
Verified Parsing

Michael Norrish
Canberra Research Lab., NICTA

Tuesday, 19 November 2013

MPhil ACS 2013 1/47

Outline

Specifying a Syntax

Implementing a Syntax
Parsing Expression Grammars (PEGs)
Verifying a PEG

MPhil ACS 2013 2/47

Verification needs Specification

If we are to verify anything, we (implicitly?) have
some expectation that the thing-to-be-verified can
fail to achieve.

Turning expectation into specification can be
quite tricky.

MPhil ACS 2013 3/47

Expectation vs Specification

Consider verifying
▶ a user interface
▶ an operating system
▶ a word-processor

Bugs might be easy to spot in all of the above;
but it may also be quite hard to write down the
formal statement of what is wanted.

MPhil ACS 2013 4/47

Specifications for Language Syntax

Luckily, we have known since the 1960s that
language syntax can be specified with
context free grammars.

▶ Many textbooks have been written…
▶ Many undergraduates have been taught…

Noam Chomsky has a lot to answer for.

MPhil ACS 2013 5/47

The Standard Story (c1975)

1. Specify lexical syntax with regular
expressions

▶ (implement with DFA construction (e.g., lex))

2. Specify concrete syntax with CFGs
▶ (implement with LR-parsing (e.g., yacc))

3. Use “parser actions” to turn parse-trees into
abstract syntax

4. Type-checking, code generation, etc., etc.

[See, for example, the famous “Dragon Book”.]

MPhil ACS 2013 6/47

The Parsing Problem

Given a CFG G and an input string s return a
parse-tree t such that
▶ t conforms to the rules of grammar G,
▶ G’s start symbol is the root symbol of t, and
▶ the fringe of t is equal to all of s

We’re already assuming that G is appropriate,
suitably unambiguous etc.

In practice, t may be transformed as it is
generated.

MPhil ACS 2013 7/47

We’ve All Drunk the CFG Kool-Aid

Stuff like
selection-statement:

if (condition) statement
if (condition) statement else statement
switch (condition) statement

can come to seem quite natural.

MPhil ACS 2013 8/47

CFGs Are Not Without Their Flaws

Getting precedence right ties a grammar into
verbose knots.

Many “perfectly reasonable” things are impossible
to get right (examples to come).

Implementing them is still not quite a solved
problem.

MPhil ACS 2013 9/47

Classic CFG Problems: Dangling else

Our friend
selection-statement:

if (condition) statement
if (condition) statement else statement
switch (condition) statement

is ambiguous.

There are two different parse-trees for

if (x) if (y) x++; else x--;

MPhil ACS 2013 10/47

Classic CFG Problems: C’s typedef
Declare x to be a pointer to an array of three
integers, and initialise it with value v:

typedef int f;
f(*x)[3] = v;

Dereference x, pass it to function f, index into the
returned pointer at position 3, and assign v there.

/* typedef int f; */
f(*x)[3] = v;

MPhil ACS 2013 11/47

Advantages to CFGs

Familiar.
▶ Maybe even “natural”.

Well-developed theory.
▶ See, for example, Hopcroft and Ullman.

Well-developed tools.

No obvious alternative.

MPhil ACS 2013 12/47

Outline

Specifying a Syntax

Implementing a Syntax
Parsing Expression Grammars (PEGs)
Verifying a PEG

MPhil ACS 2013 13/47

What Not to Do

1. Write custom parser in C
2. Debug by checking it on 2 sample programs
3. Start to verify it

MPhil ACS 2013 14/47

Verifying the yacc “Compiler”

yacc is the classic parser-generator program.
▶ “Yet Another Compiler Compiler”

It compiles a source program (specification), the
CFG.

And produces a program for parsing with respect
to that grammar.

MPhil ACS 2013 15/47

Verified vs Verifying (Digression)

When verifying a compiler, there are two
well-known approaches:

Verified Compiler

Verify (once and for all) that compiler
source code will always transform source
code into equivalent object code.

Example: CompCert, CakeML.

MPhil ACS 2013 16/47

Verified vs Verifying (Digression)

When verifying a compiler, there are two
well-known approaches:

Verifying Compiler

For each run of compiler, independently
confirm that object code and source
code are equivalent.

Example: seL4 C.

MPhil ACS 2013 17/47

Verified yacc

Work with PhD student Aditi Barthwal (2009).
▶ Theory of CFGs in HOL4
▶ Formal presentation of SLR automaton

construction
▶ Proofs that resulting automaton is

▶ sound: if the automaton accepts the string, it is in
the language of the grammar

▶ complete: if a string is in the language, the
automaton will accept it

MPhil ACS 2013 18/47

Verified yacc’s Omissions

yacc is actually LALR, not SLR.
▶ Probably not a big job to make this extension

Compiler is entirely within the logic; the object
code is not C, or SML, or …

No proof of termination.
▶ If a string is not in the language, the

automaton is not proven to terminate

MPhil ACS 2013 19/47

Verifying yacc

Work by Jourdan, Pottier, and Leroy (2012).
▶ Verifies that an LALR automaton will

correctly parse a CFG’s language
▶ Used in the CompCert compiler (addressing

bugs)
▶ Note beautiful way in which a verified compiler

includes a verifying component

▶ No termination proof

MPhil ACS 2013 20/47

Everyone Hates yacc

…

Also, dealing with automata is painful if you are
targetting a language without arrays.

MPhil ACS 2013 21/47

The Seductive World of LL Parsing
Take

selection-statement:
if (condition) statement
if (condition) statement else statement
switch (condition) statement

Write
function parse-selection =

case next-token of
TOK If =>

grab(TOK Lparen);
parse-condition;
grab(TOK Rparen);
· · ·

| TOK Switch => · · ·
| _ => raise Error

MPhil ACS 2013 22/47

The Seductive World of LL Parsing

Write code that mimicks the structure of the input
grammar.
▶ Calculate (by hand) things like first sets

This starts to feel as if it’s almost … mechanical.

But verification is still hard because it’s of source
code in a full programming language.

MPhil ACS 2013 23/47

Enter the Domain Specific Language

Programming in a well-specified subset.

Thus:
▶ Monadic parser combinators allow a very

appealing combination
parse-selection =

(grab(TOK If) >>
grab(TOK LParen) >>
· · ·) ||

(grab(TOK Switch) >>
· · ·)

▶ Code may still be laced with arbitrary
Haskell (say)

MPhil ACS 2013 24/47

Parsing Expression Grammars (PEGs)

Another DSL (Ford 2004).

e ::= ε | . | c | e1 e2 | e∗

| e1/e2 | ¬e | N

where N is the name of a non-terminal symbol.

MPhil ACS 2013 25/47

PEGs Informally
ε Empty. Consume no input, succeed.

. Any. Consume one token from input. Fail if at
end of input

c Char. Consume c from input. Fail if it’s not there,
or if at end.

e1e2 Sequence. Run e1 then e2. Fail if either fails.

e∗ Repeat. Run e repeatedly until it fails. Always
succeeds.

e1/e2 Choice. Try e1. If it fails, try e2. Fails if both fail.

¬e Not. Try e. Fail if it succeeds, succeed if it fails.

N Non-Terminal. Look up N, run its expression.

MPhil ACS 2013 26/47

PEG Derived Forms

e? (e/ε) Option.

e+ (ee∗) Repeat One.

[a−z] (a/b/ · · · /z) Range.

&e (¬¬e) Lookahead.

MPhil ACS 2013 27/47

PEGs are a Nice DSL
Can capture many typical idioms.

Short-circuiting choice, repeat and not are
powerful features.

Choice is deterministic, so PEGs are too.

E.g.

If (Condition) Statement (else Statement)? /
Switch (Condition) Statement

gives the correct “else attaches to nearest if”
behaviour.

MPhil ACS 2013 28/47

PEG Choice Gives Backtracking

Something like
e1 e2 / e3

may do large amounts of work on e1 and/or e2
before ultimately giving up and going to e3.

With great power comes great responsibility.

MPhil ACS 2013 29/47

Recursion
Repetition (e∗) covers many instances.

If the grammar calls for:

E ::= E+ T | T

T ::= n | (E)

Can replace with

E 7→ (T+)∗ T
T 7→ n / (E)

(Note T → E → T recursion is still present in both.)
MPhil ACS 2013 30/47

PEG Grammar Engineering

Think about back-tracking in

E 7→ (T+)∗ T
T 7→ n / (E)

and you may want to write

E 7→ T (+ T)∗

T 7→ n / (E)

instead.

MPhil ACS 2013 31/47

PEGs Aren’t All Well-formed
We can’t write the direct analogue of the input
CFG:

E 7→ E+ T / T
T 7→ n / (E)

Though we could (more engineering!) write

E 7→ T+ E / T
T 7→ n / (E)

PEGs are an “LL technology” and left-recursion
can’t be used.

MPhil ACS 2013 32/47

Formalising PEGs

Define an inductive relation

(e, s1)⇝ ✓s2 (e, s)⇝ ⊥

Two cases:
▶ PEG e starts on input s1 and successfully

consumes it, leaving s2 as remaining input; or
▶ PEG e starts on input s and fails.

MPhil ACS 2013 33/47

PEG Rules
Some simple cases:

(ε, s)⇝ ✓s

N 7→ e (e, s)⇝ r
(N, s)⇝ r

(c, c :: s)⇝ ✓s

c1 ̸= c2

(c1, c2 :: s)⇝ ⊥

(., c :: s)⇝ ✓s (., [])⇝ ⊥

(e1, s0)⇝ ✓s1 (e2, s1)⇝ ✓s

(e1e2, s0)⇝ ✓s

MPhil ACS 2013 34/47

More Interesting PEG Rules

(e1, s0)⇝ ✓s

(e1/e2, s0)⇝ ✓s

(e1, s)⇝ ⊥ (e2, s)⇝ r
(e1/e2, s)⇝ r

(e, s)⇝ ⊥
(¬e, s)⇝ ✓s

(e, s)⇝ ✓s’

(¬e, s)⇝ ⊥

(e, s)⇝ ⊥
(e∗, s)⇝ ✓s

(e, s0)⇝ ✓s1 (e∗, s1)⇝ ✓s

(e∗, s0)⇝ ✓s

MPhil ACS 2013 35/47

Theorems About PEGs

Deterministic. Order of evaluation in things like
choice and sequencing is completely specified.

Total on Good PEGs. If a grammar doesn’t have
left-recursion, the relation will define a result for
all inputs.

MPhil ACS 2013 36/47

Adding Semantic Actions

As defined, PEGs just give yes/no verdicts on
string acceptability.

To be practical, they should give the user access
to the (implicit) parse-tree.

Associate each expression in a grammar with a
function that gets passed the results of recursive
calls.

MPhil ACS 2013 37/47

Semantic Actions

▶ Associate a function f with e∗, such that f gets
passed a list of values generated from the
recursive calls to e.
Then, f must return a value that will be used
in turn by the levels above.

▶ Associate a function g with e1e2, such that g
gets passed two values, one from e1 and one
from e2.

▶ Associate a value v with ¬e, which is
returned when e fails.

MPhil ACS 2013 38/47

Executing PEGs

PEGs have to be presented as relations because of
the possibility of non-termination.

However, they have an obvious interpretation in
your favourite programming language.

The “PEG Interpreter”
▶ might loop if the input grammar is

malformed;
▶ but will return the right result otherwise.

MPhil ACS 2013 39/47

Verifying a PEG

In the CakeML project, we had a CFG for
our SML subset.

We wrote a PEG to parse token streams,
and to return the concrete syntax tree.

The PEG’s semantic actions explicitly built that
tree.
▶ all interesting semantic analysis came later

MPhil ACS 2013 40/47

But Wait!

PEGs are written in high-level domain-specific
language.

Perhaps the PEG is just an executable
specification in itself.
▶ So clear that it’s obviously what we expected.

And that would mean nothing to verify :-)

MPhil ACS 2013 41/47

CakeML PEG as Executable Spec

For example:
mkNT nEbase 7→

choicel [tok isInt (bindNT nEbase o mktokLf);
seql [tokeq LparT; tokeq RparT]

(bindNT nEbase);
peg_EbaseParen;
seql [tokeq LbrackT; try (pnt nElist1);

tokeq RbrackT]
(bindNT nEbase);

seql [tokeq LetT; pnt nLetDecs; tokeq InT;
pnt nEseq; tokeq EndT]
(bindNT nEbase);

pegf (pnt nFQV) (bindNT nEbase);
pegf (pnt nConstructorName)

(bindNT nEbase)]

MPhil ACS 2013 42/47

CakeML PEG as Executable Spec
For left-associating expressions:
mkNT nEmult 7→

peg_linfix (mkNT nEmult) (pnt nEapp) (pnt nMultOps)

Like:
nEmult ::= nEmult nMultOps nEapp | nEapp

But
peg_linfix tgtnt rptsym opsym =

seq rptsym (rpt (seq opsym rptsym (++)) FLAT)
(λa b.
case a of
[] => []

| h::_ => [mk_linfix
tgtnt
(Nd tgtnt [h])
b])

MPhil ACS 2013 43/47

What Are We Trying to Achieve?

Let’s get all existential.

We want to create trust in our system.

If we had no choice, maybe the PEG as spec
approach would be OK.

MPhil ACS 2013 44/47

But, Proof is Possible

In fact, it is possible to connect the CFG and the
PEG.
Results:
▶ Soundness. If the PEG parses a non-terminal

N, creating a parse-tree along the way, then
▶ the root of the tree is N
▶ that tree is valid according to the CFG
▶ its fringe is the input consumed by the PEG

▶ Completeness. If there is a valid parse-tree t
with fringe f, then running the PEG on f will
create t.

MPhil ACS 2013 45/47

Corollary

As the PEG is deterministic, our CFG must be
unambiguous.

MPhil ACS 2013 46/47

Awkwardnesses

The proofs were entirely manual.

Changing the grammar to do more syntax
(handling arrays, say), requires
▶ more specification and implementation work
▶ more manual proof

MPhil ACS 2013 47/47

Conclusion

For a complete “end-to-end” story, a verified
parser is a very nice thing to have.

For all its faults, the CFG remains the gold
standard way to specify a language’s syntax.

PEGs are a reasonable way to implement parsers.

Handcrafted PEGs and CFGs can be connected by
proof.

MPhil ACS 2013 48/47

	Specifying a Syntax
	Implementing a Syntax
	Parsing Expression Grammars (PEGs)
	Verifying a PEG

