
MPhil ACS & Part III course, Functional Programming:
Implementation, Specification and Verification

Magnus Myreen
Michaelmas term, 2013

Lecture 2

Formal specification and
big-step operational
semantics

Formal methods

Formal specification

Formal methods

Formal specification{
What makes it ‘formal’?

Formal methods

Formal specification{
What makes it ‘formal’?

Answer: ‘formal’ as in “formalised in a logic or calculus”
• has precise meaning
• e.g. lambda calculus, first-order logic or even a

programming logic

First-order logic (FOL)

Rules of inference are used to derive theorems:

` (9x. 8y. P (x, y)) =) (8y. 9x. P (x, y))

FOL syntax:
terms:
• variables:
• constants and functions:

formulas:
• predicates:
• connectives:
• quantifiers:

x, y, z

f, g, h

P,Q,R
^,_, =) ,¬
8, 9

Higher-order logic (HOL)

This course uses ‘formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

Higher-order logic (HOL)

This course uses ‘formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

HOL is widely used since:
• more expressive than FOL
• specifications are often more natural, shorter
• originally developed as a foundation for mathematics

Higher-order logic (HOL)

This course uses ‘formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

HOL is widely used since:
• more expressive than FOL
• specifications are often more natural, shorter
• originally developed as a foundation for mathematics

Main difference between FOL and HOL:
• no distinction between terms and formulas
• functions and predicates are treated as first-class values

Higher-order logic (HOL)

This course uses ‘formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

HOL is widely used since:
• more expressive than FOL
• specifications are often more natural, shorter
• originally developed as a foundation for mathematics

` 8P. (9x. 8y. P (x, y)) =) (8y. 9x. P (x, y))

Main difference between FOL and HOL:
• no distinction between terms and formulas
• functions and predicates are treated as first-class values

Higher-order logic (HOL)

This course uses ‘formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

HOL is widely used since:
• more expressive than FOL
• specifications are often more natural, shorter
• originally developed as a foundation for mathematics

` 8P. (9x. 8y. P (x, y)) =) (8y. 9x. P (x, y))

quantification over a predicate

Main difference between FOL and HOL:
• no distinction between terms and formulas
• functions and predicates are treated as first-class values

Familiar notation
Higher-Order Logic

! Familiar notation:

Term Meaning

P (x) x has property P
¬t not t
t1 ∧ t2 t1 and t2
t1 ∨ t2 t1 or t2
t1 ⇒ t2 t1 implies t2
∀x. t[x] for all x it is the case that t[x]
∃x. t[x] for some x it is the case that t[x]

! Higher-order logic is also called:

" higher-order predicate calculus

" simple type theory

3

HOL syntax

HOL (lambda calculus + constants) with ML-like types⇡

HOL syntax

HOL terms:
• variables:
• constants (abbreviate fixed closed values, e.g.)
• function application:
• lambda-terms: where is a variable and a term

x, y, P,R

t1 t2
�x. t

x

t

0

HOL (lambda calculus + constants) with ML-like types⇡

HOL syntax

HOL terms:
• variables:
• constants (abbreviate fixed closed values, e.g.)
• function application:
• lambda-terms: where is a variable and a term

x, y, P,R

t1 t2
�x. t

x

t

0

HOL types:
• atomic types: type constants (e.g. num), type variables
• compound types: built using type operators (e.g.) t ! t0

HOL (lambda calculus + constants) with ML-like types⇡

HOL syntax

Formulas: formulas are terms of type bool, i.e. can have
value either true or false.

HOL terms:
• variables:
• constants (abbreviate fixed closed values, e.g.)
• function application:
• lambda-terms: where is a variable and a term

x, y, P,R

t1 t2
�x. t

x

t

0

HOL types:
• atomic types: type constants (e.g. num), type variables
• compound types: built using type operators (e.g.) t ! t0

HOL (lambda calculus + constants) with ML-like types⇡

HOL in more detail
Only binding mechanism is -abstraction.�

HOL in more detail
Only binding mechanism is -abstraction.�

• quantifiers and are constants

• syntax and abbreviates and

8 9
9x. t8x. t 8(�x. t) 9(�x. t)

HOL in more detail
Only binding mechanism is -abstraction.�

• quantifiers and are constants

• syntax and abbreviates and

8 9
9x. t8x. t 8(�x. t) 9(�x. t)

Statements

! Statements are just terms in higher-order logic
" ¬t is the application of constant ¬ to term t

" t1 ⇒ t2 is the infixed application of constant ⇒ to terms t1 and t2

! Only a single variable binding mechanism: λ-abstraction
" quantifiers ∀ and ∃ are regarded as constants

" quantification syntax ∀x. t and ∃x. t abbreviates ∀(λx. t) and ∃(λx. t)

! Example: the term

∀n. P (n) ⇒ P (n + 1)

is written instead of

∀(λn. ⇒(P (n))(P (+ n 1)))

5

Statements

! Statements are just terms in higher-order logic
" ¬t is the application of constant ¬ to term t

" t1 ⇒ t2 is the infixed application of constant ⇒ to terms t1 and t2

! Only a single variable binding mechanism: λ-abstraction
" quantifiers ∀ and ∃ are regarded as constants

" quantification syntax ∀x. t and ∃x. t abbreviates ∀(λx. t) and ∃(λx. t)

! Example: the term

∀n. P (n) ⇒ P (n + 1)

is written instead of

∀(λn. ⇒(P (n))(P (+ n 1)))

5

Example:

abbreviates

HOL in more detail
Only binding mechanism is -abstraction.�

Only three primitive constants: (Hilbert’s choice)

The rest are defined, e.g.

true ⌘ ((�x. x) = (�x. x))

8 ⌘ �P. (P = �x. true)

=, =) , "

• quantifiers and are constants

• syntax and abbreviates and

8 9
9x. t8x. t 8(�x. t) 9(�x. t)

Statements

! Statements are just terms in higher-order logic
" ¬t is the application of constant ¬ to term t

" t1 ⇒ t2 is the infixed application of constant ⇒ to terms t1 and t2

! Only a single variable binding mechanism: λ-abstraction
" quantifiers ∀ and ∃ are regarded as constants

" quantification syntax ∀x. t and ∃x. t abbreviates ∀(λx. t) and ∃(λx. t)

! Example: the term

∀n. P (n) ⇒ P (n + 1)

is written instead of

∀(λn. ⇒(P (n))(P (+ n 1)))

5

Statements

! Statements are just terms in higher-order logic
" ¬t is the application of constant ¬ to term t

" t1 ⇒ t2 is the infixed application of constant ⇒ to terms t1 and t2

! Only a single variable binding mechanism: λ-abstraction
" quantifiers ∀ and ∃ are regarded as constants

" quantification syntax ∀x. t and ∃x. t abbreviates ∀(λx. t) and ∃(λx. t)

! Example: the term

∀n. P (n) ⇒ P (n + 1)

is written instead of

∀(λn. ⇒(P (n))(P (+ n 1)))

5

Example:

abbreviates

HOL examples

Higher-Order Variables

! Higher-order logic generalises first order logic by allowing
higher-order variables

" i.e. variables ranging over functions and predicates

! The induction axiom for natural numbers can be written as:

∀P. P (0) ∧ (∀n. P (n) ⇒ P (n + 1)) ⇒ ∀n. P (n)

! The legitimacy of simple recursive definitions can be expressed by:

∀n0. ∀f. ∃s. (s(0) = n0) ∧ (∀n. s(n + 1) = f(s(n)))

! Sentences like these are not allowed in first order logic

" in the first example above P ranges over predicates

" in the second example f and s range over functions

6

Induction over the natural numbers:

HOL examples

Higher-Order Variables

! Higher-order logic generalises first order logic by allowing
higher-order variables

" i.e. variables ranging over functions and predicates

! The induction axiom for natural numbers can be written as:

∀P. P (0) ∧ (∀n. P (n) ⇒ P (n + 1)) ⇒ ∀n. P (n)

! The legitimacy of simple recursive definitions can be expressed by:

∀n0. ∀f. ∃s. (s(0) = n0) ∧ (∀n. s(n + 1) = f(s(n)))

! Sentences like these are not allowed in first order logic

" in the first example above P ranges over predicates

" in the second example f and s range over functions

6

Induction over the natural numbers:

Higher-Order Variables

! Higher-order logic generalises first order logic by allowing
higher-order variables

" i.e. variables ranging over functions and predicates

! The induction axiom for natural numbers can be written as:

∀P. P (0) ∧ (∀n. P (n) ⇒ P (n + 1)) ⇒ ∀n. P (n)

! The legitimacy of simple recursive definitions can be expressed by:

∀n0. ∀f. ∃s. (s(0) = n0) ∧ (∀n. s(n + 1) = f(s(n)))

! Sentences like these are not allowed in first order logic

" in the first example above P ranges over predicates

" in the second example f and s range over functions

6

Legitimacy of simple recursive function definition:

Primitive inferences

Eight primitive rules of inference:
26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

2.3. LOGIC 27

Discharging an assumption [DISCH]

� ` t2

�� {t1} ` t1) t2

• Where �� {t1} is the set subtraction of {t1} from �.

Modus Ponens [MP]

�1 ` t1) t2 �2 ` t1

�1 [�2 ` t2

In addition to these eight rules, there are also four axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PP�, since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q0, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined

in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the

hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties
of the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3
are needed for rules BETA_CONV, SUBST and INST_TYPE.2 The fact that = and) are
interpreted standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST,
ABS, DISCH and MP.

2Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.

2.3. LOGIC 27

Discharging an assumption [DISCH]

� ` t2

�� {t1} ` t1) t2

• Where �� {t1} is the set subtraction of {t1} from �.

Modus Ponens [MP]

�1 ` t1) t2 �2 ` t1

�1 [�2 ` t2

In addition to these eight rules, there are also four axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PP�, since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q0, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined

in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the

hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties
of the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3
are needed for rules BETA_CONV, SUBST and INST_TYPE.2 The fact that = and) are
interpreted standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST,
ABS, DISCH and MP.

2Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.

Primitive inferences

Eight primitive rules of inference:
26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

2.3. LOGIC 27

Discharging an assumption [DISCH]

� ` t2

�� {t1} ` t1) t2

• Where �� {t1} is the set subtraction of {t1} from �.

Modus Ponens [MP]

�1 ` t1) t2 �2 ` t1

�1 [�2 ` t2

In addition to these eight rules, there are also four axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PP�, since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q0, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined

in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the

hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties
of the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3
are needed for rules BETA_CONV, SUBST and INST_TYPE.2 The fact that = and) are
interpreted standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST,
ABS, DISCH and MP.

2Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.

2.3. LOGIC 27

Discharging an assumption [DISCH]

� ` t2

�� {t1} ` t1) t2

• Where �� {t1} is the set subtraction of {t1} from �.

Modus Ponens [MP]

�1 ` t1) t2 �2 ` t1

�1 [�2 ` t2

In addition to these eight rules, there are also four axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PP�, since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q0, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined

in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the

hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties
of the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3
are needed for rules BETA_CONV, SUBST and INST_TYPE.2 The fact that = and) are
interpreted standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST,
ABS, DISCH and MP.

2Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.

beta reduction

Primitive inferences

Eight primitive rules of inference:
26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

2.3. LOGIC 27

Discharging an assumption [DISCH]

� ` t2

�� {t1} ` t1) t2

• Where �� {t1} is the set subtraction of {t1} from �.

Modus Ponens [MP]

�1 ` t1) t2 �2 ` t1

�1 [�2 ` t2

In addition to these eight rules, there are also four axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PP�, since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q0, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined

in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the

hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties
of the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3
are needed for rules BETA_CONV, SUBST and INST_TYPE.2 The fact that = and) are
interpreted standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST,
ABS, DISCH and MP.

2Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.

2.3. LOGIC 27

Discharging an assumption [DISCH]

� ` t2

�� {t1} ` t1) t2

• Where �� {t1} is the set subtraction of {t1} from �.

Modus Ponens [MP]

�1 ` t1) t2 �2 ` t1

�1 [�2 ` t2

In addition to these eight rules, there are also four axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PP�, since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q0, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined

in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the

hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties
of the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3
are needed for rules BETA_CONV, SUBST and INST_TYPE.2 The fact that = and) are
interpreted standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST,
ABS, DISCH and MP.

2Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.

beta reduction abstraction

Primitive inferences

Eight primitive rules of inference:
26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

26 CHAPTER 2. THEORIES

Assumption introduction [ASSUME]

t ` t

Reflexivity [REFL]

` t = t

Beta-conversion [BETA CONV]

` (�x. t1)t2 = t1[t2/x]

• Where t1[t2/x] is the result of substituting t2 for x in t1, with suitable renaming of
variables to prevent free variables in t2 becoming bound after substitution.

Substitution [SUBST]

�1 ` t1 = t

0
1 · · · �n ` tn = t

0
n � ` t[t1, . . . , tn]

�1 [· · · [�n [� ` t[t01, . . . , t
0
n]

• Where t[t1, . . . , tn] denotes a term t with some free occurrences of subterms t1,
. . . , tn singled out and t[t01, . . . , t

0
n] denotes the result of replacing each selected

occurrence of ti by t

0
i (for 1in), with suitable renaming of variables to prevent

free variables in t

0
i becoming bound after substitution.

Abstraction [ABS]

� ` t1 = t2

� ` (�x. t1) = (�x. t2)

• Provided x is not free in �.

Type instantiation [INST TYPE]

� ` t

�[�1, . . . , �n/↵1, . . . ,↵n] ` t[�1, . . . , �n/↵1, . . . ,↵n]

• Where t[�1, . . . , �n/↵1, . . . ,↵n] is the result of substituting, in parallel, the types �1,
. . . , �n for type variables ↵1, . . . , ↵n in t, and where �[�1, . . . , �n/↵1, . . . ,↵n] is the
result of performing the same substitution across all of the theorem’s hypotheses.

• After the instantiation, variables free in the input can not become bound, but
distinct free variables in the input may become identified.

2.3. LOGIC 27

Discharging an assumption [DISCH]

� ` t2

�� {t1} ` t1) t2

• Where �� {t1} is the set subtraction of {t1} from �.

Modus Ponens [MP]

�1 ` t1) t2 �2 ` t1

�1 [�2 ` t2

In addition to these eight rules, there are also four axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PP�, since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q0, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined

in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the

hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties
of the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3
are needed for rules BETA_CONV, SUBST and INST_TYPE.2 The fact that = and) are
interpreted standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST,
ABS, DISCH and MP.

2Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.

2.3. LOGIC 27

Discharging an assumption [DISCH]

� ` t2

�� {t1} ` t1) t2

• Where �� {t1} is the set subtraction of {t1} from �.

Modus Ponens [MP]

�1 ` t1) t2 �2 ` t1

�1 [�2 ` t2

In addition to these eight rules, there are also four axioms which could have been
regarded as rules of inference without hypotheses. This is not done, however, since it is
most natural to state the axioms using some defined logical constants and the principle
of constant definition has not yet been described. The axioms are given in Section 2.4.3
and the definitions of the extra logical constants they involve are given in Section 2.4.2.

The particular set of rules and axioms chosen to axiomatize the HOL logic is rather
arbitrary. It is partly based on the rules that were used in the LCF logic PP�, since
HOL was implemented by modifying the LCF system. In particular, the substitution rule
SUBST is exactly the same as the corresponding rule in LCF; the code implementing this
was written by Robin Milner and is highly optimized. Because substitution is such a
pervasive activity in proof, it was felt to be important that the system primitive be as
fast as possible. From a logical point of view it would be better to have a simpler
substitution primitive, such as ‘Rule R’ of Andrews’ logic Q0, and then to derive more
complex rules from it.

2.3.2 Soundness theorem

The rules of the the HOL deductive system are sound for the notion of satisfaction defined

in Section 2.2: for any instance of the rules of inference, if a (standard) model satisfies the

hypotheses of the rule it also satisfies the conclusion.

Proof The verification of the soundness of the rules is straightforward. The properties
of the semantics with respect to substitution given by Lemmas 3 and 4 in Section 1.3.3
are needed for rules BETA_CONV, SUBST and INST_TYPE.2 The fact that = and) are
interpreted standardly (as in Section 1.4.2) is needed for rules REFL, BETA_CONV, SUBST,
ABS, DISCH and MP.

2Note in particular that the second restriction on INST_TYPE enables the result on the semantics of
substituting types for type variables in terms to be applied.

A formal proof in HOL must follow the primitive inferences.
For practical proof work, we have proof assistants, e.g. HOL4,
and Isabelle/HOL (these tools are not examinable).

beta reduction abstraction

FP language definition

How to write the formal specification of a FP language?

FP language definition

How to write the formal specification of a FP language?

Options:
• operational semantics (syntactic operations)
• denotational semantics (meaning of programs)
• axiomatic semantics (in terms of program logic)

FP language definition

How to write the formal specification of a FP language?

Options:
• operational semantics (syntactic operations)
• denotational semantics (meaning of programs)
• axiomatic semantics (in terms of program logic)

In this course, we use operational semantics.

FP language definition

How to write the formal specification of a FP language?

Options:
• operational semantics (syntactic operations)
• denotational semantics (meaning of programs)
• axiomatic semantics (in terms of program logic)

In this course, we use operational semantics.

The language definition will be the specification for the
implementation (i.e. what we verify, formally prove).

The definition in practice

The definition in practice

We define the language using higher-order logic (HOL).

In practice, we define:
• the type of values in the FP language,
• the syntax of program expressions, and
• how program expressions evaluate.

The definition in practice

We define the language using higher-order logic (HOL).

In practice, we define:
• the type of values in the FP language,
• the syntax of program expressions, and
• how program expressions evaluate.

We will specify the semantics of
• a simple first-order Lisp
• a subset of SML (next lecture)

Lisp examples
> 1
1

> (+ 1 2)
3

> '(1 2 3)
(1 2 3)

> (cdr '(1 2 3))
(2 3)

> (defun app (x y)
 (if (consp x)
 (cons (car x) (app (cdr x) y))
 y))

> (app '(1 2 3) '(4 5 6))
(1 2 3 4 5 6)

Lisp values: s-expressions

We start by defining a type for Lisp values.

Lisp values: s-expressions

We start by defining a type for Lisp values.

 Values in our Lisp are s-expressions:
• a number,
• a symbol (immutable string), or
• a pair of s-expressions.

Lisp values: s-expressions

We start by defining a type for Lisp values.

 Values in our Lisp are s-expressions:
• a number,
• a symbol (immutable string), or
• a pair of s-expressions.

SExp ::= Dot of SExp SExp | Val of num | Sym of string

 We can define this in HOL using a datatype declaration:

Lisp values: s-expressions

We start by defining a type for Lisp values.

 Values in our Lisp are s-expressions:
• a number,
• a symbol (immutable string), or
• a pair of s-expressions.

SExp ::= Dot of SExp SExp | Val of num | Sym of string

 We can define this in HOL using a datatype declaration:

Such a definition introduces a new type, SExp, and
constructor functions in HOL:

Dot : SExp -> SExp -> SExp
Val : num -> SExp
Sym : string -> SExp

Syntax of programs

(defun app (x y)
 (if (consp x)
 (cons (car x) (app (cdr x) y))
 y))

The concrete syntax of Lisp programs consists of strings:

Syntax of programs

(defun app (x y)
 (if (consp x)
 (cons (car x) (app (cdr x) y))
 y))

The concrete syntax of Lisp programs consists of strings:

but the semantics is best defined in terms of abstract syntax.

We want a datatype for this...

Syntax of programs (cont.)

 lisp_primitive_op ::=
 Cons | Car | Cdr | Equal | Less
 | Add | Sub | Consp | Natp | Symbolp

 func ::= PrimitiveFun of lisp_primitive_op
 | Funcall | Fun of string

 term ::= Const of SExp
 | Var of string
 | App of func (term list)
 | If of term term term

The datatype for the abstract syntax (AST) of our Lisp programs:

Syntax of programs (cont.)

 lisp_primitive_op ::=
 Cons | Car | Cdr | Equal | Less
 | Add | Sub | Consp | Natp | Symbolp

 func ::= PrimitiveFun of lisp_primitive_op
 | Funcall | Fun of string

 term ::= Const of SExp
 | Var of string
 | App of func (term list)
 | If of term term term

The datatype for the abstract syntax (AST) of our Lisp programs:

Example: the program (cons ‘1 ‘nil) is represented as:

App (PrimitiveFun Cons) [Const (Val 1), Const (Sym “nil”)]

Modelling evaluation

Next, we define an big-step operational semantics (op.sem.)
that defines how programs evaluate (i.e. execute).

The op.sem. is expressed as an inductive predicate/relation.

Example: inductive definition of the even natural numbers,

Here is true if and only if is an even natural numbers.

Even 0

Even n

Even (n+ 2)

Even n n

Aside: defining ind. pred. in HOL

HOL allows only abbreviating definitions, of the form:

new constant ⌘ closed term

Aside: defining ind. pred. in HOL

HOL allows only abbreviating definitions, of the form:

How is Even defined?

new constant ⌘ closed term

Aside: defining ind. pred. in HOL

Even n ⌘
(8P. (P 0) ^ (8n. P n =) P (n+ 2)) =) P n)

HOL allows only abbreviating definitions, of the form:

How is Even defined?

new constant ⌘ closed term

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

(exp, a, fns) + ev result

expression evaluation:

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

(exp, a, fns) + ev result

expression evaluation:

(exp list , a, fns) + evl result list

expression-list evaluation:

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

(exp, a, fns) + ev result

expression evaluation:

(exp list , a, fns) + evl result list

expression-list evaluation:

(func, args, a, fns) + ap result

evaluation of function application:

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

(exp, a, fns) + ev result

expression evaluation:

(exp list , a, fns) + evl result list

expression-list evaluation:

(func, args, a, fns) + ap result

evaluation of function application:

expression to evaluate

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

(exp, a, fns) + ev result

expression evaluation:

(exp list , a, fns) + evl result list

expression-list evaluation:

(func, args, a, fns) + ap result

evaluation of function application:

mapping from variables to values

expression to evaluate

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

(exp, a, fns) + ev result

expression evaluation:

(exp list , a, fns) + evl result list

expression-list evaluation:

(func, args, a, fns) + ap result

evaluation of function application:function definitions

mapping from variables to values

expression to evaluate

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

(exp, a, fns) + ev result

expression evaluation:

(exp list , a, fns) + evl result list

expression-list evaluation:

(func, args, a, fns) + ap result

evaluation of function application:

result value for terminating eval.

function definitions

mapping from variables to values

expression to evaluate

Big-step semantics

(Const v, a, fns) + ev v

a(n) = v

(Var n, a, fns) + ev v

If-expressions

(e1, a, fns) + ev s1 (e3, a, fns) + ev s3 ¬isTrue s1

(If e1 e2 e3, a, fns) + ev s3

(e1, a, fns) + ev s1 (e2, a, fns) + ev s2 isTrue s1

(If e1 e2 e3, a, fns) + ev s2

App: function application

(el , a, fns) + evl sl (f, sl , a, fns) + ap s

(App f el , a, fns) + ev s

App: function application

(el , a, fns) + evl sl (f, sl , a, fns) + ap s

(App f el , a, fns) + ev s

([], a, fns) + evl []

(e, a, fns) + ev s (el, a, fns) + evl sl

(e :: el, a, fns) + evl s :: sl

App continued

fns(name) = (params, body) (body , params 7! args, fns) + ev s

(Fun name, args, a, fns) + ap s

(Fun name, args, a, fns) + ap s

(Funcall, Sym name :: args, a, fns) + ap s

eval primitive (op, args) = s

(PrimitiveFun op, args, a, fns) + ap s

Big-step op.sem summary

Evaluation is defined as an inductively defined relation:

(exp, a, fns) + ev result

Big-step op.sem summary

Evaluation is defined as an inductively defined relation:

• describes terminating evaluations
• relates expressions in one step to result value
• defined using ‘inference-like’ rules

(exp, a, fns) + ev result

Big-step op.sem summary

Evaluation is defined as an inductively defined relation:

• describes terminating evaluations
• relates expressions in one step to result value
• defined using ‘inference-like’ rules

(exp, a, fns) + ev result

• small-step semantics (models evaluation in steps)
• clocked big-step semantics

Criticism: what about non-terminating evaluations?
In later lectures:

Summary

Formal specification & verification
• ‘formal’ i.e. some form of formal logic or calculus is used
• e.g. higher-order logic

Summary

Formal specification & verification
• ‘formal’ i.e. some form of formal logic or calculus is used
• e.g. higher-order logic

Language definitions:
• operational semantics (syntactic operations)
• denotational semantics (meaning of programs)
• axiomatic semantics (defines a programming logic)

Summary

Formal specification & verification
• ‘formal’ i.e. some form of formal logic or calculus is used
• e.g. higher-order logic

Language definitions:
• operational semantics (syntactic operations)
• denotational semantics (meaning of programs)
• axiomatic semantics (defines a programming logic)

Big-step operational semantics
• inductive relation describes evaluation
• big-step i.e. term-to-result evaluation is described

by a single transition

