
MPhil ACS & Part III course, Functional Programming: 	

Implementation, Specification and Verification

Magnus Myreen	

Michaelmas term, 2013

Lecture 13

Semantic preservation for 	

non-terminating programs

From previous lectures

Correctness of ML-to-bytecode compilation:

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

From previous lectures

Correctness of ML-to-bytecode compilation:

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

 { PC (base + bs.pc) * BYTECODE (bs.stack,err) } 	
 base: to_mc bc.code	
 { PC (base + bs’.pc) * BYTECODE (bs’.stack,err) ∨ PC err * true }	

Correctness of bytecode-to-machine-code compilation:

bs !⇤ bs 0 =)

Top-level correctness

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

 { PC (base + bs.pc) * BYTECODE (bs.stack,err) } 	
 base: to_mc bc.code	
 { PC (base + bs’.pc) * BYTECODE (bs’.stack,err) ∨ PC err * true }	

^

Combination:

Top-level correctness

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

 { PC (base + bs.pc) * BYTECODE (bs.stack,err) } 	
 base: to_mc bc.code	
 { PC (base + bs’.pc) * BYTECODE (bs’.stack,err) ∨ PC err * true }	

^

Combination: if the big-step terminates with value

Top-level correctness

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

 { PC (base + bs.pc) * BYTECODE (bs.stack,err) } 	
 base: to_mc bc.code	
 { PC (base + bs’.pc) * BYTECODE (bs’.stack,err) ∨ PC err * true }	

^

Combination: if the big-step terminates with value

then machine code terminates with that value

Top-level correctness

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

 { PC (base + bs.pc) * BYTECODE (bs.stack,err) } 	
 base: to_mc bc.code	
 { PC (base + bs’.pc) * BYTECODE (bs’.stack,err) ∨ PC err * true }	

^

Combination: if the big-step terminates with value

then machine code terminates with that value

What about diverging (i.e. non-terminating) expressions?

Top-level correctness

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

 { PC (base + bs.pc) * BYTECODE (bs.stack,err) } 	
 base: to_mc bc.code	
 { PC (base + bs’.pc) * BYTECODE (bs’.stack,err) ∨ PC err * true }	

^

Combination: if the big-step terminates with value

then machine code terminates with that value

What about diverging (i.e. non-terminating) expressions?

This theorem allows the machine to do anything if exp diverges.

Diverging programs?

Let’s define divergence and termination.

For the bytecode:

diverges bs = 8bs 0. bs !⇤ bs 0 =) 9bs 00. bs 0 ! bs 00

terminates bs bs 0 = bs !⇤ bs 0 ^ 8bs 00. ¬(bs 0 ! bs 00)

Diverging programs?

Let’s define divergence and termination.

For the bytecode:

diverges bs = 8bs 0. bs !⇤ bs 0 =) 9bs 00. bs 0 ! bs 00

terminates bs bs 0 = bs !⇤ bs 0 ^ 8bs 00. ¬(bs 0 ! bs 00)

another step can always be taken

at some point, no more steps possible

Diverging programs?

Let’s define divergence and termination.

For the bytecode:

diverges bs = 8bs 0. bs !⇤ bs 0 =) 9bs 00. bs 0 ! bs 00

terminates bs bs 0 = bs !⇤ bs 0 ^ 8bs 00. ¬(bs 0 ! bs 00)

Theorem:

8bs. diverges bs _ 9bs 0. terminates bs bs 0

a bytecode state either diverges or terminates

another step can always be taken

at some point, no more steps possible

Diverging ML programs?

Let’s define divergence and termination.

Terminating executions:

(exp, env) +ev val

big-step sem. convenient for compiler correctness proof

Diverging ML programs?

Let’s define divergence and termination.

Terminating executions:

(exp, env) +ev val

big-step sem. convenient for compiler correctness proof

Specification for diverging executions?

Possible approaches:	

• use a small-step semantics	

• use big-step semantics but defined co-inductively	

• use big-step semantics with a logical clock

Diverging ML programs?

Let’s define divergence and termination.

Terminating executions:

(exp, env) +ev val

big-step sem. convenient for compiler correctness proof

Specification for diverging executions?

Possible approaches:	

• use a small-step semantics	

• use big-step semantics but defined co-inductively	

• use big-step semantics with a logical clock

pragmatic and simple solution

Idea: add logical clock

Common technique: restrict executions using a clock

Idea: add logical clock

Common technique: restrict executions using a clock

Adaption to big-step semantics:	

• add an optional clock component	

• clock ‘ticks’ decrements every time a function is applied	

• once clock hits zero, execution stops with a TimeOut

Idea: add logical clock

Common technique: restrict executions using a clock

Adaption to big-step semantics:	

• add an optional clock component	

• clock ‘ticks’ decrements every time a function is applied	

• once clock hits zero, execution stops with a TimeOut

Why do this?

• because now big-step semantics describes both
terminating and non-terminating evaluations

Idea: add logical clock

Common technique: restrict executions using a clock

Adaption to big-step semantics:	

• add an optional clock component	

• clock ‘ticks’ decrements every time a function is applied	

• once clock hits zero, execution stops with a TimeOut

Why do this?

8exp env clock . 9res. (exp, env , Some clock) +ev res

• because now big-step semantics describes both
terminating and non-terminating evaluations

Idea: add logical clock

Common technique: restrict executions using a clock

Adaption to big-step semantics:	

• add an optional clock component	

• clock ‘ticks’ decrements every time a function is applied	

• once clock hits zero, execution stops with a TimeOut

Why do this?

8exp env clock . 9res. (exp, env , Some clock) +ev res

for every exp env clock

• because now big-step semantics describes both
terminating and non-terminating evaluations

there is some result

produced by the semantics

either: Result
or TimeOut

Big-step semantics with clock

(exp, env ,None) +ev res

Clock turned off:

Clock turned on:

(f , env , Some (clock + 1)) +ev Result (Closure n env1 exp)
(x , env , Some (clock + 1)) +ev Result v
(exp, env1[n 7! v], Some clock) +ev res

(App f x , env , Some (clock + 1)) +ev res

(App f x , env , Some 0) +ev TimeOut

Big-step semantics with clock

(exp, env ,None) +ev res

Clock turned off:

Clock turned on:

(f , env , Some (clock + 1)) +ev Result (Closure n env1 exp)
(x , env , Some (clock + 1)) +ev Result v
(exp, env1[n 7! v], Some clock) +ev res

(App f x , env , Some (clock + 1)) +ev res

same as semantics without clock

(App f x , env , Some 0) +ev TimeOut

Big-step semantics with clock

(exp, env ,None) +ev res

Clock turned off:

Clock turned on:

(f , env , Some (clock + 1)) +ev Result (Closure n env1 exp)
(x , env , Some (clock + 1)) +ev Result v
(exp, env1[n 7! v], Some clock) +ev res

(App f x , env , Some (clock + 1)) +ev res

same as semantics without clock

(App f x , env , Some 0) +ev TimeOut

clock is decremented ‘ticked’

Big-step semantics with clock

(exp, env ,None) +ev res

Clock turned off:

Clock turned on:

(f , env , Some (clock + 1)) +ev Result (Closure n env1 exp)
(x , env , Some (clock + 1)) +ev Result v
(exp, env1[n 7! v], Some clock) +ev res

(App f x , env , Some (clock + 1)) +ev res

same as semantics without clock

(App f x , env , Some 0) +ev TimeOut

clock is decremented ‘ticked’

zero clock returns TimeOut

Big-step semantics with clock

Component TimeOuts passed through:

(f , env , Some (clock + 1)) +ev TimeOut

(App f x , env , Some (clock + 1)) +ev TimeOut

(x , env , Some (clock + 1)) +ev TimeOut

(App f x , env , Some (clock + 1)) +ev TimeOut

Big-step semantics with clock

Component TimeOuts passed through:

(f , env , Some (clock + 1)) +ev TimeOut

(App f x , env , Some (clock + 1)) +ev TimeOut

(x , env , Some (clock + 1)) +ev TimeOut

(App f x , env , Some (clock + 1)) +ev TimeOut

f times out

Big-step semantics with clock

Component TimeOuts passed through:

(f , env , Some (clock + 1)) +ev TimeOut

(App f x , env , Some (clock + 1)) +ev TimeOut

(x , env , Some (clock + 1)) +ev TimeOut

(App f x , env , Some (clock + 1)) +ev TimeOut

f times out

x times out

Big-step semantics with clock

Component TimeOuts passed through:

(f , env , Some (clock + 1)) +ev TimeOut

(App f x , env , Some (clock + 1)) +ev TimeOut

(x , env , Some (clock + 1)) +ev TimeOut

(App f x , env , Some (clock + 1)) +ev TimeOut

(x , env , Some clock) +ev TimeOut

(Add x y , env , Some clock) +ev TimeOut

(y , env , Some clock) +ev TimeOut

(Add x y , env , Some clock) +ev TimeOut

f times out

x times out

Big-step semantics with clock

Component TimeOuts passed through:

(f , env , Some (clock + 1)) +ev TimeOut

(App f x , env , Some (clock + 1)) +ev TimeOut

(x , env , Some (clock + 1)) +ev TimeOut

(App f x , env , Some (clock + 1)) +ev TimeOut

(x , env , Some clock) +ev TimeOut

(Add x y , env , Some clock) +ev TimeOut

(y , env , Some clock) +ev TimeOut

(Add x y , env , Some clock) +ev TimeOut

f times out

x times out

same for Addsame for Add

Big-step semantics with clock

Normal results are handled as usual:

(x , env , cl) +ev Result (Int i) (y , env , cl) +ev Result (Int j)

(Add x y , env , cl) +ev Result (Int (i+ j))

Big-step semantics with clock

Normal results are handled as usual:

(x , env , cl) +ev Result (Int i) (y , env , cl) +ev Result (Int j)

(Add x y , env , cl) +ev Result (Int (i+ j))

Semantics clearly more verbose. However:

Big-step semantics with clock

Normal results are handled as usual:

(x , env , cl) +ev Result (Int i) (y , env , cl) +ev Result (Int j)

(Add x y , env , cl) +ev Result (Int (i+ j))

8exp env clock . 9res. (exp, env , Some clock) +ev res

With some careful setup, we can prove a theorem:

Semantics clearly more verbose. However:

Aside: types

8exp env clock . 9res. (exp, env , Some clock) +ev res

With some careful setup, we can prove a theorem:

Aside: types

8exp env clock . 9res. (exp, env , Some clock) +ev res

With some careful setup, we can prove a theorem:

Aside: types

What about:

8exp env clock . 9res. (exp, env , Some clock) +ev res

With some careful setup, we can prove a theorem:

???
(x , env , cl) +ev Result (Int i) (y , env , cl) +ev Result (Closure . . .)

(Add x y , env , cl) +ev

Aside: types

What about:

8exp env clock . 9res. (exp, env , Some clock) +ev res

With some careful setup, we can prove a theorem:

???
(x , env , cl) +ev Result (Int i) (y , env , cl) +ev Result (Closure . . .)

(Add x y , env , cl) +ev

wrong type

TypeError

Aside: types

What about:

8exp env clock . 9res. (exp, env , Some clock) +ev res

With some careful setup, we can prove a theorem:

(x , env , cl) +ev Result (Int i) (y , env , cl) +ev Result (Closure . . .)

(Add x y , env , cl) +ev

wrong type

TypeError

Aside: types

What about:

8exp env clock . 9res. (exp, env , Some clock) +ev res

With some careful setup, we can prove a theorem:

TypeError is passed through just like TimeOut.

(x , env , cl) +ev Result (Int i) (y , env , cl) +ev Result (Closure . . .)

(Add x y , env , cl) +ev

wrong type

TypeError

Aside: types

What about:

8exp env clock . 9res. (exp, env , Some clock) +ev res

With some careful setup, we can prove a theorem:

TypeError is passed through just like TimeOut.

(x , env , cl) +ev Result (Int i) (y , env , cl) +ev Result (Closure . . .)

(Add x y , env , cl) +ev

res is either Result, TimeOut or TypeError

wrong type

TypeError never occurs if exp has passed type inference

TypeError

Aside: types

What about:

8exp env clock . 9res. (exp, env , Some clock) +ev res

With some careful setup, we can prove a theorem:

TypeError is passed through just like TimeOut.

(x , env , cl) +ev Result (Int i) (y , env , cl) +ev Result (Closure . . .)

(Add x y , env , cl) +ev

res is either Result, TimeOut or TypeError

wrong type

Non-termination and termination

Evaluation diverges if

8clock . (exp, env , Some clock) +ev TimeOut

TimeOut happensfor all clock values

Non-termination and termination

Evaluation diverges if

8clock . (exp, env , Some clock) +ev TimeOut

TimeOut happens

Every unclocked evaluation has some clocked equivalent:

8exp env val .

(exp, env ,None) +ev Result val

()
9clock . (exp, env , Some clock) +ev Result val

termination: some clock value is sufficient

for all clock values

Reminder

From previous lecture:

(exp, env) +ev val =)
“the code for exp is installed in bs etc.” =)
9bs 0. bs !⇤

bs

0 ^ “bs

0
contains val”

We want to prove the same for the clocked semantics.

Bytecode with logical clock

Bytecode with logical clock

Making the bytecode clocked:	

• we add clock to state	

• clock is decremented by Tick instruction	

• Tick instruction gets stuck if clock is zero	

• clock is either on or off

Note:	

• clock is logical device only	

• not implemented in machine code

Prove: compilation 	

respects clock

(exp, env , Some clock) +ev res =)
“the code for exp is installed in bs etc.” ^
“the clock in bs has value clock” =)
if res = TimeOut then

9bs 0. terminates bs bs

0 ^
bs

0
tries to decrement zero clock

else

9bs 0 val .
res = Result val ^
terminates bs bs

0 ^
bs

0
not stuck due to clock, contains val

Prove: compilation 	

respects clock

bytecode stays synchronised

(exp, env , Some clock) +ev res =)
“the code for exp is installed in bs etc.” ^
“the clock in bs has value clock” =)
if res = TimeOut then

9bs 0. terminates bs bs

0 ^
bs

0
tries to decrement zero clock

else

9bs 0 val .
res = Result val ^
terminates bs bs

0 ^
bs

0
not stuck due to clock, contains val

Prove: compilation 	

respects clock

bytecode stays synchronised

(exp, env , Some clock) +ev res =)
“the code for exp is installed in bs etc.” ^
“the clock in bs has value clock” =)
if res = TimeOut then

9bs 0. terminates bs bs

0 ^
bs

0
tries to decrement zero clock

else

9bs 0 val .
res = Result val ^
terminates bs bs

0 ^
bs

0
not stuck due to clock, contains val

we assume TypeError impossible

If bytecode does not terminate…

Let’s prove:

diverges bs ^
“the code for exp is installed in bs etc.” =)
8clock . (exp, env , Some clock) +ev TimeOut

If bytecode does not terminate…

Let’s prove:

diverges bs ^
“the code for exp is installed in bs etc.” =)
8clock . (exp, env , Some clock) +ev TimeOut

clock tured off

If bytecode does not terminate…

Let’s prove:

diverges bs ^
“the code for exp is installed in bs etc.” =)
8clock . (exp, env , Some clock) +ev TimeOut

Proof informally:

clock tured off

If bytecode does not terminate…

Let’s prove:

diverges bs ^
“the code for exp is installed in bs etc.” =)
8clock . (exp, env , Some clock) +ev TimeOut

Proof informally:

Proof by contradiction, suppose:

9clock . ¬((exp, env , Some clock) +ev TimeOut)

clock tured off

If bytecode does not terminate…

Let’s prove:

diverges bs ^
“the code for exp is installed in bs etc.” =)
8clock . (exp, env , Some clock) +ev TimeOut

Proof informally:

Proof by contradiction, suppose:

9clock . ¬((exp, env , Some clock) +ev TimeOut)

Then for some clock and val, we must have:

(exp, env , Some clock) +ev Result val

clock tured off

If bytecode does not terminate…

Let’s prove:

diverges bs ^
“the code for exp is installed in bs etc.” =)
8clock . (exp, env , Some clock) +ev TimeOut

Proof informally:

Proof by contradiction, suppose:

9clock . ¬((exp, env , Some clock) +ev TimeOut)

Then for some clock and val, we must have:

(exp, env , Some clock) +ev Result val

By compiler correctness theorem: terminates bs bs 0

Contradiction.

clock tured off

If bytecode does not terminate…

Let’s prove:

diverges bs ^
“the code for exp is installed in bs etc.” =)
8clock . (exp, env , Some clock) +ev TimeOut

Proof informally:

Proof by contradiction, suppose:

9clock . ¬((exp, env , Some clock) +ev TimeOut)

Then for some clock and val, we must have:

(exp, env , Some clock) +ev Result val

By compiler correctness theorem: terminates bs bs 0

Contradiction.

clock tured off

clock tured on

If bytecode does not terminate…

Let’s prove:

diverges bs ^
“the code for exp is installed in bs etc.” =)
8clock . (exp, env , Some clock) +ev TimeOut

Proof informally:

Proof by contradiction, suppose:

9clock . ¬((exp, env , Some clock) +ev TimeOut)

Then for some clock and val, we must have:

(exp, env , Some clock) +ev Result val

By compiler correctness theorem: terminates bs bs 0

Contradiction.

clock tured off

clock tured on

must terminate also for clock off

If bytecode terminates…
Let’s prove:

terminates bs bs

0 ^
“the code for exp is installed in bs etc.” ^
“bytecode has clock turned o↵” =)
9val . (exp, env ,None) +ev Result val ^ “bs

0
contains val”

Proof informally:

If bytecode terminates…
Let’s prove:

terminates bs bs

0 ^
“the code for exp is installed in bs etc.” ^
“bytecode has clock turned o↵” =)
9val . (exp, env ,None) +ev Result val ^ “bs

0
contains val”

Proof informally:
Since unclocked bytecode terminates, then there is some 	

finite number of steps taken. Let clock be step count + 1.

If bytecode terminates…
Let’s prove:

terminates bs bs

0 ^
“the code for exp is installed in bs etc.” ^
“bytecode has clock turned o↵” =)
9val . (exp, env ,None) +ev Result val ^ “bs

0
contains val”

Proof informally:
Since unclocked bytecode terminates, then there is some 	

finite number of steps taken. Let clock be step count + 1.

Clocked bytecode agrees with unlocked when started at clock.	

If bytecode terminates…
Let’s prove:

terminates bs bs

0 ^
“the code for exp is installed in bs etc.” ^
“bytecode has clock turned o↵” =)
9val . (exp, env ,None) +ev Result val ^ “bs

0
contains val”

Proof informally:
Since unclocked bytecode terminates, then there is some 	

finite number of steps taken. Let clock be step count + 1.

The clocked big-step sem. always produces some result. Let
result be the value produced for exp and clock from above.

Clocked bytecode agrees with unlocked when started at clock.	

If bytecode terminates…
Let’s prove:

terminates bs bs

0 ^
“the code for exp is installed in bs etc.” ^
“bytecode has clock turned o↵” =)
9val . (exp, env ,None) +ev Result val ^ “bs

0
contains val”

Proof informally:
Since unclocked bytecode terminates, then there is some 	

finite number of steps taken. Let clock be step count + 1.

The clocked big-step sem. always produces some result. Let
result be the value produced for exp and clock from above.

Suppose result is Result val, then by compiler correctness bs’ must
contain val and not be stuck. (Bytecode sem. is deterministic.)

Clocked bytecode agrees with unlocked when started at clock.	

If bytecode terminates…
Let’s prove:

terminates bs bs

0 ^
“the code for exp is installed in bs etc.” ^
“bytecode has clock turned o↵” =)
9val . (exp, env ,None) +ev Result val ^ “bs

0
contains val”

Proof informally:
Since unclocked bytecode terminates, then there is some 	

finite number of steps taken. Let clock be step count + 1.

The clocked big-step sem. always produces some result. Let
result be the value produced for exp and clock from above.

Suppose result is Result val, then by compiler correctness bs’ must
contain val and not be stuck. (Bytecode sem. is deterministic.)

If result is TimeOut, then by compiler correctness clocked
bytecode must have got stuck. Contradiction, i.e. not TimeOut.

Clocked bytecode agrees with unlocked when started at clock.	

Bytecode correct

From previous slides:

If bytecode terminates, then ML semantics () terminates +ev

If bytecode diverges, then ML semantics diverges (TimeOut)

Bytecode correct

From previous slides:

If bytecode terminates, then ML semantics () terminates +ev

If bytecode diverges, then ML semantics diverges (TimeOut)

What about the machine code?

Machine code divergence?

What about the machine code?

Machine code divergence?

What about the machine code?

 { PC (base + bs.pc) * BYTECODE (bs.stack,err) } 	
 base: to_mc bc.code	
 { PC (base + bs’.pc) * BYTECODE (bs’.stack,err) ∨ PC err * true }	

Correctness of bytecode-to-machine-code compilation:

bs !⇤ bs 0 =)

Machine code divergence?

What about the machine code?

 { PC (base + bs.pc) * BYTECODE (bs.stack,err) } 	
 base: to_mc bc.code	
 { PC (base + bs’.pc) * BYTECODE (bs’.stack,err) ∨ PC err * true }	

Correctness of bytecode-to-machine-code compilation:

bs !⇤ bs 0 =)

Definition of machine-code Hoare triple:

 { P } C { Q } = ∀frame. mcTotal (P * C * frame)	
 (Q * C * frame)

mcTotal P Q = 8s. P s =) 9t. s �!⇤ t ^Q t

Machine code divergence?

What about the machine code?

 { PC (base + bs.pc) * BYTECODE (bs.stack,err) } 	
 base: to_mc bc.code	
 { PC (base + bs’.pc) * BYTECODE (bs’.stack,err) ∨ PC err * true }	

Correctness of bytecode-to-machine-code compilation:

bs !⇤ bs 0 =)

Definition of machine-code Hoare triple:

 { P } C { Q } = ∀frame. mcTotal (P * C * frame)	
 (Q * C * frame)

mcTotal P Q = 8s. P s =) 9t. s �!⇤ t ^Q t

machine-code semantics’ step relation

bytecode semantics’ step relation

Machine code divergence?

What about the machine code?

 { PC (base + bs.pc) * BYTECODE (bs.stack,err) } 	
 base: to_mc bc.code	
 { PC (base + bs’.pc) * BYTECODE (bs’.stack,err) ∨ PC err * true }	

Correctness of bytecode-to-machine-code compilation:

bs !⇤ bs 0 =)

Definition of machine-code Hoare triple:

 { P } C { Q } = ∀frame. mcTotal (P * C * frame)	
 (Q * C * frame)

mcTotal P Q = 8s. P s =) 9t. s �!⇤ t ^Q t

machine-code semantics’ step relation

bytecode semantics’ step relation

unable to specify non-termination

Machine code divergence?

mcTotal P Q = 8s. P s =) 9t. s �!⇤ t ^Q t

Machine code divergence?

mcTotal P Q = 8s. P s =) 9t. s �!⇤ t ^Q t

for every state s execution reaches state t

such that Q is true for t

Machine code divergence?

mcTotal P Q = 8s. P s =) 9t. s �!⇤ t ^Q t

for every state s execution reaches state t

such that Q is true for t

Divergence = machine code gets stuck, i.e. never finishes

Machine code divergence?

mcTotal P Q = 8s. P s =) 9t. s �!⇤ t ^Q t

for every state s execution reaches state t

such that Q is true for t

Divergence = machine code gets stuck, i.e. never finishes

Divergence = machine code is forever afterwards executing bytecode

In our case:

Temporal logic

Divergence = machine code is forever afterwards executing bytecode

Temporal logic

Divergence = machine code is forever afterwards executing bytecode

Traces of machine code states:

trace seq = 8i. if (9s. seq(i) �! s)
then seq(i) �! seq(i+ 1)
else seq(i+ 1) = error

Temporal logic

Divergence = machine code is forever afterwards executing bytecode

Traces of machine code states:

trace seq = 8i. if (9s. seq(i) �! s)
then seq(i) �! seq(i+ 1)
else seq(i+ 1) = errorpossibly infinite trace

Temporal logic

Divergence = machine code is forever afterwards executing bytecode

Traces of machine code states:

trace seq = 8i. if (9s. seq(i) �! s)
then seq(i) �! seq(i+ 1)
else seq(i+ 1) = errorpossibly infinite trace

error is a stuck state

Temporal logic

Divergence = machine code is forever afterwards executing bytecode

Traces of machine code states:

trace seq = 8i. if (9s. seq(i) �! s)
then seq(i) �! seq(i+ 1)
else seq(i+ 1) = errorpossibly infinite trace

error is a stuck state

Trace:

seq(0) �! seq(1) �! seq(2) �! seq(3) �! . . . �! seq(n) �! seq(n+ 1) �! . . .

Temporal logic

Divergence = machine code is forever afterwards executing bytecode

Traces of machine code states:

trace seq = 8i. if (9s. seq(i) �! s)
then seq(i) �! seq(i+ 1)
else seq(i+ 1) = errorpossibly infinite trace

error is a stuck state

Trace:

seq(0) �! seq(1) �! seq(2) �! seq(3) �! . . . �! seq(n) �! seq(n+ 1) �! . . .

machine-code semantics’ step relation

mcTemporal
Standard temporal logic operators:

now P seq = P (seq(0))
next seq = (�i. seq(i+ 1))

always seq = 8k. (�i. seq(i+ k))
eventually seq = 9k. (�i. seq(i+ k))

() �) seq = (seq =) � seq)

mcTemporal
Standard temporal logic operators:

now P seq = P (seq(0))
next seq = (�i. seq(i+ 1))

always seq = 8k. (�i. seq(i+ k))
eventually seq = 9k. (�i. seq(i+ k))

() �) seq = (seq =) � seq)

holds for initial state

delete first state

mcTemporal
Standard temporal logic operators:

now P seq = P (seq(0))
next seq = (�i. seq(i+ 1))

always seq = 8k. (�i. seq(i+ k))
eventually seq = 9k. (�i. seq(i+ k))

() �) seq = (seq =) � seq)

holds for initial state

for all tails

delete first state

mcTemporal
Standard temporal logic operators:

now P seq = P (seq(0))
next seq = (�i. seq(i+ 1))

always seq = 8k. (�i. seq(i+ k))
eventually seq = 9k. (�i. seq(i+ k))

() �) seq = (seq =) � seq)

holds for initial state

for some tail

for all tails

delete first state

mcTemporal
Standard temporal logic operators:

now P seq = P (seq(0))
next seq = (�i. seq(i+ 1))

always seq = 8k. (�i. seq(i+ k))
eventually seq = 9k. (�i. seq(i+ k))

() �) seq = (seq =) � seq)

holds for initial state

for some tail

for all tails

delete first state

mcTemporal
Standard temporal logic operators:

now P seq = P (seq(0))
next seq = (�i. seq(i+ 1))

always seq = 8k. (�i. seq(i+ k))
eventually seq = 9k. (�i. seq(i+ k))

() �) seq = (seq =) � seq)

holds for initial state

implies lifted

for some tail

for all tails

delete first state

mcTemporal
Standard temporal logic operators:

now P seq = P (seq(0))
next seq = (�i. seq(i+ 1))

always seq = 8k. (�i. seq(i+ k))
eventually seq = 9k. (�i. seq(i+ k))

() �) seq = (seq =) � seq)

holds for initial state

implies lifted

Making statements about machine code:

mcTemporal = 8seq . trace seq =) seq

for some tail

for all tails

delete first state

mcTemporal
Standard temporal logic operators:

now P seq = P (seq(0))
next seq = (�i. seq(i+ 1))

always seq = 8k. (�i. seq(i+ k))
eventually seq = 9k. (�i. seq(i+ k))

() �) seq = (seq =) � seq)

holds for initial state

implies lifted

Making statements about machine code:

mcTemporal = 8seq . trace seq =) seq

mcTotal (from before) is an instance:

mcTotal P Q () mcTemporal ((now P)) (eventually (now Q)))

Bytecode simulation

 mcTemporal	
 ((now (BYTECODE (bs.stack,err) * …)) 	
 ⇒ (next (eventually (now (BYTECODE (bs’.stack,err) * …))))	
 ∨ (eventually (now (PC err * …)))	

Correctness of bytecode-to-machine-code step:

bs ! bs 0 =)

Bytecode simulation

 mcTemporal	
 ((now (BYTECODE (bs.stack,err) * …)) 	
 ⇒ (next (eventually (now (BYTECODE (bs’.stack,err) * …))))	
 ∨ (eventually (now (PC err * …)))	

Correctness of bytecode-to-machine-code step:

bs ! bs 0 =) at least one machine-code step

Bytecode simulation

 mcTemporal	
 ((now (BYTECODE (bs.stack,err) * …)) 	
 ⇒ (next (eventually (now (BYTECODE (bs’.stack,err) * …))))	
 ∨ (eventually (now (PC err * …)))	

Correctness of bytecode-to-machine-code step:

bs ! bs 0 =)

diverges bs =)
 mcTemporal	
 ((now (BYTECODE (bs.stack,err) * …)) 	
 ⇒ (always (eventually (now (∃bs’. BYTECODE (bs’.stack,err) * …))))	
 ∨ (eventually (now (PC err * …)))	

Preservation of divergence:

at least one machine-code step

Bytecode simulation

 mcTemporal	
 ((now (BYTECODE (bs.stack,err) * …)) 	
 ⇒ (next (eventually (now (BYTECODE (bs’.stack,err) * …))))	
 ∨ (eventually (now (PC err * …)))	

Correctness of bytecode-to-machine-code step:

bs ! bs 0 =)

diverges bs =)
 mcTemporal	
 ((now (BYTECODE (bs.stack,err) * …)) 	
 ⇒ (always (eventually (now (∃bs’. BYTECODE (bs’.stack,err) * …))))	
 ∨ (eventually (now (PC err * …)))	

Preservation of divergence:

at least one machine-code step

forever executing bytecode

Complete FP implementation

Read-eval-print loop (REPL)	

• sets up initial heap abstraction	

• main loop:	

• read: parses input and runs type inference	

• eval: compiles expression to machine code

and jumps to generated machine code	

• print results and then repeat main loop

Complete FP implementation

Read-eval-print loop (REPL)	

• sets up initial heap abstraction	

• main loop:	

• read: parses input and runs type inference	

• eval: compiles expression to machine code

and jumps to generated machine code	

• print results and then repeat main loop

empty input causes loop to stop

Complete FP implementation

Read-eval-print loop (REPL)	

• sets up initial heap abstraction	

• main loop:	

• read: parses input and runs type inference	

• eval: compiles expression to machine code

and jumps to generated machine code	

• print results and then repeat main loop

empty input causes loop to stop

generated code is the only code allowed to diverge

Summary

Compiler correctness	

• conveniently proved w.r.t. big-step op. sem.	

• standard theorem says nothing about diverging programs	

• logical clock captures divergence

Divergence in bytecode-to-machine-code compilation	

• temporal logic specification and proof

Top-level theorem:	

• either: machine code and source semantics terminates	

• or: machine code and source semantics diverges

Summary

Compiler correctness	

• conveniently proved w.r.t. big-step op. sem.	

• standard theorem says nothing about diverging programs	

• logical clock captures divergence

Divergence in bytecode-to-machine-code compilation	

• temporal logic specification and proof

Top-level theorem:	

• either: machine code and source semantics terminates	

• or: machine code and source semantics diverges

machine code allowed to terminate with out-of-memory error

