-Hoare logic):

{P }C {Q }

precondition code postconditio

Floyd–Hoare logic

A programming logic	

• a formal system for reasoning about program text	

• Hoare: “An axiomatic basis for computer programming”, 1969	

• very influential still today (active research area)

Hoare triple (the judgement of Floyd-Hoare logic):

{P }C {Q }

precondition code postconditio

Example: { x is even } x := x+1 { x is odd }

Hoare logic formally

 prog = Assign string (state ! num)	
 | Seq prog prog	
 | If (state ! bool) prog prog	
 | While (state ! bool) prog	
!
 where state = (string ! num)

A little language:

Hoare logic formally

 prog = Assign string (state ! num)	
 | Seq prog prog	
 | If (state ! bool) prog prog	
 | While (state ! bool) prog	
!
 where state = (string ! num)

A little language:

Big-step semantics:

(s,Assign v f) + s[v 7! f(s)]

(s, p1) + s1 (s1, p2) + s2

(s, Seq p1 p2) + s2

guard(s) (s, p1) + s1

(s, If guard p1 p2) + s1

¬guard(s) (s, p2) + s2

(s, If guard p1 p2) + s2

¬guard(s)
(s,While guard body) + s

guard(s) (s, Seq body (While guard body)) + t

(s,While guard body) + t

Hoare triple

Partial correctness:

Hoare P C Q ⌘ 8s t. P s ^ (s, C) + t =) Q t

informally: “if P true and C terminates, then Q”

Hoare triple

Partial correctness:

Hoare P C Q ⌘ 8s t. P s ^ (s, C) + t =) Q t

informally: “if P true and C terminates, then Q”

Total correctness:

informally: “if P true, then C terminates and Q”

Total P C Q ⌘ 8s. P s =) 9t. (s, C) + t ^Q t

Hoare triple

Partial correctness:

Hoare P C Q ⌘ 8s t. P s ^ (s, C) + t =) Q t

informally: “if P true and C terminates, then Q”

Total correctness:

informally: “if P true, then C terminates and Q”

Total P C Q ⌘ 8s. P s =) 9t. (s, C) + t ^Q t

Both Hoare and Total usually written {P }C {Q }

Hoare logic proof rules

Assignment ‘axiom’:

{Q[E/x] }x :=E {Q }

Hoare logic proof rules

Assignment ‘axiom’:

{Q[E/x] }x :=E {Q }

8Q x E. Hoare (�s. Q (s[x 7! E(s)])) (Assign x E) Q

In our formalisation this ‘axiom’ is a theorem in HOL

proved based on the definition of Hoare.

Hoare logic proof rules (cont.)

Some other proof rules:

{P }C1 {R } {R }C2 {Q }
{P } Seq C1 C2 {Q }

Hoare logic proof rules (cont.)

Some other proof rules:

{P }C1 {R } {R }C2 {Q }
{P } Seq C1 C2 {Q }

{G ^ P }C1 {Q }
{G ^ P } If G C1 C2 {Q }

{¬G ^ P }C2 {Q }
{¬G ^ P } If G C1 C2 {Q }

Hoare logic proof rules (cont.)

Some other proof rules:

{P }C1 {R } {R }C2 {Q }
{P } Seq C1 C2 {Q }

{G ^ P }C1 {Q }
{G ^ P } If G C1 C2 {Q }

{¬G ^ P }C2 {Q }
{¬G ^ P } If G C1 C2 {Q }

{G ^ P }C {P }
{P }While G C {P ^ ¬G }

Hoare logic proof rules (cont.)

Some other proof rules:

{P }C1 {R } {R }C2 {Q }
{P } Seq C1 C2 {Q }

{G ^ P }C1 {Q }
{G ^ P } If G C1 C2 {Q }

{¬G ^ P }C2 {Q }
{¬G ^ P } If G C1 C2 {Q }

{G ^ P }C {P }
{P }While G C {P ^ ¬G }only for partial-correctness

Hoare logic proof rules (cont.)

Some other proof rules:

{P }C1 {R } {R }C2 {Q }
{P } Seq C1 C2 {Q }

{G ^ P }C1 {Q }
{G ^ P } If G C1 C2 {Q }

{¬G ^ P }C2 {Q }
{¬G ^ P } If G C1 C2 {Q }

{G ^ P }C {P }
{P }While G C {P ^ ¬G }only for partial-correctness

P is called the invariant

Hoare logic proof rules (cont.)

Some other proof rules:

{P }C1 {R } {R }C2 {Q }
{P } Seq C1 C2 {Q }

{G ^ P }C1 {Q }
{G ^ P } If G C1 C2 {Q }

{¬G ^ P }C2 {Q }
{¬G ^ P } If G C1 C2 {Q }

{G ^ P }C {P }
{P }While G C {P ^ ¬G }

P 0 =) P {P }C {Q } Q =) Q0

{P 0 }C {Q0 }
(Consequence)

only for partial-correctness

P is called the invariant

Example proof: factorial

Inv ⌘ (fac N = fac n⇥ r ^ 0  n)

Code:

Invariant:

By Assignment and Seq rule:

By Consequence rule:

By While rule:

By Consequence rule:

{ Inv [n� 1/n][r⇥ n/r] } r := r ⇥ n; n := n - 1 { Inv }

{ Inv ^ n 6= 0 } r := r ⇥ n; n := n - 1 { Inv }

{ Inv } while (n 6= 0) (r := r ⇥ n; n := n - 1) { Inv ^ n = 0 }

{N = n ^ r = 1 } while (n 6= 0) (r := r ⇥ n; n := n - 1) { r = fac N }

while (n 6= 0) (r := r ⇥ n; n := n - 1)

Machine code

For real machine code:	

• state is more complex (consists of registers,

memory, status bits, modes etc.)	

• code lives in memory	

• program counter (PC) points to next instruction	

• no obvious termination (small-step semantics)

Moving on to something more realistic.

Next few slides formalise a simple machine language...

Semantics of machine code

 reg = 4-bit word	
 word = 32-bit word	
 address = word	
!
 mc_name = Reg reg	
 | Mem address	
 | Flag	
 | Pc	
!
 mc_val = Word word	
 | Bool bool	

Let state be a partial finite map from mc_name to mc_val

Real machine languages (x86, ARM, Power etc.) have roughly 	

these components, but more registers, flags, modes etc.

Semantics (cont.)

Type of instructions:

 mc_inst = Add reg reg reg	
 | AddImm reg reg word	
 | Jump offset	
 | JumpIfEqual offset	
 | Compare reg word	
 | ...	
!
 offset = word	

Assume we have a (partial) decode function that maps	

word into mc_inst.

Semantics (cont.)

 s Pc = Word pc	
 s (Mem pc) = Word w	
 decode w = SubImm a b imm	
 s (Reg b) = Word x	
!
 s s[Pc Word (pc + 4)][Reg a Word (x - imm)]	�!eval 7! 7!

Small-step semantics () defined using rules. Example:�!eval

Naive machine-code Hoare logic

For the While-language, we defined a total-correctness Hoare-triple:

informally: “if P true, then C terminates and Q”

Total P C Q ⌘ 8s. P s =) 9t. (s, C) + t ^Q t

Naive machine-code Hoare logic

For the While-language, we defined a total-correctness Hoare-triple:

informally: “if P true, then C terminates and Q”

Total P C Q ⌘ 8s. P s =) 9t. (s, C) + t ^Q t

Similar total-correctness machine-code Hoare judgement:

informally: “if P true, then execution reaches Q”

�!eval
mcTotal P Q ⌘ 8s. P s =) 9t. s ⇤t ^Q t

makes sense only if is deterministic�!eval

Naive machine-code Hoare logic

For the While-language, we defined a total-correctness Hoare-triple:

informally: “if P true, then C terminates and Q”

Total P C Q ⌘ 8s. P s =) 9t. (s, C) + t ^Q t

Similar total-correctness machine-code Hoare judgement:

informally: “if P true, then execution reaches Q”

�!eval
mcTotal P Q ⌘ 8s. P s =) 9t. s ⇤t ^Q t

Problems
mcTotal can be used:	

• supports nice composition and sequence rules	

• no need for special loop rule (composition suffices)	

• ... however, assignment rules are dreadful

Problems
mcTotal can be used:	

• supports nice composition and sequence rules	

• no need for special loop rule (composition suffices)	

• ... however, assignment rules are dreadful

Example: 	

• an mcHoare triple for SubImm

mcTotal 	
 (λs. ∃pc a b w x imm.	
 Q (s[Pc Word (pc + 4)][Reg a Word (x - imm)]) ∧	
 s Pc = Word pc ∧	
 s (Mem pc) = Word w ∧	
 decode w = SubImm a b imm ∧	
 s (Reg b) = Word x)	
 Q 	

7! 7!

Problems
mcTotal can be used:	

• supports nice composition and sequence rules	

• no need for special loop rule (composition suffices)	

• ... however, assignment rules are dreadful

Example: 	

• an mcHoare triple for SubImm

mcTotal 	
 (λs. ∃pc a b w x imm.	
 Q (s[Pc Word (pc + 4)][Reg a Word (x - imm)]) ∧	
 s Pc = Word pc ∧	
 s (Mem pc) = Word w ∧	
 decode w = SubImm a b imm ∧	
 s (Reg b) = Word x)	
 Q 	

7! 7!

too many preconditions

Problems
mcTotal can be used:	

• supports nice composition and sequence rules	

• no need for special loop rule (composition suffices)	

• ... however, assignment rules are dreadful

Example: 	

• an mcHoare triple for SubImm

mcTotal 	
 (λs. ∃pc a b w x imm.	
 Q (s[Pc Word (pc + 4)][Reg a Word (x - imm)]) ∧	
 s Pc = Word pc ∧	
 s (Mem pc) = Word w ∧	
 decode w = SubImm a b imm ∧	
 s (Reg b) = Word x)	
 Q 	

7! 7!

too many preconditions

affected by memory store instructions

Solution: separation logic

Separation logic	

• a Hoare logic for ‘local reasoning’	

• developed recently by Reynolds, O'Hearn, Ishtiaq

and Yang (based on some early ideas by Burstall)	

• can express certain local concepts very succinctly,

e.g. “and nothing else changed”

Separating conjunction

States are separated by the separating conjunction (*):

 (p * q) state = ∃s1 s2. p s1 ∧ q s2 ∧	
 state = s1 ∪ s2 ∧	
 domain s1 ∩ domain s2 = {}

Separating conjunction

States are separated by the separating conjunction (*):

 (p * q) state = ∃s1 s2. p s1 ∧ q s2 ∧	
 state = s1 ∪ s2 ∧	
 domain s1 ∩ domain s2 = {}

Let (name ↦ val) = λs. (domain s = {name} ∧ s(name) = val)

Separating conjunction

States are separated by the separating conjunction (*):

 (p * q) state = ∃s1 s2. p s1 ∧ q s2 ∧	
 state = s1 ∪ s2 ∧	
 domain s1 ∩ domain s2 = {}

Let (name ↦ val) = λs. (domain s = {name} ∧ s(name) = val)

Why local reasoning? Answer: * consumes state.

((a ↦ x) * (b ↦ y) * frame) state a b ∧	
 state(a) = x ∧	
 state(b) = y ∧ ...

=) 6=

Separating conjunction

States are separated by the separating conjunction (*):

 (p * q) state = ∃s1 s2. p s1 ∧ q s2 ∧	
 state = s1 ∪ s2 ∧	
 domain s1 ∩ domain s2 = {}

Let (name ↦ val) = λs. (domain s = {name} ∧ s(name) = val)

Why local reasoning? Answer: * consumes state.

((a ↦ x) * (b ↦ y) * frame) state a b ∧	
 state(a) = x ∧	
 state(b) = y ∧ ...

=) 6=

false if frame mentions a or b

Machine-code Hoare triple

We define an improved machine-code Hoare triple:

 { P } C { Q } = ∀frame. mcTotal (P * C * frame)	
 (Q * C * frame)

Machine-code Hoare triple

We define an improved machine-code Hoare triple:

 { P } C { Q } = ∀frame. mcTotal (P * C * frame)	
 (Q * C * frame)

Intention:	

• can write pre- and postconditions using *-separated assertions	

• assertion C holds code assertions (that stays invariant)	

• the frame expresses “and nothing else changes”	

• explanation on next few slides	

!

Example: Sub instruction

 { PC pc * R 1 y * R 2 x } 	
 INST(pc, SubImm 1 2 50) 	
 { PC (pc+4) * R 1 (x-50) * R 2 x }

 PC pc = Pc ↦ (Word pc)	
!
 R a x = (Reg a) ↦ (Word x)	
!
 M a x = (Mem a) ↦ (Word x)	
!
 INST(pc,inst) = ∃w. M pc w * pure (decode w = inst)	
!
 pure b = λs. domain s = {} ∧ b

A machine-code Hoare triple for a SubImm instruction:

where:

Why local reasoning?

Frame rule:

 { P } C { Q } ∀frame. { P * frame } C { Q * frame }=)

Why local reasoning?

Frame rule:

 { P } C { Q } ∀frame. { P * frame } C { Q * frame }=)

 { PC pc * R 1 y * R 2 x * R 3 z } 	
 INST(pc, SubImm 1 2 50) 	
 { PC (pc+4) * R 1 (x-50) * R 2 x * R 3 z }

Means e.g. that we can infer that reg. 3 was unaffected:

Composition

We also have frame rule for code segment:

 { P } C { Q } ∀frame. { P } (C * frame) { Q }=)

Needed before composition:

 { P } C { R } ∧ { R } C { Q } { P } C { Q }=)

Example of composition next slides...

Composition (cont.)

 { PC pc * R 1 y * R 2 x } 	
 INST(pc, SubImm 1 2 50) 	
 { PC (pc + 4) * R 1 (x-50) * R 2 x }

 { PC pc } 	
 INST(pc, Jump 200) 	
 { PC (pc + 200) }

Want to derive behaviour of the SubImm-then-Jump:

Composition (cont.)

 { PC pc * R 1 y * R 2 x } 	
 INST(pc, SubImm 1 2 50) 	
 { PC (pc + 4) * R 1 (x-50) * R 2 x }

 { PC pc } 	
 INST(pc, Jump 200) 	
 { PC (pc + 200) }

Want to derive behaviour of the SubImm-then-Jump:

 { PC pc * R 1 y * R 2 x } 	
 INST(pc, SubImm 1 2 50) * INST(pc + 4, Jump 200)	
 { PC (pc + 4) * R 1 (x-50) * R 2 x }

 { PC (pc + 4) * R 1 (x-50) * R 2 x } 	
 INST(pc, SubImm 1 2 50) * INST(pc + 4, Jump 200) 	
 { PC (pc + 204) * R 1 (x-50) * R 2 x }

Instantiation and application of frame rules:

Composition (cont.)

 { PC pc * R 1 y * R 2 x } 	
 INST(pc, SubImm 1 2 50) 	
 { PC (pc + 4) * R 1 (x-50) * R 2 x }

 { PC pc } 	
 INST(pc, Jump 200) 	
 { PC (pc + 200) }

Want to derive behaviour of the SubImm-then-Jump:

 { PC pc * R 1 y * R 2 x } 	
 INST(pc, SubImm 1 2 50) * INST(pc + 4, Jump 200)	
 { PC (pc + 4) * R 1 (x-50) * R 2 x }

 { PC (pc + 4) * R 1 (x-50) * R 2 x } 	
 INST(pc, SubImm 1 2 50) * INST(pc + 4, Jump 200) 	
 { PC (pc + 204) * R 1 (x-50) * R 2 x }

Instantiation and application of frame rules:read: this code is sufficient to get execution to the postcondition

Composition (cont.)

 { PC pc * R 1 y * R 2 x } 	
 INST(pc, SubImm 1 2 50) * INST(pc + 4, Jump 200)	
 { PC (pc + 204) * R 1 (x-50) * R 2 x }

Result of composition:

Example: Store instruction
Separating conjunction keeps memory separate from code:

 { PC pc * R 1 addr * R 2 val * M addr x } 	
 INST(pc, Store 1 2)	
 { PC (pc+4) * R 1 addr * R 2 val * M addr val }

Example: Store instruction
Separating conjunction keeps memory separate from code:

 { PC pc * R 1 addr * R 2 val * M addr x } 	
 INST(pc, Store 1 2)	
 { PC (pc+4) * R 1 addr * R 2 val * M addr val }

Built-in assumption that pc and addr are separate. See definitions.

Example: Store instruction
Separating conjunction keeps memory separate from code:

 { PC pc * R 1 addr * R 2 val * M addr x } 	
 INST(pc, Store 1 2)	
 { PC (pc+4) * R 1 addr * R 2 val * M addr val }

Built-in assumption that pc and addr are separate. See definitions.

Support for self-modifying code:

 { P } (C1 * C2) { Q } { P * C2 } C1 { Q * C2 }()

Example: Store instruction
Separating conjunction keeps memory separate from code:

 { PC pc * R 1 addr * R 2 val * M addr x } 	
 INST(pc, Store 1 2)	
 { PC (pc+4) * R 1 addr * R 2 val * M addr val }

Built-in assumption that pc and addr are separate. See definitions.

Code can be moved into the pre and post and ‘become data’.

Support for self-modifying code:

 { P } (C1 * C2) { Q } { P * C2 } C1 { Q * C2 }()

Reasoning still cumbersome...
Statements made succinct using separation logic.

However, reasoning (e.g. composition) is still very low-level...

Decompilation into logic
Decompilation automates low-level reasoning (from my PhD).

Decompilation into logic
Decompilation automates low-level reasoning (from my PhD).

Example: given some machine code (assembly syntax & comments):

FAC:	
 cmp r0,0 compare r0 with zero 	
 jeq EXIT jump to EXIT, if r0 was zero	
 mul r1,r1,r0 perform: r1 := r1 × r0	
 sub r0,r0,1 perform: r0 := r0 - 1	
 jmp FAC jump to FAC 	
EXIT:	

Decompilation into logic
Decompilation automates low-level reasoning (from my PhD).

Example: given some machine code (assembly syntax & comments):

FAC:	
 cmp r0,0 compare r0 with zero 	
 jeq EXIT jump to EXIT, if r0 was zero	
 mul r1,r1,r0 perform: r1 := r1 × r0	
 sub r0,r0,1 perform: r0 := r0 - 1	
 jmp FAC jump to FAC 	
EXIT:	

Decompiler extracts function describing the machine code:

fac (r0,r1) =	
 if r0 = 0 then (r0,r1) else	
 let r1 = r1 × r0 in	
 let r0 = r0 - 1 in	
 fac (r0,r1)	
 	

Why believe it?
Decompilation proves a certificate theorem:

Why believe it?
Decompilation proves a certificate theorem:

 fac_pre (r0,r1) 	
 { PC pc * R 0 r0 * R 1 r1 * F _ } 	
 “ FAC: cmp r0,0 	
 jeq EXIT 	
 mul r1,r1,r0 	
 sub r0,r0,1 	
 jmp FAC 	
 EXIT: ”	
 { let (r0,r1) = fac (r0,r1) in	
 PC (pc + 20) * R 0 r0 * R 1 r1 * F _ }

=)

Why believe it?
Decompilation proves a certificate theorem:

 fac_pre (r0,r1) 	
 { PC pc * R 0 r0 * R 1 r1 * F _ } 	
 “ FAC: cmp r0,0 	
 jeq EXIT 	
 mul r1,r1,r0 	
 sub r0,r0,1 	
 jmp FAC 	
 EXIT: ”	
 { let (r0,r1) = fac (r0,r1) in	
 PC (pc + 20) * R 0 r0 * R 1 r1 * F _ }

=)

fac_pre (r0,r1) =	
 if r0 = 0 then true else	
 let r1 = r1 × r0 in	
 let r0 = r0 - 1 in	
 fac_pre (r0,r1)	
 	

where fac_pre collects termination and side-conditions.

Why believe it?
Decompilation proves a certificate theorem:

 fac_pre (r0,r1) 	
 { PC pc * R 0 r0 * R 1 r1 * F _ } 	
 “ FAC: cmp r0,0 	
 jeq EXIT 	
 mul r1,r1,r0 	
 sub r0,r0,1 	
 jmp FAC 	
 EXIT: ”	
 { let (r0,r1) = fac (r0,r1) in	
 PC (pc + 20) * R 0 r0 * R 1 r1 * F _ }

=)

fac_pre (r0,r1) =	
 if r0 = 0 then true else	
 let r1 = r1 × r0 in	
 let r0 = r0 - 1 in	
 fac_pre (r0,r1)	
 	

where fac_pre collects termination and side-conditions.

Benefit:	

Anything proved about 	

fac and fac_pre is also 	

true of the machine code	

via this theorem.

Verification using decomp.
!
Suffices to prove properties of fac and fac_pre.

 fac (n,1) = (0,n!)	
 fac_pre (n,1) = true	

Verification using decomp.
!
Suffices to prove properties of fac and fac_pre.

 fac (n,1) = (0,n!)	
 fac_pre (n,1) = true	

 	
 { PC pc * R 0 n * R 1 1 * F _ } 	
 “ FAC: cmp r0,0 	
 jeq EXIT 	
 mul r1,r1,r0 	
 sub r0,r0,1 	
 jmp FAC 	
 EXIT: ”	
 { PC (pc + 20) * R 0 0 * R 1 (n!) * F _ }

!
Then:

Verification using decomp.
!
Suffices to prove properties of fac and fac_pre.

 fac (n,1) = (0,n!)	
 fac_pre (n,1) = true	

 	
 { PC pc * R 0 n * R 1 1 * F _ } 	
 “ FAC: cmp r0,0 	
 jeq EXIT 	
 mul r1,r1,r0 	
 sub r0,r0,1 	
 jmp FAC 	
 EXIT: ”	
 { PC (pc + 20) * R 0 0 * R 1 (n!) * F _ }

!
Then:

Flag component modified, but uninteresting value hidden

How decompilation works

Implementation:	

1. compose Hoare triples along each path through code	

2. apply loop rule, if applicable	

3. read off function and precondition

How decompilation works

Implementation:	

1. compose Hoare triples along each path through code	

2. apply loop rule, if applicable	

3. read off function and precondition

Example: composition of triples gives:
 	
 { PC pc * R 0 r0 * R 1 r1 * F _ } 	
 “ FAC: cmp r0,0 ... ”	
 { if r0 = 0 then 	
 PC (pc + 20) * R 0 r0 * R 1 r1 * F _	
 else	
 let r1 = r1 × r0 in	
 let r0 = r0 - 1 in	
 PC pc * R 0 r0 * R 1 r1 * F _ }

Loop rule

Loop rule introduces tail rec. function:

 (∀x. p x ⇒ { P x } code { if g x then P (f x) else Q (d x) }) ⇒	

 (∀x. side g f p x ⇒ { P x } code { Q (tailrec g f d x) })	

where tailrec is a function template:

tailrec g f d x = if g x then tailrec g f d (f x) else d x

Loop rule

Loop rule introduces tail rec. function:

 (∀x. p x ⇒ { P x } code { if g x then P (f x) else Q (d x) }) ⇒	

 (∀x. side g f p x ⇒ { P x } code { Q (tailrec g f d x) })	

where tailrec is a function template:

tailrec g f d x = if g x then tailrec g f d (f x) else d x

can be defined in HOL without a termination proof (trick)

Loop rule

Loop rule introduces tail rec. function:

 (∀x. p x ⇒ { P x } code { if g x then P (f x) else Q (d x) }) ⇒	

 (∀x. side g f p x ⇒ { P x } code { Q (tailrec g f d x) })	

where tailrec is a function template:

tailrec g f d x = if g x then tailrec g f d (f x) else d x

can be defined in HOL without a termination proof (trick)

every tail rec. function fits this template

Loop rule

Loop rule introduces tail rec. function:

 (∀x. p x ⇒ { P x } code { if g x then P (f x) else Q (d x) }) ⇒	

 (∀x. side g f p x ⇒ { P x } code { Q (tailrec g f d x) })	

where tailrec is a function template:

tailrec g f d x = if g x then tailrec g f d (f x) else d x

Loop rule

Loop rule introduces tail rec. function:

 (∀x. p x ⇒ { P x } code { if g x then P (f x) else Q (d x) }) ⇒	

 (∀x. side g f p x ⇒ { P x } code { Q (tailrec g f d x) })	

where tailrec is a function template:

tailrec g f d x = if g x then tailrec g f d (f x) else d x

and side is ensures that tailrec terminates, definition:

side g f p x = (∀k. (∀m. m < k ⇒ g (fm x)) ⇒ p (fk x)) ∧	

 (∃n. ¬g (fn x))

Loop rule

Loop rule introduces tail rec. function:

 (∀x. p x ⇒ { P x } code { if g x then P (f x) else Q (d x) }) ⇒	

 (∀x. side g f p x ⇒ { P x } code { Q (tailrec g f d x) })	

where tailrec is a function template:

tailrec g f d x = if g x then tailrec g f d (f x) else d x

and side is ensures that tailrec terminates, definition:

side g f p x = (∀k. (∀m. m < k ⇒ g (fm x)) ⇒ p (fk x)) ∧	

 (∃n. ¬g (fn x))

side g f p x = (p x ∧ (g x ⇒ side g f p (f x)))	

derived equation:

Instantiation for fac example

State assertions:

 P = λ(r0,r1). PC pc * R 0 r0 * R 1 r1 * F _	
!
 Q = λ(r0,r1). PC (pc + 20) * R 0 r0 * R 1 r1 * F _

Function components:

f = d = λ(r0,r1). if r0 = 0 then (r0,r1) else	
 let r1 = r1 × r0 in	
 let r0 = r0 - 1 in	
 (r0,r1)	
!
g = λ(r0,r1). if r0 = 0 then false else true	
!
p = λ(r0,r1). true	

Proof sketch for loop rule

Assume:

 (∀x. p x ⇒ { P x } code { if g x then P (f x) else Q (d x) })	

 	Want to show:
(∀x. side g f p x ⇒ { P x } code { Q (tailrec g f d x) })

Goal simplifies to:
(∀x. ... ∧ (∃n. ¬g (fn x)) ⇒ { P x } code { Q (tailrec g f d x) })

which simplifies to:
(∀n x. ... ∧ ¬g (fn x) ⇒ { P x } code { Q (tailrec g f d x) })

which we can prove by induction on n:
(∀x. ... ∧ ¬g x ⇒ { P x } code { Q (tailrec g f d x) })case n = 0:

(∀x. ... ∧ ¬g x ⇒ { P x } code { Q (d x) })
which is the same as:

which follows from the assumption.

Proof sketch (cont.)

(∀x. ... ∧ ¬g (fk x) ⇒ { P x } code { Q (tailrec g f d x) })

case n = k+1:

can assume:

(∀x. ... ∧ ¬g (fk+1 x) ⇒ { P x } code { Q (tailrec g f d x) })
need to show:

... ∧ ¬g (fk (f x)) ⇒ { P x } code { Q (tailrec g f d (f x)) })
for any x, if ¬g x then same as base case, otherwise:

which is true by composition of the following two facts

fact 1:

 ... ∧ ¬g (fk (f x)) ⇒ { P (f x) } code { Q (tailrec g f d (f x)) })

 p x ⇒ { P x } code { P (f x) }	

 	which is an instantiation of the assump. from last slide

fact 2:

which is an instantiation of the assump. from this slide	

(the inductive hypothesis)

Summary

Hoare logic	

• from Hoare’s seminal paper “An axiomatic basis for

computer programming”, 1969	

• a logic with judgements about program text

Hoare logic for machine code	

• based on separation logic (due Reynolds et al.)	

• supports the frame rule	

• and self-modifying code	

Decompilation into logic	

• automation that aids in machine code verification	

• extracts function from code	

• automatically proves certificate theorem	

