Formal specification and
big-step operational
semantics

Lecture 2

MPhil ACS & Part lll course, Functional Programming:
Implementation, Specification and Verification

Magnus Myreen
Michaelmas term, 2013

Formal methods

Formal specification

Formal methods

Formal specification

Ny e

What makes it ‘formal’?

Formal methods

Formal specification

Ny e

What makes it ‘formal’?

Answer: ‘formal’ as in “formalised in a logic or calculus”
* has precise meaning

* e.g.lambda calculus, first-order logic or even a
programming logic

First-order logic (FOL)

FOL syntax:
terms:
* variables: x, Yy, 2
* constants and functions: f, g, h
formulas:
o predicates: P, (), R
® connectives: \,V, =— ,
* quantifiers: V,

Rules of inference are used to derive theorems:

- (dx. Vy. P (z,y)) = (Vy. dz. P (x,y))

Higher-order logic (HOL)

This course uses formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

Higher-order logic (HOL)

This course uses formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

HOL is widely used since:
* more expressive than FOL
* specifications are often more natural, shorter
* originally developed as a foundation for mathematics

Higher-order logic (HOL)

This course uses formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

HOL is widely used since:
* more expressive than FOL
* specifications are often more natural, shorter
* originally developed as a foundation for mathematics

Main difference between FOL and HOL:

* no distinction between terms and formulas
e functions and predicates are treated as first-class values

Higher-order logic (HOL)

This course uses formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

HOL is widely used since:
* more expressive than FOL
* specifications are often more natural, shorter
* originally developed as a foundation for mathematics

Main difference between FOL and HOL:

* no distinction between terms and formulas
e functions and predicates are treated as first-class values

- VP. (dz. Vy. P (xz,y)) = (Vy. dz. P (x,y))

Higher-order logic (HOL)

This course uses formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

HOL is widely used since:
* more expressive than FOL
* specifications are often more natural, shorter
* originally developed as a foundation for mathematics

Main difference between FOL and HOL:

* no distinction between terms and formulas
e functions and predicates are treated as first-class values

- WZ. (dz. Vy. P (z,y)) = (Vy. dz. P (x,9))

(quantification over a predicate)

Familiar notation

Term Meaning
P(x) r has property P
—t not ¢
tl /\ t2 tl and t2
tl V t2 tl or t2
t1 = 1y |t implies t9
Vr. tlz] | for all z it is the case that ¢|x|

for some 2z it is the case that ||

HOL syntax

HOL = (lambda calculus + constants) with ML-like types

HOL syntax

HOL = (lambda calculus + constants) with ML-like types

HOL terms:
e variables: x,y, P, R
e constants (abbreviate fixed closed values, e.g. ()
e function application: 11 to
e |ambda-terms: A\x. t where X is a variable and ¢ a term

HOL syntax

HOL = (lambda calculus + constants) with ML-like types

HOL terms:
e variables: x,y, P, R

e constants (abbreviate fixed closed values, e.g. ()
e function application: 11 to

e |ambda-terms: \x. t where I is a variable and T a term

HOL types:

* atomic types: type constants (e.g. num), type variables
e compound types: built using type operators (e.g. t — t')

HOL syntax

HOL = (lambda calculus + constants) with ML-like types

HOL terms:
e variables: x,y, P, R

e constants (abbreviate fixed closed values, e.g. ()
e function application: 11 to

e |ambda-terms: \x. t where I is a variable and T a term

HOL types:

* atomic types: type constants (e.g. num), type variables
e compound types: built using type operators (e.g. t — t')

Formulas: formulas are terms of type bool, i.e. can have
value either true or false.

HOL in more detail

Only binding mechanism is A -abstraction.

HOL in more detail

Only binding mechanism is A -abstraction.

e quantifiers V and are constants
e syntax V.t and Jx.t abbreviates V(Ax.t) and J(A\x. 1)

HOL in more detail

Only binding mechanism is A -abstraction.

e quantifiers V and are constants
e syntax V.t and Jx.t abbreviates V(Ax.t) and J(A\x. 1)

Example:

Vn. P(n) = P(n+1) abbreviates V(An. =(P(n))(P(+ n 1)))

HOL in more detail

Only binding mechanism is A -abstraction.

e quantifiers V and are constants
e syntax V.t and Jx.t abbreviates V(Ax.t) and J(A\x. 1)

Example:

Vn. P(n) = P(n+1) abbreviates V(An. =(P(n))(P(+ n 1)))

Only three primitive constants: =, = ,€ (Hilbert’s choice)

The rest are defined, e.g.

true = ((A\z.) = (Ax. x))
V= AP. (P = A\x. true)

HOL examples

Induction over the natural numbers:

VP. P(0O)A(Vn. P(n) = P(n+1)) = Vn. P(n)

HOL examples

Induction over the natural numbers:

VP. P(0O)A(Vn. P(n) = P(n+1)) = Vn. P(n)
Legitimacy of simple recursive function definition:

Yng. Vf. 3s. (s(0) = ng) A (Vn. s(n+1) = f(s(n)))

Primitive inferences

Eight primitive rules of inference:

I' F ¢ I'v F t1 =1t Iy F t4
t - t=1 F—{tl}l_t1:>t2 [MUT'y F t
I' F t1 =1t

= (Az. t)ts = tita/ 2] T F (\z. 1) = (A\z. £2)

Iy Fty =t I, Ft, =t ' tty, ...t
rhu---ul,ull = ¢ty ...]

' = ¢

F[O’l,...,()'n/()q)...,afn] - t[O’l,...,O'n/Oél,...,Ckn]

Primitive inferences

Eight primitive rules of inference:

I' F ¢ I'v F t1 =1t Iy F t4
t - t=1 F—{tl}l_t1:>t2 [MUT'y F t
I' -t =t
= (Az. th)ts = ti[t2 /7] T F (A\z. t1) = (. to)
A\
Iy F t(beta reduction wt =1, IR | ST

To—otJdI F t[t|,... 1]
I' ¢

F[O’l,...,O'n/()él,...,Ofn] - t[O’l,...,O'n/Oél,...,Ckn]

Primitive inferences

Eight primitive rules of inference:

I' F ¢ I'v F t1 =1t Iy F t4

t - t=1 F—{tl}l_t1:>t2 [MUT'y F t

I' - t1 =1t

= (Ax. t1)ty = t1|to/x x. 1) = (Ax. 19
()A[/] T+ () t)/\()\ o)

-
Iy F t(beta reduction |?fn= abstraction)---ﬂfn]
~ I F

\ /
T10 -OI, Iy, - - -5 Uy

' = ¢

F[O’l,...,O'n/()él,...,Ofn] - t[O’l,...,O'n/Oél,...,Ckn]

Primitive inferences

Eight primitive rules of inference:

I' F ¢ I'v F t1 =1t Iy F t4
t H t =t =1 F—{tl}l_t1:>t2 YUy F ot

L'+t =t

= (M. t)ty = ty[ta/ 7] T - Az t1) = (A\z. 1)

VAN p VAN
Iy F t(beta reduction |?fn= abstraction w,---,tn]
\ I F T -
T1O oI, U0, - - -5 U]
' ¢
F[Jl,...,an/oq,...,ozn] - t[O’l,...,O'n/Oél,...,Ckn]

A formal proof in HOL must follow the primitive inferences.

For practical proof work, we have proof assistants, e.g. HOLA4,
and Isabelle/HOL (these tools are not examinable).

FP language definition

How to write the formal specification of a FP language!?

FP language definition

How to write the formal specification of a FP language!?

Options:
* operational semantics (syntactic operations)
* denotational semantics (meaning of programs)
* axiomatic semantics (in terms of program logic)

FP language definition

How to write the formal specification of a FP language!?

Options:
* operational semantics (syntactic operations)
* denotational semantics (meaning of programs)
* axiomatic semantics (in terms of program logic)

In this course, we use operational semantics.

FP language definition

How to write the formal specification of a FP language!?

Options:
* operational semantics (syntactic operations)
* denotational semantics (meaning of programs)
* axiomatic semantics (in terms of program logic)

In this course, we use operational semantics.

The language definition will be the specification for the
implementation (i.e. what we verify, formally prove).

The definition in practice

The definition in practice

We define the language using higher-order logic (HOL).

In practice, we define:
* the type of values in the FP language,
* the syntax of program expressions, and
* how program expressions evaluate.

The definition in practice

We define the language using higher-order logic (HOL).

In practice, we define:
* the type of values in the FP language,
* the syntax of program expressions, and
* how program expressions evaluate.

We will specify the semantics of
* asimple first-order Lisp
* asubset of SML (next lecture)

Lisp examples

> 1
1

> (+ 1 2)
3

> "(1 2 3)
(12 3)

> (cdr '"(1 2 3))
(2 3)

> (defun app (x y)
(1f (consp x)
(cons (car x) (app (cdr x) y))
y))

> (app "(1 2 3) (45 6))
(1234506)

Lisp values: s-expressions

We start by defining a type for Lisp values.

Lisp values: s-expressions

We start by defining a type for Lisp values.

Values in our Lisp are s-expressions:
* anumber,
* asymbol (immutable string), or
* a pair of s-expressions.

Lisp values: s-expressions

We start by defining a type for Lisp values.

Values in our Lisp are s-expressions:
* anumber,
* asymbol (immutable string), or
* a pair of s-expressions.

We can define this in HOL using a datatype declaration:

SExp ::= Dot of SExp SExp | Val of num | Sym of string

Lisp values: s-expressions

We start by defining a type for Lisp values.

Values in our Lisp are s-expressions:
* anumber,
* asymbol (immutable string), or
* a pair of s-expressions.

We can define this in HOL using a datatype declaration:

SExp ::= Dot of SExp SExp | Val of num | Sym of string

Such a definition introduces a new type, SExp, and
constructor functions in HOL:

Dot : SExp -> SExp -> SExp
Val : num -> SExp
Sym : string -> SExp

Syntax of programs

The concrete syntax of Lisp programs consists of strings:

(defun app (x y)
(1f (consp x)
(cons (car x) (app (cdr x) y))
y))

Syntax of programs

The concrete syntax of Lisp programs consists of strings:

(defun app (x y)
(1f (consp x)

(cons (car x) (app (cdr x) y))
y))

but the semantics is best defined in terms of abstract syntax.

We want a datatype for this...

Syntax of programs (cont.)

The datatype for the abstract syntax (AST) of our Lisp programs:

lisp_primitive_op ::=
Cons | Car | Cdr | Equal | Less
| Add | Sub | Consp | Natp | Symbolp

func ::= PrimitiveFun of lisp_primitive_op
| Funcall | Fun of string

Const of SExp

term ::=
| Var of string
|
|

App of func (term 1list)
If of term term term

Syntax of programs (cont.)

The datatype for the abstract syntax (AST) of our Lisp programs:

lisp_primitive_op ::=
Cons | Car | Cdr | Equal | Less
| Add | Sub | Consp | Natp | Symbolp

func ::= PrimitiveFun of lisp_primitive_op
| Funcall | Fun of string

Const of SExp

term ::=
| Var of string
|
|

App of func (term 1list)
If of term term term

Example: the program (cons ‘1 ‘nil) is represented as:

App (PrimitiveFun Cons) [Const (Val 1), Const (Sym “nil”)]

Modelling evaluation

Next, we define an big-step operational semantics (op.sem.)
that defines how programs evaluate (i.e. execute).

The op.sem. is expressed as an inductive predicate/relation.

Example: inductive definition of the even natural numbers,

Even n

Even 0 Even (n + 2)

Here Even n is true if and only if n is an even natural numbers.

Aside: defining ind. pred. in HOL

HOL allows only abbreviating definitions, of the form:

new_constant = closed_term

Aside: defining ind. pred. in HOL

HOL allows only abbreviating definitions, of the form:

new_constant = closed_term

How is Even defined?

Aside: defining ind. pred. in HOL

HOL allows only abbreviating definitions, of the form:

new_constant = closed_term

How is Even defined?

Even n =

(VP.(PO)A(VYn. Pn = P (n+2)) = P n)

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

(exp, a, fns) | oy result

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:
expression evaluation:

(exp, a, fns) | oy result

expression-list evaluation:

(exp_list, a, fns) I ov1 result_list

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

(exp, a, fns) | oy result

expression-list evaluation:

(exp_list, a, fns) I ov1 result_list

evaluation of function application:

(func, args, a, fns) | ap result

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

(exp, a, fns) | oy result
A\

(expression to evaluate)tion:

(exp_list, a, fns) I ov1 result_list

evaluation of function application:

(func, args, a, fns) | ap result

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

(exp, a, fns) | oy result
AN |

(expression to evaluate)tion:

((mapping from variables to values)

evaluation of function application:

(func, args, a, fns) | ap result

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

(exp, a, fns) | oy result
VAN B

(expression to evaluate)tion:

((mapping from variables to values)

evalua(function definitions)

(func, args, a, fns) | ap result

Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

(exp, a, fns) | oy result
A\

[
(expression to evaluate)tionﬁ

((mapping from variables to values)

evalua(function definitions)

(func, args, CL,(result value for terminating eval.)

Big-step semantics

(Const v, a, fns) | ev v

a(n) =wv

(Var n,a, fns) | oy v

If-expressions

(e1,a,fns) ev 51 (e2,a,fns) Yoy s2 isTrue sq

(If e1 ez e3,a, fns) Jev 52

(e1,a,fns) v 51 (e3,a,fns) ey s3 —isTrue sq

(|f €1 €2 637@>fn<9) Vev 83

App: function application

(el,a,fns) Uev1 sl (fa Sl,&,fTLS) lLap S
(App f el,a,fns) oy s

App: function application

(el,a,fns) Uev1 sl (fa Sl,&,fTLS) lLap S
(App f el,a,fns) oy s

(I, a, fns) den [

(e,a,fns) {ev s (el,a, fns) | ov1 Sl

(e:el,a, fns) et s:: sl

App continued

eval_primitive (op, args) = s

(PrimitiveFun op, args, a, fns) { ap s

fns(name) = (params, body) (body, params — args, fns) ey S

(Fun name, args, a, fns) | ap S

(Fun name, args, a, fns) | ap S

(Funcall, Sym name :: args, a, fns) | ap S

Big-step op.sem summary

Evaluation is defined as an inductively defined relation:

(exp, a, fns) | oy result

Big-step op.sem summary

Evaluation is defined as an inductively defined relation:
(exp, a, fns) | oy result

* describes terminating evaluations
* relates expressions in one step to result value
* defined using ‘inference-like’ rules

Big-step op.sem summary

Evaluation is defined as an inductively defined relation:
(exp, a, fns) | oy result

* describes terminating evaluations
* relates expressions in one step to result value
* defined using ‘inference-like’ rules

Criticism: what about non-terminating evaluations!?
In later lectures:

* small-step semantics (models evaluation in steps)
* clocked big-step semantics

Summary

Formal specification & verification
* ‘formal’ i.e. some form of formal logic or calculus is used
* e.g.higher-order logic

Summary

Formal specification & verification
* ‘formal’ i.e. some form of formal logic or calculus is used
* e.g.higher-order logic

Language definitions:
* operational semantics (syntactic operations)
* denotational semantics (meaning of programs)
* axiomatic semantics (defines a programming logic)

Summary

Formal specification & verification
* ‘formal’ i.e. some form of formal logic or calculus is used
* e.g.higher-order logic

Language definitions:
* operational semantics (syntactic operations)
* denotational semantics (meaning of programs)
* axiomatic semantics (defines a programming logic)

Big-step operational semantics
* inductive relation describes evaluation

* big-step i.e.term-to-result evaluation is described
by a single transition

