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Formal methods

Formal specification

Ny e

What makes it ‘formal’?

Answer: ‘formal’ as in “formalised in a logic or calculus”
* has precise meaning

* e.g.lambda calculus, first-order logic or even a
programming logic



First-order logic (FOL)

FOL syntax:
terms:
* variables: x, Yy, 2
* constants and functions: f, g, h
formulas:
o predicates: P, (), R
® connectives: \,V, =— ,
* quantifiers: V,

Rules of inference are used to derive theorems:

- (dx. Vy. P (z,y)) = (Vy. dz. P (x,y))
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Higher-order logic (HOL)

This course uses formal’ to mean “can be formalised in
higher-order logic” (Church’s simple theory of types).

HOL is widely used since:
* more expressive than FOL
* specifications are often more natural, shorter
* originally developed as a foundation for mathematics

Main difference between FOL and HOL:

* no distinction between terms and formulas
e functions and predicates are treated as first-class values

- WZ. (dz. Vy. P (z,y)) = (Vy. dz. P (x,9))

( quantification over a predicate )




Familiar notation

Term Meaning
P(x) r has property P
—t not ¢
tl /\ t2 tl and t2
tl V t2 tl or t2
t1 = 1y |t implies t9
Vr. tlz] | for all z it is the case that ¢|x|

for some 2z it is the case that ||
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HOL syntax

HOL = (lambda calculus + constants) with ML-like types

HOL terms:
e variables: x,y, P, R

e constants (abbreviate fixed closed values, e.g. ()
e function application: 11 to

e |ambda-terms: \x. t where I is a variable and T a term

HOL types:

* atomic types: type constants (e.g. num), type variables
e compound types: built using type operators (e.g. t — t')

Formulas: formulas are terms of type bool, i.e. can have
value either true or false.
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HOL in more detail

Only binding mechanism is A -abstraction.

e quantifiers V and  are constants
e syntax V.t and Jx.t abbreviates V(Ax.t) and J(A\x. 1)

Example:

Vn. P(n) = P(n+1) abbreviates V(An. =(P(n))(P(+ n 1)))

Only three primitive constants: =, = ,€ (Hilbert’s choice)

The rest are defined, e.g.

true = ((A\z. ) = (Ax. x))
V= AP. (P = A\x. true)
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HOL examples

Induction over the natural numbers:

VP. P(0O)A(Vn. P(n) = P(n+1)) = Vn. P(n)
Legitimacy of simple recursive function definition:

Yng. Vf. 3s. (s(0) = ng) A (Vn. s(n+1) = f(s(n)))
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Eight primitive rules of inference:

I' F ¢ I'v F t1 =1t Iy F t4
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I' - t1 =1t
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Primitive inferences

Eight primitive rules of inference:

I' F ¢ I'v F t1 =1t Iy F t4
t H t =t =1 F—{tl}l_t1:>t2 YUy F ot

L'+t =t

= (M. t)ty = ty[ta/ 7] T - Az t1) = (A\z. 1)

VAN p VAN
Iy F t( beta reduction |?fn= abstraction w,---,tn]
\ I F T -
T1O oI, U0, - - -5 U]
' ¢
F[Jl,...,an/oq,...,ozn] - t[O’l,...,O'n/Oél,...,Ckn]

A formal proof in HOL must follow the primitive inferences.

For practical proof work, we have proof assistants, e.g. HOLA4,
and Isabelle/HOL (these tools are not examinable).



FP language definition

How to write the formal specification of a FP language!?



FP language definition

How to write the formal specification of a FP language!?

Options:
* operational semantics (syntactic operations)
* denotational semantics (meaning of programs)
* axiomatic semantics (in terms of program logic)



FP language definition

How to write the formal specification of a FP language!?

Options:
* operational semantics (syntactic operations)
* denotational semantics (meaning of programs)
* axiomatic semantics (in terms of program logic)

In this course, we use operational semantics.



FP language definition

How to write the formal specification of a FP language!?

Options:
* operational semantics (syntactic operations)
* denotational semantics (meaning of programs)
* axiomatic semantics (in terms of program logic)

In this course, we use operational semantics.

The language definition will be the specification for the
implementation (i.e. what we verify, formally prove).
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The definition in practice

We define the language using higher-order logic (HOL).

In practice, we define:
* the type of values in the FP language,
* the syntax of program expressions, and
* how program expressions evaluate.

We will specify the semantics of
* asimple first-order Lisp
* asubset of SML (next lecture)



Lisp examples

> 1
1

> (+ 1 2)
3

> "(1 2 3)
(12 3)

> (cdr '"(1 2 3))
(2 3)

> (defun app (x y)
(1f (consp x)
(cons (car x) (app (cdr x) y))
y))

> (app "(1 2 3) (45 6))
(1234506)
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Lisp values: s-expressions

We start by defining a type for Lisp values.

Values in our Lisp are s-expressions:
* anumber,
* asymbol (immutable string), or
* a pair of s-expressions.

We can define this in HOL using a datatype declaration:

SExp ::= Dot of SExp SExp | Val of num | Sym of string

Such a definition introduces a new type, SExp, and
constructor functions in HOL:

Dot : SExp -> SExp -> SExp
Val : num -> SExp
Sym : string -> SExp
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The concrete syntax of Lisp programs consists of strings:

(defun app (x y)
(1f (consp x)
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Syntax of programs

The concrete syntax of Lisp programs consists of strings:

(defun app (x y)
(1f (consp x)

(cons (car x) (app (cdr x) y))
y))

but the semantics is best defined in terms of abstract syntax.

We want a datatype for this...



Syntax of programs (cont.)

The datatype for the abstract syntax (AST) of our Lisp programs:

lisp_primitive_op ::=
Cons | Car | Cdr | Equal | Less
| Add | Sub | Consp | Natp | Symbolp

func ::= PrimitiveFun of lisp_primitive_op
| Funcall | Fun of string

Const of SExp

term ::=
| Var of string
|
|

App of func (term 1list)
If of term term term



Syntax of programs (cont.)

The datatype for the abstract syntax (AST) of our Lisp programs:

lisp_primitive_op ::=
Cons | Car | Cdr | Equal | Less
| Add | Sub | Consp | Natp | Symbolp

func ::= PrimitiveFun of lisp_primitive_op
| Funcall | Fun of string

Const of SExp

term ::=
| Var of string
|
|

App of func (term 1list)
If of term term term

Example: the program (cons ‘1 ‘nil) is represented as:

App (PrimitiveFun Cons) [Const (Val 1), Const (Sym “nil”)]



Modelling evaluation

Next, we define an big-step operational semantics (op.sem.)
that defines how programs evaluate (i.e. execute).

The op.sem. is expressed as an inductive predicate/relation.

Example: inductive definition of the even natural numbers,

Even n

Even 0 Even (n + 2)

Here Even n is true if and only if n is an even natural numbers.
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Aside: defining ind. pred. in HOL

HOL allows only abbreviating definitions, of the form:

new_constant = closed_term

How is Even defined?

Even n =

(VP.(PO)A(VYn. Pn = P (n+2)) = P n)
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Evaluation in our Lisp

Evaluation is defined as a mutually rec. inductive relations:

expression evaluation:

(exp, a, fns) | oy result
A\

[
( expression to evaluate )tionﬁ

(( mapping from variables to values )

evalua( function definitions )

(func, args, CL,( result value for terminating eval. )




Big-step semantics

(Const v, a, fns) | ev v

a(n) =wv

(Var n,a, fns) | oy v




If-expressions

(e1,a,fns) ev 51 (e2,a,fns) Yoy s2  isTrue sq

(If e1 ez e3,a, fns) Jev 52

(e1,a,fns) v 51 (e3,a,fns) ey s3  —isTrue sq

(|f €1 €2 637@>fn<9) Vev 83



App: function application

(el,a,fns) Uev1 sl (fa Sl,&,fTLS) lLap S
(App f el,a,fns) oy s




App: function application

(el,a,fns) Uev1 sl (fa Sl,&,fTLS) lLap S
(App f el,a,fns) oy s

(I, a, fns) den [

(e,a,fns) {ev s (el,a, fns) | ov1 Sl

(e:el,a, fns) et s:: sl




App continued

eval_primitive (op, args) = s

(PrimitiveFun op, args, a, fns) { ap s

fns(name) = (params, body) (body, params — args, fns) ey S

(Fun name, args, a, fns) | ap S

(Fun name, args, a, fns) | ap S

(Funcall, Sym name :: args, a, fns) | ap S
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Big-step op.sem summary

Evaluation is defined as an inductively defined relation:
(exp, a, fns) | oy result

* describes terminating evaluations
* relates expressions in one step to result value
* defined using ‘inference-like’ rules

Criticism: what about non-terminating evaluations!?
In later lectures:

* small-step semantics (models evaluation in steps)
* clocked big-step semantics
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Summary

Formal specification & verification
* ‘formal’ i.e. some form of formal logic or calculus is used
* e.g.higher-order logic

Language definitions:
* operational semantics (syntactic operations)
* denotational semantics (meaning of programs)
* axiomatic semantics (defines a programming logic)

Big-step operational semantics
* inductive relation describes evaluation

* big-step i.e.term-to-result evaluation is described
by a single transition



