Formal specification and big-step operational semantics

Lecture 2

MPhil ACS & Part III course, Functional Programming: Implementation, Specification and Verification

Magnus Myreen Michaelmas term, 2013

Formal methods

Formal specification

Formal methods

Formal specification

What makes it 'formal'?

Formal methods

Formal specification

What makes it 'formal'?

Answer: 'formal' as in 'formalised in a logic or calculus'

- has precise meaning
- e.g. lambda calculus, first-order logic or even a programming logic

First-order logic (FOL)

FOL syntax:

terms:

- variables: x, y, z
- constants and functions: f,g,h

formulas:

- predicates: P,Q,R
- connectives: $\land,\lor,\implies,\lnot$
- quantifiers: \forall, \exists

Rules of inference are used to derive theorems:

$$\vdash (\exists x. \forall y. P(x, y)) \implies (\forall y. \exists x. P(x, y))$$

This course uses 'formal' to mean "can be formalised in higher-order logic" (Church's simple theory of types).

This course uses 'formal' to mean "can be formalised in higher-order logic" (Church's simple theory of types).

HOL is widely used since:

- more expressive than FOL
- specifications are often more natural, shorter
- originally developed as a foundation for mathematics

This course uses 'formal' to mean "can be formalised in higher-order logic" (Church's simple theory of types).

HOL is widely used since:

- more expressive than FOL
- specifications are often more natural, shorter
- originally developed as a foundation for mathematics

Main difference between FOL and HOL:

- no distinction between terms and formulas
- functions and predicates are treated as first-class values

This course uses 'formal' to mean "can be formalised in higher-order logic" (Church's simple theory of types).

HOL is widely used since:

- more expressive than FOL
- specifications are often more natural, shorter
- originally developed as a foundation for mathematics

Main difference between FOL and HOL:

- no distinction between terms and formulas
- functions and predicates are treated as first-class values

$$\vdash \forall P. (\exists x. \forall y. P(x, y)) \implies (\forall y. \exists x. P(x, y))$$

This course uses 'formal' to mean "can be formalised in higher-order logic" (Church's simple theory of types).

HOL is widely used since:

- more expressive than FOL
- specifications are often more natural, shorter
- originally developed as a foundation for mathematics

Main difference between FOL and HOL:

- no distinction between terms and formulas
- functions and predicates are treated as first-class values

$$\vdash \forall P. (\exists x. \forall y. P(x, y)) \implies (\forall y. \exists x. P(x, y))$$

quantification over a predicate

Familiar notation

Term	Meaning
P(x)	x has property P
$\neg t$	not t
$t_1 \wedge t_2$	t_1 and t_2
$t_1 \lor t_2$	t_1 or t_2
$t_1 \Rightarrow t_2$	$t_1 \text{ implies } t_2$
$\forall x. t[x]$	for all x it is the case that $t[x]$
$\exists x. t[x]$	for some x it is the case that $t[x]$

HOL $\,pprox\,$ (lambda calculus + constants) with ML-like types

HOL $\,pprox\,$ (lambda calculus + constants) with ML-like types

HOL terms:

- variables: x, y, P, R
- constants (abbreviate fixed closed values, e.g. 0)
- function application: $t_1 t_2$
- lambda-terms: $\lambda x. t$ where x is a variable and t a term

HOL $\,pprox\,$ (lambda calculus + constants) with ML-like types

HOL terms:

- variables: x, y, P, R
- constants (abbreviate fixed closed values, e.g. 0)
- function application: $t_1 t_2$
- lambda-terms: $\lambda x. t$ where x is a variable and t a term

HOL types:

- atomic types: type constants (e.g. num), type variables
- compound types: built using type operators (e.g. $t \to t'$)

HOL $\,pprox\,$ (lambda calculus + constants) with ML-like types

HOL terms:

- variables: x, y, P, R
- constants (abbreviate fixed closed values, e.g. 0)
- function application: $t_1 t_2$
- lambda-terms: $\lambda x. t$ where x is a variable and t a term

HOL types:

- atomic types: type constants (e.g. num), type variables
- compound types: built using type operators (e.g. $t \to t'$)

Formulas: formulas are terms of type bool, i.e. can have value either true or false.

Only binding mechanism is λ -abstraction.

Only binding mechanism is λ -abstraction.

- quantifiers \forall and \exists are constants
- syntax $\forall x.t$ and $\exists x.t$ abbreviates $\forall (\lambda x.t)$ and $\exists (\lambda x.t)$

Only binding mechanism is λ -abstraction.

- quantifiers \forall and \exists are constants
- syntax $\forall x.t$ and $\exists x.t$ abbreviates $\forall (\lambda x.t)$ and $\exists (\lambda x.t)$

Example:

 $\forall n. \ P(n) \Rightarrow P(n+1) \ \text{ abbreviates } \ \forall (\lambda n. \Rightarrow (P(n))(P(+ \ n \ 1)))$

Only binding mechanism is λ -abstraction.

- quantifiers \forall and \exists are constants
- syntax $\forall x.t$ and $\exists x.t$ abbreviates $\forall (\lambda x.t)$ and $\exists (\lambda x.t)$

Example:

 $\forall n. \ P(n) \Rightarrow P(n+1) \ \text{ abbreviates } \ \forall (\lambda n. \Rightarrow (P(n))(P(+ \ n \ 1)))$

Only three primitive constants: $=, \implies, \varepsilon$ (Hilbert's choice)

The rest are defined, e.g.

true
$$\equiv ((\lambda x. x) = (\lambda x. x))$$

 $\forall \equiv \lambda P. (P = \lambda x. true)$

HOL examples

Induction over the natural numbers:

 $\forall P. \ P(0) \land (\forall n. \ P(n) \Rightarrow P(n+1)) \Rightarrow \forall n. \ P(n)$

HOL examples

Induction over the natural numbers:

 $\forall P. \ P(0) \land (\forall n. \ P(n) \Rightarrow P(n+1)) \Rightarrow \forall n. \ P(n)$

Legitimacy of simple recursive function definition:

 $\forall n_0. \ \forall f. \ \exists s. \ (s(0) = n_0) \land (\forall n. \ s(n+1) = f(s(n)))$

Eight primitive rules of inference:

$$\frac{\Gamma \vdash t_{2}}{\Gamma \vdash t = t} \quad \frac{\Gamma \vdash t_{2}}{\Gamma - \{t_{1}\} \vdash t_{1} \Rightarrow t_{2}} \quad \frac{\Gamma_{1} \vdash t_{1} \Rightarrow t_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash t_{2}} \quad \frac{\Gamma_{2} \vdash t_{1}}{\Gamma_{1} \cup \Gamma_{2} \vdash t_{2}}$$

$$\frac{\Gamma_{1} \vdash t_{1} = t_{2}}{\Gamma \vdash (\lambda x. t_{1})t_{2} = t_{1}[t_{2}/x]} \quad \frac{\Gamma \vdash t_{1} = t_{2}}{\Gamma \vdash (\lambda x. t_{1}) = (\lambda x. t_{2})}$$

$$\frac{\Gamma_{1} \vdash t_{1} = t_{1}' \quad \cdots \quad \Gamma_{n} \vdash t_{n} = t_{n}' \quad \Gamma \vdash t[t_{1}, \dots, t_{n}]}{\Gamma_{1} \cup \cdots \cup \Gamma_{n} \cup \Gamma \vdash t[t_{1}', \dots, t_{n}']}$$

$$\frac{\Gamma \vdash t}{\Gamma[\sigma_{1}, \dots, \sigma_{n}/\alpha_{1}, \dots, \alpha_{n}] \vdash t[\sigma_{1}, \dots, \sigma_{n}/\alpha_{1}, \dots, \alpha_{n}]}$$

Eight primitive rules of inference:

$$\frac{\Gamma \vdash t_{2}}{\Gamma \vdash t = t} \qquad \frac{\Gamma \vdash t_{2}}{\Gamma - \{t_{1}\} \vdash t_{1} \Rightarrow t_{2}} \qquad \frac{\Gamma_{1} \vdash t_{1} \Rightarrow t_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash t_{2}} \\
\frac{\Gamma_{1} \vdash \tau_{2} \vdash \tau_{2}}{\Gamma \vdash (\lambda x. t_{1})t_{2} = t_{1}[t_{2}/x]} \qquad \frac{\Gamma \vdash t_{1} = t_{2}}{\Gamma \vdash (\lambda x. t_{1}) = (\lambda x. t_{2})} \\
\frac{\Gamma_{1} \vdash t}{\Gamma \vdash t} \qquad \frac{t_{n} = t_{n}' \qquad \Gamma \vdash t[t_{1}, \dots, t_{n}]}{\Gamma \vdash t[t_{1}', \dots, t_{n}']} \\
\frac{\Gamma \vdash t}{\Gamma[\sigma_{1}, \dots, \sigma_{n}/\alpha_{1}, \dots, \alpha_{n}] \vdash t[\sigma_{1}, \dots, \sigma_{n}/\alpha_{1}, \dots, \alpha_{n}]}$$

Eight primitive rules of inference:

$$\frac{\Gamma \vdash t}{t \vdash t} \quad \overline{\vdash t = t} \quad \frac{\Gamma \vdash t_2}{\Gamma - \{t_1\} \vdash t_1 \Rightarrow t_2} \quad \frac{\Gamma_1 \vdash t_1 \Rightarrow t_2}{\Gamma_1 \cup \Gamma_2 \vdash t_2} \quad \frac{\Gamma_2 \vdash t_1}{\Gamma_1 \cup \Gamma_2 \vdash t_2}$$

$$\frac{\Gamma \vdash t_1 = t_2}{\Gamma \vdash (\lambda x. t_1) = (\lambda x. t_2)}$$

$$\frac{\Gamma_1 \vdash t}{\Gamma[\sigma_1, \dots, \sigma_n/\alpha_1, \dots, \alpha_n] \vdash t[\sigma_1, \dots, \sigma_n/\alpha_1, \dots, \alpha_n]}$$

Eight primitive rules of inference:

$$\frac{\Gamma \vdash t}{t \vdash t} \quad \frac{\Gamma \vdash t_{2}}{\Gamma - \{t_{1}\} \vdash t_{1} \Rightarrow t_{2}} \quad \frac{\Gamma_{1} \vdash t_{1} \Rightarrow t_{2}}{\Gamma_{1} \cup \Gamma_{2} \vdash t_{2}} \quad \frac{\Gamma_{2} \vdash t_{1}}{\Gamma_{1} \cup \Gamma_{2} \vdash t_{2}}$$

$$\frac{\Gamma_{1} \vdash t}{\Gamma_{1} \vdash t} \quad \frac{\Gamma_{1} \vdash t_{2}}{\Gamma_{1} \vdash t_{2}} \quad \frac{\Gamma_{1} \vdash t_{1} = t_{2}}{\Gamma_{1} \vdash (\lambda x. t_{1}) = (\lambda x. t_{2})}$$

$$\frac{\Gamma_{1} \vdash t}{\Gamma_{1} \vdash t} \quad \frac{\Gamma_{1} \vdash t_{2}}{\Gamma_{1} \vdash (\lambda x. t_{1}) \vdash (\lambda x. t_{1})} \quad \frac{\Gamma_{1} \vdash t_{2}}{\Gamma_{1} \vdash (\lambda x. t_{1}) \vdash (\lambda x. t_{2})}$$

$$\frac{\Gamma_{1} \vdash t}{\Gamma_{1} \vdash (\lambda x. t_{1}) \vdash (\lambda x. t_{2})} \quad \frac{\Gamma_{1} \vdash t_{2}}{\Gamma_{1} \vdash (\lambda x. t_{2})}$$

A formal proof in HOL must follow the primitive inferences. For practical proof work, we have proof assistants, e.g. HOL4, and Isabelle/HOL (these tools are not examinable).

How to write the formal specification of a FP language?

How to write the formal specification of a FP language?

Options:

- operational semantics (syntactic operations)
- denotational semantics (meaning of programs)
- axiomatic semantics (in terms of program logic)

How to write the formal specification of a FP language?

Options:

- operational semantics (syntactic operations)
- denotational semantics (meaning of programs)
- axiomatic semantics (in terms of program logic)

In this course, we use operational semantics.

How to write the formal specification of a FP language?

Options:

- operational semantics (syntactic operations)
- denotational semantics (meaning of programs)
- axiomatic semantics (in terms of program logic)

In this course, we use operational semantics.

The language definition will be the specification for the implementation (i.e. what we verify, formally prove).

The definition in practice

The definition in practice

We define the language using higher-order logic (HOL).

In practice, we define:

- the type of values in the FP language,
- the syntax of program expressions, and
- how program expressions evaluate.

The definition in practice

We define the language using higher-order logic (HOL).

In practice, we define:

- the type of values in the FP language,
- the syntax of program expressions, and
- how program expressions evaluate.

We will specify the semantics of

- a simple first-order Lisp
- a subset of SML (next lecture)

Lisp examples

```
> 1
1
> (+ 1 2)
3
> '(1 2 3)
(1 2 3)
> (cdr '(1 2 3))
(2 3)
> (defun app (x y)
    (if (consp x)
        (cons (car x) (app (cdr x) y))
      y))
> (app '(1 2 3) '(4 5 6))
(1 2 3 4 5 6)
```

We start by defining a type for Lisp values.

We start by defining a type for Lisp values.

Values in our Lisp are s-expressions:

- a number,
- a symbol (immutable string), or
- a pair of s-expressions.

We start by defining a type for Lisp values.

Values in our Lisp are s-expressions:

- a number,
- a symbol (immutable string), or
- a pair of s-expressions.

We can define this in HOL using a datatype declaration:

SExp ::= Dot of SExp SExp | Val of num | Sym of string

We start by defining a type for Lisp values.

Values in our Lisp are s-expressions:

- a number,
- a symbol (immutable string), or
- a pair of s-expressions.

We can define this in HOL using a datatype declaration:

SExp ::= Dot of SExp SExp | Val of num | Sym of string

Such a definition introduces a new type, SExp, and constructor functions in HOL:

```
Dot : SExp -> SExp -> SExp
Val : num -> SExp
Sym : string -> SExp
```

Syntax of programs

The concrete syntax of Lisp programs consists of strings:

```
(defun app (x y)
  (if (consp x)
      (cons (car x) (app (cdr x) y))
      y))
```

Syntax of programs

The concrete syntax of Lisp programs consists of strings:

```
(defun app (x y)
  (if (consp x)
      (cons (car x) (app (cdr x) y))
      y))
```

but the semantics is best defined in terms of abstract syntax.

We want a datatype for this...

Syntax of programs (cont.)

The datatype for the abstract syntax (AST) of our Lisp programs:

lisp_primitive_op ::= Cons | Car | Cdr | Equal | Less | Add | Sub | Consp | Natp | Symbolp

Syntax of programs (cont.)

The datatype for the abstract syntax (AST) of our Lisp programs:

lisp_primitive_op ::=
 Cons | Car | Cdr | Equal | Less
 Add | Sub | Consp | Natp | Symbolp
func ::= PrimitiveFun of lisp_primitive_op
 I Funcall | Fun of string

Example: the program (cons '1 'nil) is represented as:

App (PrimitiveFun Cons) [Const (Val 1), Const (Sym "nil")]

Modelling evaluation

Next, we define an big-step operational semantics (op.sem.) that defines how programs evaluate (i.e. execute).

The op.sem. is expressed as an inductive predicate/relation.

Example: inductive definition of the even natural numbers,

Here Even n is true if and only if n is an even natural numbers.

Aside: defining ind. pred. in HOL

HOL allows only abbreviating definitions, of the form:

 $new_constant \equiv closed_term$

Aside: defining ind. pred. in HOL

HOL allows only abbreviating definitions, of the form:

 $new_constant \equiv closed_term$

How is Even defined?

Aside: defining ind. pred. in HOL

HOL allows only abbreviating definitions, of the form:

 $new_constant \equiv closed_term$

How is Even defined?

Even $n \equiv (\forall P. (P \ 0) \land (\forall n. P \ n \implies P \ (n+2)) \implies P \ n)$

Evaluation is defined as a mutually rec. inductive relations:

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

 $(exp, a, fns) \Downarrow_{ev} result$

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

 $(exp, a, fns) \Downarrow_{ev} result$

expression-list evaluation:

 $(exp_list, a, fns) \Downarrow_{evl} result_list$

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

 $(exp, a, fns) \Downarrow_{ev} result$

expression-list evaluation:

 $(exp_list, a, fns) \Downarrow_{evl} result_list$

evaluation of function application:

 $(func, args, a, fns) \Downarrow_{ap} result$

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

 $(exp, a, fns) \Downarrow_{ev} result$ expression to evaluate tion:

 $(exp_list, a, fns) \Downarrow_{evl} result_list$

evaluation of function application:

 $(func, args, a, fns) \Downarrow_{ap} result$

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

 $(exp, a, fns) \Downarrow_{ev} result$

expression to evaluate tion:

mapping from variables to values

evaluation of function application:

 $(func, args, a, fns) \Downarrow_{ap} result$

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

Big-step semantics

(Const v, a, fns) $\Downarrow_{ev} v$

$$\frac{a(n) = v}{(\operatorname{Var} n, a, fns) \Downarrow_{\operatorname{ev}} v}$$

lf-expressions

$$(e_1, a, fns) \Downarrow_{\text{ev}} s_1 \quad (e_2, a, fns) \Downarrow_{\text{ev}} s_2 \quad \text{isTrue } s_1$$
$$(\text{If } e_1 \ e_2 \ e_3, a, fns) \Downarrow_{\text{ev}} s_2$$

$$(e_1, a, fns) \Downarrow_{\text{ev}} s_1 \quad (e_3, a, fns) \Downarrow_{\text{ev}} s_3 \quad \neg \mathsf{isTrue} \ s_1$$
$$(\mathsf{If} \ e_1 \ e_2 \ e_3, a, fns) \Downarrow_{\text{ev}} s_3$$

App: function application

 $\begin{array}{ccc} (el, a, fns) \Downarrow_{\text{evl}} sl & (f, sl, a, fns) \Downarrow_{\text{ap}} s \\ & (\text{App } f \ el, a, fns) \Downarrow_{\text{ev}} s \end{array}$

App: function application

 $\begin{array}{ccc} (el, a, fns) \Downarrow_{\text{evl}} sl & (f, sl, a, fns) \Downarrow_{\text{ap}} s \\ & (\mathsf{App} \ f \ el, a, fns) \Downarrow_{\text{ev}} s \end{array}$

 $([], a, fns) \Downarrow_{evl} []$

 $\begin{array}{ccc} (e,a,fns) \Downarrow_{\mathrm{ev}} s & (el,a,fns) \Downarrow_{\mathrm{evl}} sl \\ \\ (e::el,a,fns) \Downarrow_{\mathrm{evl}} s::sl \end{array}$

App continued

eval_primitive (op, args) = s(PrimitiveFun op, args, a, fns) $\Downarrow_{ap} s$

 $fns(name) = (params, body) \qquad (body, params \mapsto args, fns) \Downarrow_{ev} s$ $(Fun name, args, a, fns) \Downarrow_{ap} s$

 $(\mathsf{Fun} \ name, args, a, fns) \Downarrow_{\mathrm{ap}} s$ $(\mathsf{Funcall}, \mathsf{Sym} \ name :: args, a, fns) \Downarrow_{\mathrm{ap}} s$

Big-step op.sem summary

Evaluation is defined as an inductively defined relation:

 $(exp, a, fns) \Downarrow_{ev} result$

Big-step op.sem summary

Evaluation is defined as an inductively defined relation:

 $(exp, a, fns) \Downarrow_{ev} result$

- describes terminating evaluations
- relates expressions in one step to result value
- defined using 'inference-like' rules

Big-step op.sem summary

Evaluation is defined as an inductively defined relation:

 $(exp, a, fns) \Downarrow_{ev} result$

- describes terminating evaluations
- relates expressions in one step to result value
- defined using 'inference-like' rules

Criticism: what about non-terminating evaluations? In later lectures:

- small-step semantics (models evaluation in steps)
- clocked big-step semantics

Summary

Formal specification & verification

- 'formal' i.e. some form of formal logic or calculus is used
- e.g. higher-order logic

Summary

Formal specification & verification

- 'formal' i.e. some form of formal logic or calculus is used
- e.g. higher-order logic

Language definitions:

- operational semantics (syntactic operations)
- denotational semantics (meaning of programs)
- axiomatic semantics (defines a programming logic)

Summary

Formal specification & verification

- 'formal' i.e. some form of formal logic or calculus is used
- e.g. higher-order logic

Language definitions:

- operational semantics (syntactic operations)
- denotational semantics (meaning of programs)
- axiomatic semantics (defines a programming logic)

Big-step operational semantics

- inductive relation describes evaluation
- big-step i.e. term-to-result evaluation is described by a single transition