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Abstract. This paper presents a compiler which produces machine code
from functions defined in the logic of a theorem prover, and at the same
time proves that the generated code executes the source functions. Un-
like previously published work on proof-producing compilation from a
theorem prover, our compiler provides broad support for user-defined
extensions, targets multiple carefully modelled commercial machine lan-
guages, and does not require termination proofs for input functions. As
a case study, the compiler is used to construct verified interpreters for
a small LISP-like language. The compiler has been implemented in the
HOL4 theorem prover.

1 Introduction

Compilers pose a problem for program verification: if a high-level program is
proved correct, then the compiler’s transformation must be trusted in order for
the proof to carry over to a guarantee about the generated executable code. In
practice there is also another problem: most source languages (C, Java, Haskell
etc.) do not have a formal semantics, and it is therefore hard to formally state
and verify properties of programs written in these languages.

This paper explores an approach to compilation aimed at supporting program
verification. We describe a compiler which takes as input functions expressed in
the logic of a theorem prover, compiles the functions to machine code (ARM,
x86 or PowerPC) and also proves that the generated code executes the supplied
functions. For example, given function f as input

f(r1) = if r1 < 10 then r1 else let r1 = r1 − 10 in f(r1)

the compiler can generate ARM machine code

E351000A L: cmp r1,#10

2241100A subcs r1,r1,#10

2AFFFFFC bcs L

and automatically prove a theorem which certifies that the generated code ex-
ecutes f . The following theorem states, if register one (r1) initially holds value
r1, then the code will leave register one holding value f(r1). The theorem is ex-
pressed as a machine-code Hoare triple [17] where the separating conjunction ‘∗’
can informally be read as ‘and’.

{r1 r1 ∗ pc p ∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 f(r1) ∗ pc (p+12) ∗ s}



The fact that f is expressed as a function in the native language of a theorem
prover means that it has a precise semantics and that one can prove properties
about f , e.g. one can prove that f(x) = x mod 10 (here mod is modulus over
unsigned machine words). Properties proved for f carry over to guarantees about
the generated machine code via the certificate proved by the compiler. For ex-
ample, one can rewrite the theorem from above to state that the ARM code
calculates r1 mod 10:

{r1 r1 ∗pc p∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 (r1 mod 10)∗pc (p+12)∗ s}

Proof-producing compilation from a theorem prover has been explored before
by many, as will be discussed in Section 6. The contributions that distinguish
the work presented here are that the compiler:

1. targets multiple, carefully modelled, commercial machine languages (namely
ARM, PowerPC and x86, as modelled by Fox [7], Leroy [11] and Sarkar [6]);

2. does not require the user to prove termination of the input functions (a
restriction posed by the theorem prover in similar work by Li et al. [12–14]);

3. can, without any added complexity to the certification proof, handle a range
of optimising transformations (Section 4); and

4. supports significant user-defined extensions to its input language (Section
3.1); extensions which made it possible to compile interpreters for a small
LISP-like language as a case study (Section 5).

The compiler3 uses a functional input, which is meant to either be extended
directly by the user, as discussed in Section 3.1, or used as a back-end in compilers
with more general input languages, e.g. [8, 13, 14].

This paper builds on the authors’ work on post hoc verification of realistically
modelled machine code [16–18], and certifying compilation [8, 12–14].

2 Core functionality

The compiler presented in this paper accepts tail-recursive functions as input,
functions defined as recursive equations ‘f(. . .) = . . .’ in a format described
in Section 2.1. As output the compiler produces machine code together with a
correctness certificate, a theorem which states that the generated machine code
executes the function given as input.

The overall compilation algorithm can be broken down into three stages:

1. code generation: generates, without proof, machine code from input f ;
2. decompilation: derives, via proof, a function f ′ describing the machine code;
3. certification: proves f = f ′.

The remaining subsections describe the input language and code generation
that make proving f = f ′ feasible, as well as the mechanism by which f ′ is
derived. Section 3 describes extensions to the core algorithm.
3 The HOL4 source is at http://hol.sf.net/ under HOL/examples/machine-code.



2.1 Input language

The compiler’s input language consists of let-expressions, if-statements and tail-
recursion. The language restricts variable names to correspond to names of reg-
isters or stack locations.

The following grammar describes the input language. Let r range over reg-
ister names, r0, r1, r2, etc., and s over stack locations, s1, s2, s3 etc., m over
memory modelling functions (mappings from aligned 32-bit machine words to
32-bit machine words), f over function names, g over names of already compiled
functions, and i5, i7, i8 and i32 over unsigned words of size 5-, 7-, 8- and 32-bits,
respectively. Bit-operators &, ??, !!,�,� are and, xor, or, left-shift, right-shift.
Operators suffixed with ‘.’ are signed-versions of those without the suffix.

input ::= f(v, v, ..., v) = rhs

rhs ::= let r = exp in rhs

| let s = r in rhs

| let m = m[ address 7→ r ] in rhs

| let (v, v, ..., v) = g(v, v, ..., v) in rhs

| if guard then rhs else rhs

| f(v, v, ..., v)
| (v, v, ..., v)

exp ::= x | ¬ x | s | i32 | x binop x | m address | x� i5 | x� i5 | x�. i5
binop ::= + | − | × | div | & | ?? | !!
cmp ::= < | ≤ | > | ≥ | <. | ≤. | >. | ≥. | =

guard ::= ¬ guard | guard ∧ guard | guard ∨ guard | x cmp x | x & x = 0
address ::= r | r + i7 | r − i7

x ::= r | i8
v ::= r | s | m

This input language was designed to be machine independent; programs con-
structed from this grammar can be compiled to any of the target languages:
ARM, x86 and PowerPC. However the input language differs for each target in
the number of registers available (r0...r12 for ARM, r0...r6 for x86 and r0...r31
for PowerPC) and some detailed restrictions on the use of × and div.

2.2 Code generation

The input language was designed to mimic the operations of machine instructions
in order to ease code generation. Each let-expression usually produces a single
instruction, e.g.

let r3 = r3 + r2 in generates ARM code add r3,r3,r2
let r3 = r3 + r2 in generates x86 code add ebx,edx
let r3 = r3 + r2 in generates PowerPC code add 3,3,2



In some cases one let-expression is split into a few instructions, e.g.

let r3 = r0 − r2 in generates x86 code mov ebx,eax
sub ebx,edx

let r3 = 5000 in generates ARM code mov r3,#19
mov r3,r3,lsl 8
add r3,r3,#136

The code generator was programmed to use a few assembly tricks, e.g. on x86
certain instances of addition, which would normally require two instructions (mov
followed by add), can be implemented as a single load-effective-address lea:

let r3 = r0 + r2 in generates x86 code lea ebx,[eax+edx]

A combination of compare and branch are used to implement if-statements, e.g.

if r3 = 45 then ... else ... generates ARM code cmp r3,#45
bne L1

Function returns and function calls generate branch instructions.
The compiler generates a list of assembly instructions, which is translated

into machine code using off-the-shelf assemblers: Netwide Assembler nasm [1]
for x86 and the GNU Assembler gas [2] for ARM and PowerPC. Note that
these tools do not need to be trusted. If incorrect code is generated then the
certification phase, which is to prove the correctness certificate, will fail.

2.3 Proving correctness theorem

The theorem certifying the correctness of the generated machine code is proved
by first deriving a function f ′ describing the effect of the generated code, and
then proving that f ′ is equal to the original function to be compiled. Function f ′

is derived using proof-producing decompilation [18]. This section will illustrate
how decompilation is used for compilation and then explain decompilation.

Example. Given function f , which traverses r0 steps down a linked-list in m,

f(r0, r1,m) =
if r0 = 0 then (r0, r1,m) else

let r1 = m(r1) in
let r0 = r0 − 1 in
f(r0, r1,m)

Code generation produces the following x86 code.

0: 85C0 L1: test eax, eax

2: 7405 jz L2

4: 8B09 mov ecx,[ecx]

6: 48 dec eax

7: EBF7 jmp L1

L2:



Proof-producing decompilation is applied to the generated machine code. The
decompiler takes machine code as input and produces a function f ′ as output,

f ′(eax, ecx,m) =
if eax & eax = 0 then (eax, ecx,m) else

let ecx = m(ecx) in
let eax = eax− 1 in
f ′(eax, ecx,m)

together with a theorem (expressed as a machine-code Hoare triple [17, 18])
which states that f ′ accurately records the update executed by the machine
code. The decompiler derives f ′ via proof with respect to a detailed processor
model written by Sarkar [6]. Here eip asserts the value of the program counter.

f ′
pre(eax, ecx,m)⇒
{ (eax, ecx,m) is (eax, ecx,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is f ′(eax, ecx,m) ∗ eip (p+9) ∗ s }

The decompiler also automatically defines f ′
pre, which is a boolean-valued

function that keeps track of necessary conditions for the Hoare triple to be valid
as well as side-conditions that are needed to avoid raising hardware exceptions. In
this case, ecx is required to be part of the memory segment modelled by function
m and the underlying model requires ecx to be word-aligned (ecx& 3 = 0),
whenever eax& eax 6= 0.

f ′
pre(eax, ecx,m) =
if eax & eax = 0 then true else
f ′

pre(eax−1,m(ecx),m) ∧ ecx ∈ domain m ∧ (ecx& 3 = 0)

Next the compiler proves f = f ′. Both f and f ′ are recursive functions; thus
proving f = f ′ would normally require an induction. The compiler can avoid an
induction since both f and f ′ are defined as instances of tailrec:

tailrec x = if (G x) then tailrec (F x) else (D x)

The compiler proves f = f ′ by showing that the components of the tailrec
instantiation are equal, i.e. for f and f ′, as given above, the compiler only needs
to prove the following. (f ′

pre is not needed for these proofs.)

G : (λ(r0, r1,m). r0 6= 0) = (λ(eax, ecx,m). eax & eax 6= 0)
D : (λ(r0, r1,m). (r0, r1,m)) = (λ(eax, ecx,m). (eax, ecx,m))
F : (λ(r0, r1,m). (r0−1,m(r1),m)) = (λ(eax, ecx,m). (eax−1,m(ecx),m))

The code generation phase is programmed in such a way that the above compo-
nent proofs will always be proved by an expansion of let-expressions followed by
rewriting with a handful of verified rewrite rules that undo assembly tricks, e.g.
∀w. w & w = w.



The precondition f ′
pre is not translated, instead fpre is defined to be f ′

pre.
The compiler proves the certificate of correctness by rewriting the output from
the decompiler using theorems f ′ = f and f ′

pre = fpre. The example results in:

fpre(eax, ecx,m)⇒
{ (eax, ecx,m) is (eax, ecx,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is f(eax, ecx,m) ∗ eip (p+9) ∗ s }

Decompilation. The proof-producing decompilation, which was used above, is
explained in detail in [18]. However, a brief outline will be given here.

Decompilation starts by composing together Hoare triples for machine in-
structions to produce Hoare triples describing one pass through the code. For
the above x86 code, successive compositions collapse Hoare triples of the indi-
vidual instructions into two triples, one for the case when the conditional branch
is taken and one for the case when it is not.

eax& eax = 0⇒
{ (eax, ecx,m) is (eax, ecx,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is (eax, ecx,m) ∗ eip (p+9) ∗ s }

eax& eax 6= 0 ∧ ecx ∈ domain m ∧ (ecx& 3 = 0)⇒
{ (eax, ecx,m) is (eax, ecx,m) ∗ eip p ∗ s }
p : 85C074058B0948EBF7
{ (eax, ecx,m) is (eax−1,m(ecx),m) ∗ eip p ∗ s }

Using these one-pass theorems, the decompiler instantiates the following loop
rule to produce function f ′ and the certificate theorem. If F describes a looping
pass, and D is a pass that exits the loop, then tailrec x is the result of the loop:

∀res res’ c. (∀x. P x ∧G x⇒ {res x} c {res (F x)}) ∧
(∀x. P x ∧ ¬(G x)⇒ {res x} c {res’ (D x)})⇒
(∀x. pre x⇒ {res x} c {res’ (tailrec x)})

Here pre is the recursive function which records the side-conditions that need to
be met (e.g. in this case P is used to record that ecx needs to be aligned).

pre x = P x ∧ (G x⇒ pre (F x))

For the above one-pass Hoare triples to fit the loop rule, the decompiler instan-
tiates G, F , D, P , res and res′ as follows:

G = λ(eax, ecx,m). (eax & eax 6= 0)
F = λ(eax, ecx,m). (eax−1,m(ecx),m)
D = λ(eax, ecx,m). (eax, ecx,m)
P = λ(eax, ecx,m). (eax & eax 6= 0)⇒ ecx ∈ domain m ∧ (ecx& 3 = 0)

res = λ(eax, ecx,m). (eax, ecx,m) is (eax, ecx,m) ∗ eip p ∗ s

res′ = λ(eax, ecx,m). (eax, ecx,m) is (eax, ecx,m) ∗ eip (p+9) ∗ s



3 Extensions, stacks and subroutines

The examples above illustrated the algorithm of the compiler based on simple
examples involving only registers and direct memory accesses. This section de-
scribes how the compiler supports user-defined extensions, stack operations and
subroutine calls.

3.1 User-defined extensions

The compiler has a restrictive input language. User-defined extensions to this
input language are thus vital in order to be able to make use of the features
specific to each target language.

User-defined extensions to the input language are made possible by the proof
method which derives a function f ′ describing the effect of the generated code:
function f ′ is constructed by composing together Hoare triples describing parts
of the generated code. By default, automatically derived Hoare triples for each
individual machine instruction are used. However, the user can instead supply
the proof method with alternative Hoare triples in order to build on previously
proved theorems.

An example will illustrate how this observation works in practice. Given the
following Hoare triple (proved in Section 1) which shows that ARM code has
been shown to implement “r1 is assigned r1 mod 10”,

{r1 r1 ∗pc p∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 (r1 mod 10)∗pc (p+12)∗ s}

the code generator expands its input language for ARM with the following line:

rhs ::= let r1 = r1 mod 10 in rhs

Now when a function f is to be compiled which uses this feature,

f(r1, r2, r3) = let r1 = r1 + r2 in
let r1 = r1 + r3 in
let r1 = r1 mod 10 in
r1

the code generator implements “let r1 = r1 mod 10 in” using the machine code
(underlined below) found inside the Hoare triple. The other instructions are
E0811002 for add r1,r1,r2 and E0811003 for add r1,r1,r3.

E0811002 E0811003 E351000A 2241100A 2AFFFFFC

The compiler would now normally derive f ′ by composing Hoare triples for
the individual machine instructions, but in this case the compiler considers the
underlined code as a ‘single instruction’ whose effect is described by the supplied
Hoare triple. It composes the following Hoare triples, in order to derive a Hoare
triple for the entire code.

{r1 r1 ∗ r2 r2 ∗ pc p} p : E0811002 {r1 (r1+r2) ∗ r2 r2 ∗ pc (p+4)}



{r1 r1 ∗ r3 r3 ∗ pc p} p : E0811003 {r1 (r1+r3) ∗ r3 r3 ∗ pc (p+4)}
{r1 r1 ∗pc p∗ s} p : E351000A, 2241100A, 2AFFFFFC {r1 (r1 mod 10)∗pc (p+12)∗ s}
The resulting f ′ is trivially equal to f and thus the resulting Hoare triple states
that the generated code actually executes f .

{r1 r1 ∗ r2 r2 ∗ r3 r3 ∗ pc p ∗ s}
p : E0811002, E0811003, E351000A, 2241100A, 2AFFFFFC
{r1 f(r1, r2, r3) ∗ r2 r2 ∗ r3 r3 ∗ pc (p+20) ∗ s}

It is important to note that the Hoare triples supplied to the compiler
need not concern registers or memory locations, instead more abstract Hoare
triples can be supplied. For example, in Section 5, the compiler is given Hoare
triples that show how basic operations over LISP s-expressions can be performed.
The LISP operation car is implemented by ARM instruction E5933000. Here s-
expressions are defined as a data-type with type-constructors Dot (pairs), Num
(numbers) and Sym (symbols). Details are given in Section 5.

(∃x y. v1 = Dot x y) ⇒
{ lisp (a, l) (v1, v2, v3, v4, v5, v6) ∗ pc p }
p : E5933000
{ lisp (a, l) (car v1, v2, v3, v4, v5, v6) ∗ pc (p+ 4) }

The above specification extends the ARM code generator to handle assignments
of car v1 to s-expression variable v1.

rhs ::= let v1 = car v1 in rhs

3.2 Stack usage

The stack can be used by assignments to and from variables s0, s1, s2 etc., e.g.
the following let-expressions correspond to machine code which loads register 1
from stack location 3 (three down from top of stack), adds 78 to register 1 and
then stores the result in stack location 2.

f(r1, s2, s3) = let r1 = s3 in
let r1 = r1 + 78 in
let s2 = r1 in

(r1, s2, s3)

Internally stack accesses are implemented by supplying the decompiler with
specifications which specify stack locations using M-assertions (defined formally
in [17], informally Mx y asserts that memory location x holds value y), e.g. the
following is the specification used for reading the value of stack location 3 into
register 1. Register 13 is the stack pointer.

{r1 r1 ∗ r13 sp ∗M(sp+12) s3 ∗ pc p}
p : E59D100C
{r1 s3 ∗ r13 sp ∗M(sp+12) s3 ∗ pc (p+4)}

The postcondition for the certification theorem proved for the above function f :

{ (r1,M(sp+8),M(sp+12)) is f(r1, s2, s3) ∗ r13 sp ∗ pc (p+12) }



3.3 Subroutines and procedures

Subroutines can be in-lined or called as procedures. Each compilation adds a new
let-expression into the input languages of the compiler. The added let-expressions
describe the compiled code, i.e. they allow subsequent compilations to use the
previously compiled code. For example, when the following function (which uses
f from above) is compiled, the code for f will be in-lined as in Section 3.1.

g(r1, r2, s2, s3) = let (r1, s2, s3) = f(r1, s2, s3) in
let s2 = r1 in

(r1, r2, s2, s3)

Note that for simplicity, function calls must match the variable names used
when compiling the called function was compiled, e.g. a function compiled as
‘k(r1) = ...’ cannot be called as ‘let r2 = k(r2) in’ since the input is passed to
code implementing k in register 1 not in register 2.

If the compiler had been asked to compile f as a procedure, then the num-
bering of stack variables needs to be shifted for calls to f . Compiling f as a
procedure sandwiches the code for f between a push and pop instruction that
keep track of the procedure’s return address. When f accesses stack locations 2
and 3 (counting in pop-order), these are for caller g locations 1 and 2.

g(r1, r2, s1, s2) = let (r1, s1, s2) = f(r1, s1, s2) in
let s2 = r1 in

(r1, r2, s1, s2)

4 Optimising transformations

Given a function f , the compiler generates code, which it decompiles to produce
function f ′ describing the behaviour of the generated code. The code genera-
tion phase can perform any optimisations as long as the certification phase can
eventually prove f = f ′. In particular, certain instructions can be reordered
or removed, and the code’s control flow can use special features of the target
language.

4.1 Instruction reordering

Instruction reordering is a standard optimisation applied in order to avoid un-
necessary pipeline stalls. The compiler presented here supports instruction re-
ordering as is illustrated by the following example. Given a function f which
stores r1 into stack location s5, then loads r2 from stack location s6, and finally
adds r1 and r2.

f(r1, r2, s5, s6) = let s5 = r1 in
let r2 = s6 in
let r1 = r1 + r2 in

(r1, r2, s5, s6)



The code corresponding directly to f might cause a pipeline stall as the result
of the load instruction (let r2 = s6 in) may not be available on time for the add
instruction (let r1 = r1 + r2 in). It is therefore beneficial to schedule the load
instructions as early as possible; the generated code reduces the risk of a pipeline
stall by placing the load instruction before the store instruction:

f ′(r1, r2, s5, s6) = let r2 = s6 in
let s5 = r1 in
let r1 = r1 + r2 in

(r1, r2, s5, s6)

Valid reorderings of instructions are unnoticeable after expansion of let-expressions,
thus the proof of f = f ′ does not need to be smarter to handle this optimisation.

4.2 Removal of dead code

Live-variable analysis can be applied to the code in order to remove unused or
dead code. In the following definition of f , the first let-expression is unnecessary.

f(r1, r2, s5, s6) = let r1 = s5 in
let r2 = s6 in
let r1 = r2 + 8 in

(r1, r2, s5, s6)

The generated code ignores the first let-expression and produces a function f ′

which is, after expansion of let-expressions, identical to f .

4.3 Conditional execution

ARM machine code allows conditional execution of nearly all instructions in
order to allow short forward jumps to be replaced by conditionally executed in-
structions (this reduces branch overhead). The compiler produces conditionally-
executed instruction blocks where short forward jumps would otherwise have
been generated. The functions decompiled from conditionally executed instruc-
tions are indistinguishable from those decompiled from code with normal jumps
(as can be seen in the examples of Section 1 and 4.4).

x86 supports conditional assignment using the conditional-move instruction
cmov. For x86, the compiler replaces jumps across register-register moves by
conditional-move instructions.

4.4 Shared tails

The compiler’s input language supports if-statements that split control, but does
not provide direct means for joining control-flow. For example, consider

(if r1 = 0 then r2 := 23 else r2 := 56); r1 := 4



which can be defined either directly as function f with ‘shared tails’

f(r1, r2) = if r1 = 0 then let r2 = 23 in let r1 = 4 in (r1, r2)
else let r2 = 56 in let r1 = 4 in (r1, r2)

or as function g with auxiliary function g2 compiled to be in-lined:

g(r1, r2) = let (r1, r2) = g2(r1, r2) in let r1 = 4 in (r1, r2)

g2(r1, r2) = if r1 = 0 then let r2 = 23 in (r1, r2)
else let r2 = 56 in (r1, r2)

Generating code naively for f would result in two instructions for let r1 = 4 in,
one for each branch. The compiler implements an optimisation which detects
‘shared tails’ so that the code for f will be identical to that produced for g. The
compiler generates the following ARM code for function g (using conditional
execution to avoid inserting short jumps).

0: E3510000 cmp r1,#0

4: 03A02017 moveq r2,#23

8: 13A02038 movne r2,#56

12: E3A01004 mov r1,#4

5 Compilation example: verified LISP interpreter

The following example shows how one can utilise extensions to the input lan-
guage. A verified interpreter for a LISP-like language is constructed using com-
pilation. Details of the following section will be published as a separate paper.

The LISP interpreter constructed here operates over a simple date-type of
s-expressions: Dot x y is a pair, Num n is a number n, and Sym s is a symbol s,
in HOL4, s has type string. Basic operations are defined as follows:

car (Dot x y) = x

cdr (Dot x y) = y

cons x y = Dot x y

plus (Num m) (Num n) = Num (m+ n)
minus (Num m) (Num n) = Num (m− n)

size (Num w) = 0
size (Sym s) = 0

size (Dot x y) = 1 + size x+ size y

. . .



A new resource assertion lisp is defined which relates LISP objects to con-
crete memory representations: lisp (a, l) (v1, v2, v3, v4, v5, v6) states that a heap
is located at address a, has capacity l, and that s-expressions v1, v2, v3, v4, v5,
v6 are stored in this heap. The definition of lisp is omitted in this presentation.

Machine code for basic operations has been proved (in various ways using
decompilation and compilation) to implement basic assertions, e.g. ARM code
for storing car v1 into v1:

(∃x y. v1 = Dot x y) ⇒
{ lisp (a, l) (v1, v2, v3, v4, v5, v6) ∗ pc p }
p : E5933000
{ lisp (a, l) ((car v1), v2, v3, v4, v5, v6) ∗ pc (p+ 4) }

A memory allocator with a built-in copying garbage collector (a Cheney garbage
collector [4]) is used to implement creation of a new pair Dot v1 v2. The precon-
dition of this operation requires the heap to have enough space to accommodate
a new cons-cell.

(size v1 + size v2 + size v3 + size v4 + size v5 + size v6) < l ⇒
{ lisp (a, l) (v1, v2, v3, v4, v5, v6) ∗ s ∗ pc p }
p : ... the allocator code ...

{ lisp (a, l) ((cons v1 v2), v2, v3, v4, v5, v6) ∗ s ∗ pc (p+ 328) }

When the above specifications are supplied to the compiler it knows what ma-
chine code to generate for two new commands: one for calculating car of v1 and
one for storing cons v1 v2 into v1:

let v1 = car v1 in let v1 = cons v1 v2 in

Once the compilers language had been extended with sufficiently many such
primitive operations, a LISP interpreter was compiled using our proof-producing
compiler. The top-level specification function defining a simple LISP interpreter
lisp eval is listed in Figure 1. When lisp eval is compiled, code is generated and
a theorem is proved which state that this LISP interpreter is implemented by
the generated machine code, in this case ARM code.

lisp eval pre(v1, v2, v3, v4, v5, v6, l) ⇒
{ lisp (a, l) (v1, v2, v3, v4, v5, v6) ∗ s ∗ pc p }
p : ... the generated code ...

{ lisp (a, l) (lisp eval(v1, v2, v3, v4, v5, v6, l)) ∗ s ∗ pc (p+ 3012) }

Here lisp eval pre has collected the various side-conditions that need to be true
for proper execution of the code.

6 Summary and discussion of related work

This paper has described how an extensible proof-producing compiler can be
implemented using decompilation into logic [18]. The implementation required



TASK_EVAL = Sym "nil"

TASK_CONT = Sym "t"

lisp_lookup (v1,v2,v3,v4,v5,v6) = ...

lisp_eval0 (v1,v2,v3,v4,v5,v6,l) = ...

lisp_eval1 (v1,v2,v3,v4,v5,v6,l) = ...

lisp_eval (v1,v2,v3,v4,v5,v6,l) =

if v2 = TASK_EVAL then

let v2 = TASK_CONT in

if isSym v1 then (* exp is Sym *)

let (v1,v2,v3,v4,v5,v6) = lisp_lookup (v1,v2,v3,v4,v5,v6) in

lisp_eval (v1,v2,v3,v4,v5,v6,l)

else if isDot v1 then (* exp is Dot *)

let v2 = CAR v1 in

let v1 = CDR v1 in

let (v1,v2,v3,v4,v5,v6,l) = lisp_eval0 (v1,v2,v3,v4,v5,v6,l) in

lisp_eval (v1,v2,v3,v4,v5,v6,l)

else (* exp is Num *)

lisp_eval (v1,v2,v3,v4,v5,v6,l)

else (* if v2 = TASK_CONT then *)

if v6 = Sym "nil" then (* evaluation complete *)

(v1,v2,v3,v4,v5,v6)

else (* something is still on the to-do list v6 *)

let (v1,v2,v3,v4,v5,v6,l) = lisp_eval1 (v1,v2,v3,v4,v5,v6,l) in

lisp_eval (v1,v2,v3,v4,v5,v6,l)

Fig. 1. The top-level definition of lisp eval in HOL4.

only a light-weight certification phase (approximately 100 lines of ML code) to
be programmed, but still proves functional equivalence between the source and
target programs. In contrast to previous work [8, 12–14], correctness proofs are
here separated from code generation.

For each run, the compiler generates code and then proves that the code
is correct. This is an idea for which Pnueli et al. [20] coined the term trans-
lation validation. There are two basic approaches to translation validation: (1)
code generation is instrumented to generate proofs, and (2) code generation
proceeds as usual then the certification phase attempts to guess the proofs. Ap-
proach 1 is generally considered more feasible [21]. However, Necula [19] showed
that approach 2 is feasible even for aggressively optimising compilers such as
GNU gcc [2]. Necula built into his certification phase heuristics that attempt
to guess which optimisations were performed. The compiler presented here also
implements approach 2, but restricts the (initial) input language and the op-



timisations to such an extent that the certification phase does not need any
guesswork.

An alternative to producing a proof for each run is to prove the compiler
correct. A recent, particularly impressive, milestone in compiler verification was
achieved by Leroy [11], who proved the correctness of an optimising compiler
which takes a significant subset of C as input and produces PowerPC assembly
code4 as output. As part of this project Tristan and Leroy [22] verified multiple
translation validators. Other recent work is [10, 15, 11, 3, 5]. We chose not to
verify our compiler/translation validator, since our compiler constructs all of
its proofs in the HOL4 theorem prover. The trusted computing base (TCB) of
our compiler is HOL4 and the specifications of the target machine languages. It
seems that the user-defined extensions such as those in the LISP example would
have been much harder to implement in a verified compiler, since verifying a
compiler involves defining a deep embedding of the input language.

The VLISP project [9], which produced verified on-paper proofs for an im-
plementation of a larger subset of LISP, is related to the example above of con-
structing a verified LISP interpreter. The fact that the proof presented here is
mechanised and goes down to detailed models of commercial machine languages
distinguishes this work from the VLISP project which stopped at the level of
verified algorithms.
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